拟银杏杀菌剂绿帝和银泰防治小麦纹枯病机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借助农药活性测定、显微观察、高效液相色谱和生物化学技术,研究了拟银杏杀菌剂绿帝和银泰的生物活性、在小麦植株体内的药理学及对小麦纹枯病菌的抑制机制,得到了以下几方面的结果。
     1、绿帝和银泰对真菌4个亚门(半知菌亚门、担子菌亚门、子囊菌亚门、鞭毛菌亚门)的8个属的8种真菌具有抑菌活性。EC_(50)在1μg/ml到60μg/ml之间,说明此两种药剂具有较广的杀菌谱。
     2、使用500μg/ml杀菌剂绿帝原药处理小麦幼苗根部72h后,植株体内药剂吸收量达到389.67±9.5μg/g FW;不同浓度银泰药剂处理的样品中检测不到有效成分含量。与典型的内吸性药剂克百威和非内吸性药剂福美双对比试验分析,首次证实绿帝在小麦植株上具有内吸性。该杀菌剂从小麦幼苗根部向顶传导速度很快,在茎部(Y_1)和叶部(Y_2)的积累与给药处理时间(X)呈正相关,线性方程分别为Y_1=2.9586X+44.217(R~2=0.8486)、Y_2=1.6281X-4.4412(R~2=0.8591)。给药72h后药剂可内吸传导至叶部,根、茎、叶的吸收量分别为:99.70±10.58、243.86±19.87和137.37±12.44μg/gFW。CCCP、温度、蔗糖和不同酸碱性的氨基酸显著影响小麦幼苗对该杀菌剂的吸收,证实绿帝在小麦植株上的内吸传导为小麦主动吸收过程。
     3、在pH6.0-10.0范围不同酸碱度介质条件下绿帝和银泰对小麦纹枯病菌菌丝生长的抑制作用无明显变化,EC_(50)分别为3.16-4.17μg/ml和4.47-5.66μg/ml。显微观察表明,绿帝或银泰药剂致使小麦纹枯病菌菌丝生长过程中分支间距显著缩短。两种供试药剂对小麦纹枯病菌菌体细胞膜通透性和细胞壁麦角甾醇含量没有影响。
     4、绿帝、银泰药剂在浓度为10-100μg/ml范围内明显抑制果胶酶诱导培养基中病原菌分泌蛋白质的浓度。但药剂浓度与蛋白质浓度之间的线性关系不明显。两种药剂在10-100μg/ml浓度内对立枯丝核病菌的3种果胶酶合成均表现明显的抑制作用。绿帝和银泰药剂对病原菌细胞呼吸强度的抑制作用随药剂浓度的增加逐渐增大,10-100μg/ml浓度处理的抑制作用随药剂作用时间的延长变化不明显。两种药剂在1μg/ml浓度对呼吸强度的抑制作用较弱。
With the means of microscopy, High performance liquid chromatography (HPLC), and biochemical techniques, this study evaluated the ftmgicidal activities of 2-allyl phenol (LvDi) and 4-butanoyI phenol (YinTai). Also investigated were pharmacology of the two fungicides in wheat and their mechanisms inhibiting Rhizoctonia cerealis in vitro.
    Studies on growth rate, spore-bourgeoing rate and turbidity disclosed that LvDi and YinTai inhibited the growth of Rhizoctonia cerealis, Botrytis cinerea, Fulviafulva, Sporisoriian reiliana, Physalospora piricola, Valsa mali, Piricularia oryzae, and Pythium aphanidermatum. The In vitro median effective concentrations (EC50) ranged from 1.0/ml to 60.0g/ml. The results suggested that the two fungicides had broad fungicidal spectrum.
    HPLC was applied to investigate the intake and distributional mechanism of LvDi and YinTai in wheat seedling. With a treatment level of LvDi at 500 ug/ml, the intake reached 389.67g per gram of plant tissue in 72 h (standard deviation (SD=9.5). YinTai was not detected in the seedling treated with different levels of the fungicide. In comparison with carbofuran (a typical intake reagent) as well as thiram (a typical non-intake reagent), this was the first time that revealed LvDi could be intaken into wheat seedling. It was transported in a high speed from the root to the top of the seedling. The accumulation levels of LvDi in stem (Y1) and leaves (Y2) were positively correlated with treatment time (X) in linear relationships of Y1=2.9586X+44.217 and Y2=1.6281X-4.4412, respectively. The corresponding coefficients of determination were 0.8486 and 0.8591, respectively. LvDi was distributed in whole seedling at 72 h after the treatment. The accumulation levels at root, stem, and leaves were 99.70 (SD=10.58), 243.86 (SD=19.87), and 137.37 (SD=2.44) ug per gram of plant tissue, respectively. CCCP, temperature, and the properties of amino acid and sucrose significantly affected the intake of LvDi by wheat seedling. This indicated that wheat tend to intake and transport it actively.
    The inhibition mechanisms of LvDi and YinTai on the growth of Rhizoctonia cerealis were studied by means of microscopy, membrane permeability, HPLC, cell wall degradingenzyme, and respiration assays. There is no evident difference in the fungal toxicity of the two chemicals on the growth of the pathogen on PDA media of different pH. The space between hyphal branches of Rhizoctonia cerealis was significantly reduced when it was incubated and grown on the PDA media containing LvDi and YinTai. The two fungicides did not affect membrane permeability and the content of ergosterol in Rhizoctonia cerealis. They inhibited the activities of three pectinases (PQ PMG, PMTE) of Rhizoctonia cerealis. The inhibition of respiration increased with the concentration of the fungicides, but did not change notably with time in the treatment levels ranging from 10g/ml to 100g/ml. At 1g/ml, the two fungicides had no effect on respiration.
引文
[1] 华南农业大学.植物化学保护(第二版)[M].北京:中国农业出版社,1994
    [2] 韩喜莱.农药概论[M].北京:中国农业出版社,1995
    [3] 汪文陆.苦楝杀虫有效成分及生物活性的研究[M].广州:华南农业大学,1989
    [4] 叶正楚,王契.中国农业害虫生物防治及防治概况与进展.昆虫知识,1992,29(3):179-182
    [5] 赵善欢.小菜蛾的抗药性及防治策略.西北农业大学学报,1995,23(3):21-24
    [6] 何道航.印楝素植物性杀虫剂的生物活性及应用研究.广州:华南农业大学,1999
    [7] Swain T. Secondary compounds as protective agents. Am Rev Plant Physiol, 1977, 28: 479-501
    [8] Jill P. Benner, Pesticidal compounds from higher plants. Pestic Sci, 1993, 39: 95-102
    [9] 王进忠,孙淑玲,苏红田.植物源杀虫剂的研究利用现状及展望.北京农学院学报,2000,15(2):72-75
    [10] 刘长令.用于植物保护中的天然产物.农药译丛,1995,17(3):15-20
    [11] 侯玉霞,李重九,马立新等.中草药中抗植物病毒TMV活性物质PZ1作用机理研究.中国农业大学学报,2000,5(1):21-24
    [12] 王利国,马祁.天然产物对植物病毒的抑制作用.中国生物防治,2000,16(3):127-130
    [13] Lee-Juian Lin, Galen Peiser, Bai-ping Ying, et al. Identification of plant growth inhibitory priciplesin Ailakthusaltissima and Castela tortuosa. J Agric Food Chem, 1995, 43: 1706-1711
    [14] 徐苏酩.天然产物源农药和农药先导物.农药译丛,1994,16(2):18-24
    [15] John B. Pillmoor, Kenneth Wright and Adrian S Terry. Natural products as a source of agrochemicals and leads for chemical synthsis. Pestic Sci, 1993, 39: 131-140
    [16] 唐除痴等.农药化学[M].天津:南开大学出版社,1998
    [17] 王发松,杨得波,任三香等.香叶树果挥发油的化学成分和抗菌活性研究.天然产物研究与开发,2000,11(6):1-4
    [18] 于文喜,康迎昆,靳春波等.暴马丁香心材提取物中有效抗菌成分的研究.林业科技,1996,21(6):23-25
    [19] Bai-Ping Ying, Galen D Peiser. Structure-activity relationships of phytotoxic sesquiterpenxids from Canella winterana. J Agric Food Chem, 1995, 43: 826-829
    [20] Frank Muller-Riebau, Bernhard Berger and Oktay Yegen. Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in turkey. J Agric Food Chem, 1995, 43: 2262-2266
    [21] 余世望,范青生,肖小年等.60种食药两用中药抗菌防腐作用研究.天然产物研究与开发,1997,9(4):61-67
    [22] 曾莹,胡璞,夏服.马蹄皮的抗菌作用研究.食品科学,1996,17(10):56-58
    [23] 张牢牢,张淑梅,殷美玲.植物农药苦参生物碱的研究.农药,36(5):26-27
    [24] 何波.苦瓜抗菌作用研究.食品科学,1998,19(3):34-36
    
    
    [25] 林捷,吴锦涛,朱新贵等.柚皮提取物的抑菌作用研究.华南农业大学学报,1999,20(3):59-62
    [26] 周立刚,张颖君,蔡艳等.黄酮和甾体类化合物的抗真菌活性.天然产物研究与开发,1997,9(3):24-29
    [27] 吴新安,花日茂,岳永德等.植物源抗菌、杀菌活性物质研究进展.安徽农业大学学报,2002,29(3):245-249
    [28] 赵纯森,黄俊斌,周茂繁.厚朴叶中抑菌活性成分鉴别及其防病效果.华中农业大学学报,1994,13(4):373-377
    [29] 黄梁绮龄,苏美玲.香港地区红树植物资源研究(四种常见红树植物抑制植物病原真菌效能的评价).天然产物研究与开发,1994a,6(1):5-8
    [30] Nouyen Van Chuyen, Tadao Kurata and Hiromichi Kato. Antimicrobial activity of Kumazasa(sasaalbo-marginata). J Agric Food Chem, 1982, 46(4): 971-978
    [31] 杨征敏,吴文君,王明安等.苦皮藤假种皮中的杀菌活性成分研究.农药学学报,2001,3(2):93-96
    [32] 张国珍,樊瑛,丁万隆等.麻黄和细辛挥发油的抗真菌作用.植物保护学报,1995,22(4):373-374
    [33] Koushik, Seetharaman, Elizabeth Whitehead, et al. In vitro activity of sorgum seed antifungal proteins against gain mold pathogens. J Agric Food Chem, 1997, 45: 3666-3671
    [34] 屠豫钦.天然源农药的研究利用—机遇和问题.世界农药,1999,21(4):4-11
    [35] Luisa Manici, Luca Lazzeri and Sandro Palmieri. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogentic fungi. J Agric Food Chem, 1997, (45) 2768-2773
    [36] 方德秋,肖顺元.柠檬醛及香精油的抗菌性研究概述.天然产物研究与开发,1994,6(4):75-77
    [37] Koller, W., Target Sites of Fungicides Action, CRC Press, Boca Raton, FL, USA, 1992.
    [38] Lyr, H., Modern Selective fungicides: Propertied, Applications, Mechanisms of Action, 2nd edn. Gustav Fisder Verlag, Jena, Germany, 1995.
    [39] Lyr, H., Effect of fungicides on energy peoduction and intermediary metabolism. In antifungal compounds, Vol. 2, ed. M. R. Siegel andH D Sisler Marcel Dekker, New York,USA, 1977, pp. 301-302
    [40] Amema, B. P., Bowman, J., T. and Suzuki, K., Fluazinam: A novel fungicide for use against Phytophthora infestans in potatoes. Brighton Crop Prot. Conf-Pests and Diseases 1992, 663-668
    [41] Guo, Z., Miyoshi, H., Komyoji, T., et al.. Uncoupling activity of a newly-developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoro-methylphenyl)-5-trigluoromethyl-2-pyridinamine, Biochim. Biophys. Acta, 1991, (1056) 89-92
    [42] Hollingworth, R. M., Ahammadasahib K., I.,Gadehak G., New inhibitor of the complex I of the mitochondrial respiratory chain with activity as pesticides. Biochem. Soc. Trans., 1993, (22) 230-233
    
    
    [43] O'Relly, R, Kobayashi, S., Yamane, S., et al., Mon 24000: a novel fungicide with broad-spectrum disease control. Brightom Crop Prot, Conf.-Pests and Diseases 1992, 427-434
    [44] Fritz, R., Lanen, C., and Drouhot, V., Effects of various inhibitors including carboxin on Botrytis cinerea mitochondria isolated from mycelium. Agronomic, 1993, (13) 225-230
    [45] Keon, J. R R., Bromfield, R L. E., Molecular genetic analysis of carboxin resistance in Ustilago maydis. Brighton Crop Prot.Conf.-Pests and Disease 1992, 221-226
    [46] Becker, W. F., Jagow, G, Anke, T., et al., Oudemansin, strobilurin A, strobilurin B and myxathiazol:new inhibitors of the b/c segment of the respiratory chain with an (E)-β-methoxyacrylate system as common structural element. FEBS Lett, 1981, (132) 329-333
    [47] Ammermann, E., Lorenz G, Schelberger K., et al., BAS 490F, a broad-spectrum fungicide with a new mode of action. Brighton Crop Prot. Conf-Pests and Diseases 1992, 403-410
    [48] Godwin, J. R., Anthony, V. M., Clouth, J. M., et al., ICI A 5504:a novel broad-spectrum systemicβ-methoxyacrylate fungicide. Brithton Crop Prot. Conf-Pests and Diseases 1992, 435-442
    [49] Mizutani, A., Yukioka, H., Tamura, H., et al., Respiratory characteristics in PyricuLaria oryzae exposed to a novel alkoxyiminoacetamide fungicide. Phytopathology, 1995, (85) 306-311
    [50] Mansfield, R. W., and Wiggins, T. E., Photo-affinity labeling of the β-methoxyacrylate binding site in bovine heart mitochondrial cytochrome b/cl complex. Biochim. Biophys. Acta, 1990, (1015) 109-115
    [51] Di Rago, J. P., Coppee, J. Y., and Colson, A. M., Molecular basis for resistance to myxothiazol, mucidin (strobilurinA) and stigmatellin. J. Biol. Chem, 1989, (264) 14543-14548
    [52] Pillonel, C., Interaction of benzimidazole-N-sulfonamides with the cytochrome b/cl complex of Pythium aphanidermatum. Pestic. Sci., 1995, (43) 107-113
    [53] Maeno, S., Miura I., Masuda K., et al., Mepanipyrim, a new pyrimidine fungicide. Brighton Crop Prot. Conf-Pests and Diseases 1990, 415-422
    [54] Neumann, G L., Winter, E. H., and Pittis, J. F., Pyrimethanil: a new fungicide. Brighton Crop Prot. Conf-Pests and Diseases 1992, 395-402
    [55] Heye, U. J., Speich, J., Siegle H., et al., CGA 219417: a novel broad-spectrum fungicide. Crop. Prot, 1994, (13) 541-549
    [56] Leroux, P, Effect of pH, aminoacides and various organic compounds on the fungitoxicity of pyrimethanil, glufosinate, captafol, cymoxanil and fenpi-clonil in Botrytis cinerea. Agronomie, 1994, (14) 541-554.
    [57] Masner, P., Muster, P., and Schmid J., Possible methionine biosynthesis inhibition by pyrimidinamine fungicides. Pestic. Sci., 1994, (42) 163-166
    [58] Leroux, P., Colas, V., Interation of the anilinopyrimidine fungicide pyrimethanil with amino acids and sulfur-containiing metabolites in Botrytis cinerea. In Modern fungicides and antifungal Compounds, ed. H. Lyr, P. E. Russell and H. D. Sisler. Intercept, Andover, UK, 1995 61-67
    [59] Baldwin, B. C., Brownell, K. H., Rees, S. B., et al., The mode of acition of the anilide fungicide SC-0850. In 8th IUPAC Internat. Congr. Pestic. Chem, Washington, USA, 1994, poster
    
    423
    [60] Whittington-Smith, R., Baldwin, B. C., Grindle, M., et al., A molecular genetic approach to understanding the mode of action of action of a novel anilide fungicide. In 8th IUPAC Internat. Congr. Pestic. Chem, Washington, USA, 1994, poster 422
    [61] Miura, I., Kamakura, T., Maeno, et al., Inhibition of enzyme secretion in plant pathogens by mepanipyrim, a novel fungicide. Pestic. Biochem. Physiol., 1994, (48) 222-228
    [62] Milling, R. J., and Richardson, C. J., Mode of action of the anilinopyrimidine fungicide pyrimethanil. Effects on enzyme excretion in Botrytis cinerea. Pestic. Sci., 1995, (45) 43-48
    [63] Leroux, P., and Gredt, M., Etude in-vitro de la resistance de Botrytis cinerea aux fungicides anilinopyrimidines. Agronomie, 1995, (15) 367-370
    [64] Jespers, A. B. K., and Ee Waard, M. A., Natural products in plant protection. Ne-th.J. P1. Path,99, supplements 1993, (3) 190-217
    [65] Nevill, D., Nyfeler, R.., and Sozzi, D., CGA 142705, A novel fungicide for seed treatment. Brighton Crop. Prot. Conf.-Pests and Diseases 1998, 65-72
    [66] Gehmann, K., Nefeler, R., Keadbeater, et al., CGA 173506: a new phenylpyrrole fungicide for broadspectrum disease control. Brighton, Crop Prot.Conf-Pests and Diseases 1990, 399-406
    [67] Leroux, P., Lanen, C., and Fritz R., Similarities in the antifungal aciviteis of fenpiclonil, iprodione and tolclofosmethyl against Botrytis cinerea and Fusarium nivale. Pestic. Sci., 1992 (36)255-261
    [68] Jespers, A. B. K., and De Waard, M. A., Effect of fenpiclonil on phosphorylation of glucose in Fusarium sulphureum. Pestic. Sci., 1995, (44)167-175
    [69] Orth, A. B., Sfarra, A, Pell, E. J., and Tien, M., An investigation into the role of lipid peroxidation in the mode of action of aromatic hydrocarbon and dicarboximide fungicides. Pestic. Biochem. Physiol, 1992, (44) 91-100
    [70] Delmer, D. P., Read, S. M., and Copper, G., Identification of a receptor protein in cotton fibers for the herbicide 2,6-dichlorobenzonitrile. Plant Physiol, 1987, (44) 415-420
    [71] Lutringer, M., and De Corrals, L., Absorption, degradation et transport du phosethyL-Al et desonmetablolite chezla tomate. Agronomics, 1985, (5) 423-430
    [72] Barchietto, T., Sandrenan, P., and Bompeix, G., Characterisation of phosphonate uptake in two Phytophthora species and its inhibition by phosphate. Arch.Microbiol, 1989, (151) 54-58
    [73] Kessmann, H., Staub, T., et al., Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol, 1994, (32) 439-459
    [74] Dorn, F., Influences of molecular mechanisms of action of fungicide design. In Proceedings 8th IUPAC Internat. Congr. Pestic. Chem, ed.N.N. Ragsdale, P. C. Kearney and J. K .Plimmer. ACS, Washington, DC, 1995, 320-327
    [75] Ruess, W., Kunz, W., et al., Plant activator CGA245704, a new technology for disease management. In Ⅷ International Plant Protection Congress, The Hague, the Netherlands. 1995, Abstract 424
    
    
    [76] Hofle, G., O'Sullivan, A. C., and Sutter, M., The synthesis of fungicidal activity of derivatives of Soraphen A substituted at position 12. Pestic. Sci, 1995 (43)358-361
    [77] Scalla, R., Les herbicides, Mode d'action et principes d'utilisation, INKA Paris, France, 1991.
    [78] Henry, M. H., Smith, A. J., Gustafson, G. D., et al., Inhibition of dihydrooratate dehydrogenase by the 8-chlorophenoxyquinoline fungicide LY214352.In 8th IUPAC Internat. Congr. Pestic. Chem, Wsashington, DC, USA 1994, poster 481
    [79] Young, D. H., Effects of zarilamide on microtubules and nuclear division in Phytophthora capsici and tobacco suspension-cultured cells. Pestic. Biochem. Physiol, 1991, (40) 149-161
    [80] Akagi, T, Miloni, S., Ito, K., Shigehara, et al., Structure sesitive and resistant isolates of Botrytis cinerea. Pestic. Sci., 1995, (44) 39-48
    [81] Hattori, T., Kuratashi, K., Kagobu, S., et al., KTU 3616: a novel fungicide for rice blast control. Brighton Crop Prot. Conf.-Pests and Diseases 1994, 517-524
    [82] 赵宗方.银杏外种皮提取液对果树病原菌的抑菌效果(初探).《江苏农业科学》,1991(1):52-53
    [83] 孟昭礼.银杏提取液对四种植物病原菌的抑制作用.《植物病理学报》,1995,25(4):357-360
    [84] 孟昭礼.人工模拟杀菌剂绿帝对8种病原菌的室内测定.《莱阳农学院学报》,1998,15(3):159-162
    [85] 孟昭礼.人工模拟杀菌剂绿帝对四种植物病害的药效实验.《农药》,1999,38(5):24-26
    [86] 李重九.色谱学,北京农业大学出版社,1995
    [87] Bredu, S., Yokota,T., and Hagihara, A., Temperature effect on maintenance and growth respiration coefficients of young, field-grown hinoki cypress, Ecological Research, 1997, 12(3):357-362
    [88] Maier, CA., Zarnoch, SJ., Dougherty, PM., Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation, Tree Physiology, 1998, 18(1): 11-20
    [89] 邱全盛、苏雪峰.大豆下胚轴质膜H+-ATPase质子运转的测定.生物化学与生物物理进展,1999,26(1):79-83
    [90] Honda, M., Ito, K., Hara, T., Effect of physiological activities on aluminum uptake in carrot (Daucus carota L.) cells in suspension culture, Soil Science and Plant Nutrition, 1997, 43(2): 361-368
    [91] Hetherington, PR., Marshall, G.., Kirkwood, RC.. et al., Absorption and efflux of glyphosate by cell suspensions, Journal of Experimental Botany, 1998, (49) 527-533
    [92] Ingex. SR., Schreiber, JD., And Cullum, RF., Transport of the Herbicide 3-Amino-1,2,4-Triazole by Cultured Tobco Cells and Leaf Protoplasts, Plant Physiol, 1982, (69) 1382-1386
    [93] Padgett, PE., Leonard, RT., Free amino acid levels and the regulation of nitrate uptake in
    
    maize cell suspension cultures, Journal of Experimental Botany, 1996, 47(300): 871-883
    [94] 徐锐、彭新湘.草酸在提高大豆磷吸收利用及抗铝性中的作用.西北植物学报,2002,22(2):291-295
    [95] 史建荣,王裕中,方中达.三唑酮、三唑醇对小麦纹枯病菌形态和生理的影响.植物病理学报,1992,22(3):205-208
    [96] 石志琦,周明国,叶钟音.核盘菌对菌核净的抗药性机制初探.农药学学报,2000,2(2):47-51
    [97] 周明国,O.W.Hollomon.,Neurospora crassa对三唑醇的抗药性分子机制研究.植物病理学报,1997,27(3):275-280
    [98] 高仁君,刘西莉,李健强等.高效液相色谱法测定小麦纹枯病菌麦角甾醇的含量.中国农业大学学报,1998.3(增刊):115
    [99] L. Marcus, I. Barash, B. Sneh, et al., Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn Physiological and Molecular Plant Pathology 1986, (29) 325-336
    [100] Lionel Marcus and Abel Schejter Single step chromatographic purificationand characterization of the endopolygalacturonases and pectinesterases of the fungus, Botrytis cinerea Pets Physiological Plant Pathology 1983, (22) 1-13
    [101] 王峰、李金玉、李宝笃.碳标记甲霜灵在黄瓜植株内的吸收、分布、传导以及种衣剂缓释作用的研究.植物病理学报,1995,25(2):167-170
    [102] 江树人、弗朗茨·米勒.14C-多菌灵在棉苗植株内的吸收、传导、分布和代谢研究.北京农业大学学报,1987,13(1):103-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700