亚热带天然次生混交林生物量及养分生物循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然次生林是我国宝贵的森林后备资源,具有很大的生态价值和生产潜力,只要科学管理,合理利用,就能形成良好的森林生态系统,增加物质财富,提高生态防护效益。天然次生林在少林地区或人工林地区,对于维持当地的生态环境具有非常重要的意义。
     沅陵县是湖南省最大的山区县,在林区尚保存有为数不多的天然次生林,对于研究植物群落的演替规律,探索天然次生林的适生环境,具有重要的实践意义。本研究在沅陵林区,选择了较典型的以檫木(Sassafras tsumu)、枫香(Liguidambar formosana)、白栎(Quercus fabri)、麻栎(Quercus acutissima)、杉木(Cunninghamia lanceolata)为主要树种的天然次生林为研究对象,系统地研究了各林分的土壤理化性质、生物量、生产力、养分含量、积累、分布和生物循环。研究结果,可为科学保护和合理开发及可持续经营天然次生林,为全球气候变化及碳循环研究提供科学依据。
     主要研究结果为:
     1.沅陵天然次生林土壤为黄壤酸性土,pH 4.7-5.50,自然含水量为22.75-26.25%,容重为0.89-1.01 g·cm-3。N元素平均含量为1.11-2.10g·kg-1,P为0.24-0.44 g-kg-1,K为12.43-15.50 g·kg-1,Ca为0.92-1.98g·kg-1,Mg为1.21-5.39 g·kg-1。微量元素含量以Fe最高,为10160.33-10555.73 mg·kg-1,其次为Mn381.22-798.30mg·kg-1,再次为Zn和Cu,分别为48.01-62.52mg·kg-1和29.39-65.12mg·kg-1。土壤中这些元素,能够促进林木的生长。
     2.乔木层物种多样性:
     2.1檫木+锥栗群落:出现植物20种,隶属于11科19属,重要值在0.811-44.891之间,优势种为檫木和锥栗,重要值分别为44.891和20.788,丰富度20,Shannon-Wiener和Simpson(λ)指数分别为2.666、0.911, Pielou均匀度指数为0.890,生态优势度指数0.004;
     2.2枫香+檫木群落:出现植物13种,隶属于9科11属,重要值在1.116-42.370之间,优势种为枫香和檫木,重要值分别为42.370、30.217。丰富度13,Shannon-Wiener和Simpson(λ)指数分别为2.126、0.847,Pielou均匀度指数为0.829,生态优势度指数0.004;
     2.3杉木+檫木群落:重要值在0.408-61.433之间,优势种为杉木、檫木、香叶树和桤木,重要值分别为61.433、13.535、5.248、4.628。丰富度18,Shannon-Wiener和Simpson(λ)指数分别为1.639、0.623,Pielou均匀度指数为0.547,生态优势度指数0.044。
     在森林演替过程中,杉木+檫木群落处于亚热带森林演替的以针叶树种为主的针阔混交林阶段;檫木+锥栗群落和枫香+檫木群落处于以喜光阔叶树种为主的针阔叶混交林演替阶段。
     3.天然次生林生物量和生产力
     3.13种檫木混交林类型中,檫木单株生物量185.5-828.9 kg,以树干生物量最高,占全株生物量的50%,各器官生物量大小排序为树干>树材>树根>树皮>树叶。
     檫木+麻栎混交林林分生物量为297.65 t·hm-2,其中乔木层为258.90t·hm-2,下木层16.21 t·hm-2,草本层3.64 t·hm-2,死地被物层18.90 t·hm2,;林分生产力为16.65 t·hm-2·a-1,其中乔木层9.91 t·hm-2·a-1,下木层2.70t·hm-2·a-1,草本层3.64 t·hm-2·a-1,死地被物层0.40 t·hm-2·a-1。
     檫木+枫香混交林林分生物量为249.06 t·hm2,其中乔木层215.55t·hm-2,下木层21.36 t·hm-2,草本层0.18 t·hm-2,死地被物层11.97 t·hm-2,林分生产力为11.26 t·hm-2·a-1,其中乔木层7.79 t·hm-2·a-1,下木层3.05t·hm-2·a-1,草本层0.18 t·hm-2·a-1,死地被物层0.24 t·hm2·a-1。
     檫木+杉木混交林林分生物量为147.07 t·hm-2,其中乔木层为117.03t·hm-2,下木层13.43 t·hm-2,草本层0.15 t·hm-2,死地被物层16.46 t·hm-2,林分生产力为10.16 t·hm-2.a-1,其中乔木层6.79 t·hm-2·a-1,下木层2.69t·hm-2.a-1,草本层0.15 t·hm-2·a-1,死地被物层0.53 t·hm-2.a-1。
     三种类型檫木混交林处于相对稳定状态,生境条件有利于檫木及其他植物生长。
     3.2天然次生白栎混交林,乔木层总生物量为112.65 t·hm-2,其中白栎为36.30 t·hm-2,檫木34.76 t·hm-2,杉木19.04 t·hm-2,灌木层为19.39t·hm-2,草本层为3.64t·hm-2,死地被层为15.09 t·hm-2,乔木层净生产力为8.78 t·hm-2·a-1,其中檫木为2.916 t·hm-2·a-1,白栎2.857 t·hm-2·a-1,杉木0.828 t·hm2.a-1,该林分是以落叶阔叶树种为主的针阔混交林,叶的净生产力为3.888 t·hm-2·a-1,占林分净生产力的44.30%,对维持林地生产力具有重要的作用。
     3.3天然次生杉木+檫木混交林,林分总生物量为144.68 t·hm-2,其中乔木层为114.52 t·hm-2,占林分总生物量的79.16%,灌木层12.52t·hm-2,占8.65%,草本层0.23 t.hm2,占0.16%,死地被物层17.41 t·hm-2,占12.03%。该林分为28年生的杉木+檫木群落,是以杉木和檫木为建群种的速生、浅根群落。
     4.天然次生林养分含量及养分的生物循环
     4.1天然次生林养分含量
     檫木:N平均含量6.39 g-kg-1,P含量0.36 g·kg-1,K含量4.37 g·kg-1,Ca含量4.18 g·kg-1,Mg含量1.71 g·kg-1。
     麻栎:N平均含量4.92 g·kg-1,P含量0.28 g·kg-1,K含量4.05 g·kg-1,Ca含量6.02 g·kg-1,Mg含量1.00 g·kg-1。
     枫香:N平均含量4.09 g·kg-1,P含量0.24 g·kg-1,K含量4.31 g·kg-1,Ca含量11.31 g·kg-1,Mg含量1.55 g·kg-1。
     白栎:N含量1.32-18.87 g·kg-1,P含量0.11-0.99 g·kg-1,K含量1.34-6.79 g·kg-1,Ca含量3.29-22.48 g·kg-1,Mg含量0.25-1.86 g·kg-1。
     杉木:N含量0.68-10.47 g·kg-1,P含量0.03-0.53 g·kg-1,K含量0.39-2.21 g·kg-1,Ca含量0.77-13.45 g·kg-1,Mg含量0.11-2.65 g·kg-1。
     4.2天然次生林养分的生物循环
     檫木+枫香混交林,养分吸收量为714.57kg.hm-2.a-1,存留量116.15kg.hm-2.a-1,归还量598.42kg.hm-2.a-1,循环速率为0.84。
     檫木+麻栎混交林:养分吸收量为491.42 kg.hm-2.a-1,存留量114.18kg.hm-2.a-1,归还量377.30 kg.hm-2.a-1,循环速率0.77。
     白栎混交林:养分吸收量为178.59kg.hm-2.a-1,存留量53.88kg·hm-2.a-1,归还量124.71 kg.hm-2.a-1,循环速率0.70。
     在沅陵林区,现有的天然次生林,养分循环强度较大,归还林地养分多,有利于林地生产力的维持,对林木生长有利。
Natural secondary forest which are valuable resources has a large ecological benefits and potencial production. As long as scientific management and rational use, forest ecosystems will be able to form a good system, material wealth will be increasing, ecological protection benefits will enhance. Especially, it will be important to maintain the local ecological environment in less-tree or plantation areas.
     Yuanling county is the most county in Hunan province, in its forest area, the natural secondary forest has been preserved well. To study them has important practical signigicance to study the succession of forest communities and the suitable habitat. In this study, physical and chemical properties of soil, patterns of stand biomass and productivity, nutrient biological cycle process in Sassafras tsumu, Liguidambar formosana, Quercus fabri, Quercus acutissima and Cunninghamia lanceolata Natural secondary forest ecosystems were investigated in Yuanling county, the results showed as following:
     1. The soils in the studied forests were acidic with a mean pH scale of 4.7-5.50. Soil water content averaged 22.75-26.25% and bulk density was 0.89-1.01g·cm-3. The concentration of total nitrogen (N), phosphate (P), potassium (K), Calcium (Ca) and Magnesium (Mg) in soils was 1.11-2.10g·kg-1,0.24-0.44 g·kg-1,12.43-15.50g·kg-1,0.92-1.98g·kg-1 and 1.21-5.39g·kg-1, respectively. The concentrations of micro- nutrients in soils in the study sites ranged as:Fe:10160.33-10555.73 mg.kg"1, Mn: 381.22-798.30 mg.kg-1, Zn:48.01-62.52mg.kg-1, Cu:29.34-65.12 mg·kg-1.
     2. Species diversity in tree layer
     2.1 Sassafras tzumu and Castanea henryi mixed community:It was found that 20 species plants belonged to 11 families and 19 genera, the important value ranged from 0.811 to 44.891. the important value of Sassafras tzumu and Castanea henryi which were the dominant species in the community were 44.891 and 20.788, respectively, the richness indexes was 20, the Shannon-Wiener diversity index, Simpson diversity index, Pielon evenness index and ecological dominance index were 2.666,0.911, 0.890,0.004, respectively.
     2.2 Sassafras tzumu and Liquidambar formosana mixed community:It was found that 13 species plants belonged to 9 families and 11 genera, the important value ranged from 1.116 to 42.370. the important value of Liquidambar formosana and Sassafras tzumu which were the dominant species in the community were 42.370 and 30.217, respectively, the richness indexes was 13, the Shannon-Wiener diversity index, Simpson diversity index, Pielon evenness index and ecological dominance index were 2.126, 0.847,0.829,0.004, respectively.
     2.3 Sassafras tzumu and Cunninghamia lanceolata mixed community: the important value ranged from 0.408 to 61.433. the important value of Cunninghamia lanceolata, Sassafras tzumu, Lindera communis and Alnus cremastogyne which were the dominant species in the community were 61.433,13.535,5.248 and 4.628, respectively, the richness indexes was 18, the Shannon-Wiener diversity index, Simpson diversity index, Pielon evenness index and ecological dominance index were 1.639,0.623,0.547, 0.044, respectively.
     In succession stage, the Sassafras tzumu and Cunninghamia lanceo-lata mixed community was in the mixed coniferous and broad-leave tree succession stage which dominated by coniferous trees in a subtropical forest. Sassafras tzumu and Castanea henryi mixed community and Liquid-ambar formosana and Sassafras tzumu mixed community was in the succession stage which dominated by light-requiring broad-leave trees in a subtropical forest.
     3 Biomass and productivity of natural secondary forest
     3.1 Among the three Sassafras tzumu mixed forest types, biomass of an individual tree was ranged from 185.5 to 828.9 kg in the Sassafras tzu- mu species. Biomass was highest in stem organ, accounting for 50% of the biomass of the total tree. Biomass was in an order:stem> branch> root> bark> leaves.
     Stand biomass of Sassafras tzumu and Quercus acutissima mixed stand was 297.65t·hm-2, of which overstorey was 258.90 t·hm-2, understorey was 16.21 t·hm-2, shrub layer was 3.64 t·hm-2, dead floor layer was 18.90 t·hm-2. Stand productivity was 16.65 t·hm-2·a-1, of which overstorey was 9.91 t·hm-2·a-1, understorey was 2.70 t·hm-2·a-1, shrub layer was 3.64 t·hm-2·a-1, dead floor layer was 0.40 t·m-2·a-1.
     Stand biomass of Sassafras tzumu and Liquidambar formosana mixed stand was 249.06 t·hm-2, of which overstorey was 215.55 t·hm-2, understorey was 21.36 t·hm-2, shrub layer was 0.18 t·hm-2, dead floor layer was 11.97 t·hm-2. Stand productivity was 11.26 t·hm-2·a-1, of which overstorey was 7.79 t·hm-2·a-1, understorey was 3.05 t·hm-2·a-1, shrub layer was 0.18 t·hm-2·a-1, dead floor layer was 0.24 t·hm-2·a-1.
     Stand biomass of Sassafras tzumu and Cunninghamia lanceolata mixed stand was 147.07 t·hm-2, of which overstorey was 117.03 t·hm-2, understorey was 13.43 t·hm-2, shrub layer was 0.15 t·hm-2, dead floor layer was 16.46 t·hm-2. Stand productivity was 10.16 t·hm-2a-1, of which overstorey was 6.79 t·hm-2·a-1, understorey was 2.69 t·hm-2·a-1, shrub layer was 0.15 t·hm-2·a-1, dead floor layer was 0.53 t·hm-2·a-1.
     The results indicated that the three Sassafras tzumu mixed forest types were relative steady state, the habitat conditions were beneficial to the growth of the Sassafras tzumu and other plants.
     3.2 Among the Quercus fabri mixed stand, the total biomass of overstorey in the forests was 112.65 t·hm-2, of which Quercus fabri was 36.30 t·hm-2, Sassafras tzumu was 34.76 t·hm-2, Cunninghamia lanceolata was 19.04 t·hm-2, the shrub layer 19.39 t·hm-2, the herbivorous layer was 3.64 t·hm-2, the dead floor layer was 15.09 t·hm-2. The net productivity of overstorey in the forests was 8.78 t·hm-2·a-1, of which Sassafras tzumu was 2.916 t·hm-2·a-1, Quercus fabri was 2.857 t·hm-2·a-1, Cunninghamia lan-ceolatawas 0.828 t·hm-2·a-1. The coniferous and broad-leave mixed stand was dominant by Deciduous broad leaf trees. The net productivity of leaves was 3.888 t·hm-2·a-1, accounting for 44.30% of the net stand productivity. It was important to mantian woodland productivity.
     3.3 Among the mixed stand which was mainly with Sassafras tzumu and Cunninghamia lanceolata specieses, the stand biomass was 144.68 t·hm-2, of which overstorey was 114.52 t·hm-2, accounting for 79.16%, shrub layer was 12.52 t·hm-2, accounting for 8.65%, herbivorous layer was 0.23 t·hm-2, accounting for 0.16%, dead floor layer was 17.41 t·hm-2, accounting for 12.03%. the stand was mainly with Sassafras tzumu and Cunning-hamia lanceolata community which has grown for 28 years, and it was fast-growing and shallow-rooted community.
     4. Nutrient concentration and biocycle of natural secondary forest
     4.1 Mean concentration of macronutrient elements in the Sassafras tzumuspecies was:N was 6.39 g·kg-1, P 0.36 g·kg-1, K 4.37 g·kg-1, Ca 4.18 g·kg-1 and Mg 1.71 g·kg-1.
     Mean concentration of macronutrient elements in the Quercus acuti-ssima species was:N was 4.92 g·kg-1, P 0.28 g·kg-1, K 4.05 g·kg-1, Ca 6.02 g·kg-1 and Mg 1.00 g·kg-1.
     Mean concentration of macronutrient elements in the Liquidambar formosana species was:N was 4.09 g·kg-1, P 0.24 g·kg-1, K 4.31 g·kg-1, Ca 11.31 g·kg-1 and Mg 1.55 g·kg-1.
     Mean concentration of macronutrient elements in the Quercus fabri species was:N was 1.32-18.87 g·kg-1, P 0.11-0.99 g·kg-1, K 1.34-6.79 g·kg-1, Ca 3.29-22.48 g·kg-1 and Mg 0.25-1.86 g·kg-1.
     Mean concentration of macronutrient elements in the Cunninghamia lanceolata species was:N was 0.68-10.47 g·kg-1, P 0.03-0.53 g·kg-1, K 0.39-2.21 g·kg-1, Ca 0.77-13.45 g·kg-1 and Mg 0.11-2.65 g·kg-1.
     4.2 Sassafras tzumu and Liquidambar formosana mixed stand:the annual uptake amount was 714.57 kg·hm-2·a-1, Annual retention amount was 116.15 kg·hm-2·a-1, annual return amount was 598.42 kg·hm-2·a-1, cycling rate coefficient (return/uptake) was 0.84.
     Sassafras tzumu and Quercus acutissima mixed stand:the annual uptake amount was 491.42 kg·hm-2·a-1, Annual retention amount was 114.18 kg·hm-2·a-1, annual return amount was 377.30 kg·hm·a-1, cycling rate coefficient (return/uptake) was 0.77.
     Sassafras tzumu and Quercus fabri mixed stand:the annual uptake amount was 178.59 kg·hm-2·a-1, Annual retention amount was 53.88 kg·hm-2·a-1, annual return amount was 124.71 kg·hm-2·a-1, cycling rate coefficient (return/uptake) was 0.70.
     The results suggested that the natural secondary mix-forest ecosystems were characterized by fast return rate and high cycling intensity in terms of nutrient biological cycle. These features provide benefits for the forest ecosystems in maintaining site fertility.
引文
[1]Finegan B. The management potential of neotropical secondary lowland rain forest[J]. Forest Ecology and Management,1992,47:295-321.
    [2]Chokkalingam U, Bhat D M, Von Gemmingen G. Secondary forests associated with the rehabilitation of degraded lands in tropical Asia:a synthesis[J]. Journal of Tropical Forest Science,2001,13(4):816-831.
    [3]Lisa N T, Daniel M K, Colin C. Burning biodiversity:Woody biomass use by commercial and subsistence groups in western Uganda's forests[J]. Biological Conservation,2007,134:232-241.
    [4]Toby A G, Malva IM, Hernandez, J B, et al. Understanding the biodiversity consequences of habitat change:the value of secondary and plantation forests for neotropical dung beetles[J]. Journal of Applied Ecology,2008,45(3): 883-893.
    [5]Robin L. Chazdon. Beyond Deforestation:Restoring Forests and Ecosystem Services on Degraded Lands[J]. Science,2008,320:1458-1460.
    [6]Guariguata M R, Ostertag R. Neotropical secondary forest succession:changes in structural and functional characteristics[J]. Forest Ecology and Management, 2001,148:185-206.
    [7]Kaya Z, Raynal D J.2001. Biodiversity and conservation of Turkish forests. Biological Conservation,97:131-141.
    [8]Kennard, D K. Secondary forest succession in a tropical dry forest:Patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology,2001,28:53-66.
    [9]Kubota Y, Katsuda K, Kikuzawa K. Secondary succession and effects of clear-logging on diversity in the subtropical forests on Okinawa Island, southern Japan. Biodiversity and Conservation,2005,14:879-901.
    [10]Hotes S. Diversity of wetland ecosystems-integrating multiple spatio temporal scales for coherent conservation strategies[J]. Global Environmental Research, 2007,11:125-134.
    [11]Washitani I. Restoration of biologically-diverse floodplain wetlands including paddy fields[J]. Global Environmental Research,2007,11:135-140.
    [12]Cakir Giinay, Svrkaya Fatih, Terzolu Salih,et al. Mapping secondary forest succession with geographic information systems:a case study from Bulankdere, Krklareli, Turkey[J]. Turkish Journal of Agriculture and Forestry,2007,31: 71-81.
    [13]Kusumoto Y, Yamamoto S. Elucidating the mechanisms behind the high plant diversity in yatsu (valley floor) paddy field areas:how cutting grass around paddy fields helps to promote diversity. NIAES Annual Report 2008,21-23.
    [14]Jin Y H, Zhou L, Gu H Y, et al. Dynamic change of arborous species diversity in natural secondary forests after selective cutting on the north slope of Changbai Mountain, Northeast China[J]. Journal of Forestry Research,2003,14(4): 299-302.
    [15]Clark D B, Clark DA Landscape-scale variation in forest structure and biomass in a tropical rain forest[J]. Forest Ecology and Management,2000,137:185-198.
    [16]James C S, Nathan G S, Renato V, et al. Above-ground forest biomass is not consistently related to wood density in tropical forests[J]. Global Ecology and Biogeography,2009,18:617-625.
    [17]R. Flint Hughes, J. Boone Kauffman, Victor J. Jaramillo. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico[J]. Ecology,1999,80(6):1892-1907.
    [18]Islam K R, Wei R R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J]. Agriculture, Ecosystems and Environment,2000, 79:9-16.
    [19]Peter B R, David F G, John D A, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils[J]. Ecology,1997,78(2): 335-347.
    [20]Whendee L S, Jason N, Megan M, et al. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem[J]. Ecosystems,2000,3:193-209.
    [21]Deborah A C, Sandra B, David W K, et al. Net primary production in tropical forests:an evaluation and synthesis of existing field data[J]. Ecological Applications,2001,11(2):371-384.
    [22]Clark D B, Clark D A, Brown S, et al. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient[J]. Forest Ecology and Management,2002,164:237-248.
    [23]A L Kalyn, K C J Van Rees. Contribution of fine roots to ecosystem biomass and net primaryproduction in black spruce, aspen, and jack pine forests in Saskatchewan[J]. Agricultural and Forest Meteorology,2006,140:236-243.
    [24]Matthew C, Chen J, Stewart E, et al. Maintaining the role of Canada's forests and peatlands in climate regulation[J]. The Forestry Chronicle,2010,86(4): 434-443.
    [25]Ni J. Net primary productivity in forests of China:scaling-up of national inventory data and comparison with model preditions[J]. Forest ecology and management,2003,176:485-495.
    [26]Zhang K, Xu X N, Wang Q, et al. Biomass, and carbon and nitrogen pools in a subtropical evergreen broad-leaved forest in eastern China[J]. Journal of Forestry Research,2010,15:274-282.
    [27]Landsberg L L, Linder S, McMurtrie R E. A strategic plan for research on managed forest ecosystems in a globally changing environment[R]. GCTE Activity 3.5:Effects of Global Change on Managed Forests-Implementation Plan, in Global Change and Terrestrial Ecosystems GCTE Report No.4.1995. 1-17.
    [28]Edward A, Schuur G. Produciivity and global climate revisited:the sensitivity of tropical forest growth to precipitation[J]. Ecology,2003,84(5):1165-1170.
    [29]Rodel D L, Florencia B P. Philippine forest ecosystems and climate change: carbon stocks, rate of sequestration and the Kyoto protocol[J]. Annals of Tropical Research,2003,25(2):37-51.
    [30]Yadvinder M, Daniel W, Timothy R B, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests[J]. Global Change Biology,2006,12:1107-1138.
    [31]Petra L, Franz-W. B, Wolfgang C, et al. Sensitivity and Adaptation of Forests in Europe under Global Change-SAFE. www.pik-potsdam.de/topik/t6scs/safe/safe. pdf.
    [32]Berhe A A, Harte J, Harden J W, et al. The significance of the erosion-induced terrestrial carbon sink[J]. BioScience,2007,57(4):337-346.
    [33]Houghton R A, Lawrence K T, Hackler J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates[J]. Global Change Biology,2001,7:731-746.
    [34]Drake J B, Knox R G, Dubayah R O, et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing:factors affecting the generality of relationships[J]. Global Ecology & Biogeography,2003,12: 147-159.
    [35]Erik N(?)sset, and Terje Gobakken. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser[J]. Remote Sensing of Environment,2008,112(6):3079-3090.
    [36]Lindner M, Lasch P, Erhard M. Alternative forest management strategies under climatic change-prospects for gap model applications in risk analyses[J]. Silva Fennica,2000,34(2):101-111.
    [37]A. Durkaya, B. Durkaya, S. Atmaca. Predicting the Above-ground Biomass of Scots Pine (Pinus sylvestris L.) Stands in Turkey[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2010,32(5):485-493.
    [38]Varma V K, Ferguson I, Wild I. Decision support system for the sustainable forest management. Forest Ecology Management,2000,128:49-55.
    [39]Chertov O, Komarov A, Andrienko, et al. Integrating forest simulation models and spatial-temporal interactive visualization for decision making at landscape level. Ecological Modelling,2002,148 (1):47-65.
    [40]Oleg C, Alexander K, Alexey M, et al. Geovisualization of forest simulation modelling results:A case study of carbon sequestration and biodiversity[J]. Computers and Electronics in Agriculture,2005,49:175-191.
    [41]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [42]李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学D辑,2003,33(1):72-80.
    [43]肖兴威.中国森林生物量与生产力的研究[D].哈尔滨:东北林业大学,2005.
    [44]吴刚,冯宗炜.中国寒温带、温带落叶松林群落生物量的研究概述[J].东北林业大学学报,1995,23(1):95-101.
    [45]郑华,欧阳志云,王效科,等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1994-2002.
    [46]盛浩.中亚热带常绿阔叶林碳储量和地下碳平衡[D].福州:福建师范大学,2007.
    [47]张茂震,王广兴.浙江省森林生物量动态[J].生态学报,2008,28(11):5665-5674.
    [48]张萍.北京森林碳储量研究[D].北京:北京林业大学,2009.
    [49]文仕知.黧蒴栲林生物产量及生产力的研究[C].见刘煊章主编:森林生态系统定位研究.北京:中国林业出版社,1993.42-48.
    [50]李英洙,金永焕,刘继生,等.延边地区天然赤松林生物量的研究[J].东北林业大学学报,1996,24(5):24-30.
    [51]吴晓成,张秋良,雷庆哲,等.新疆额尔齐斯河天然林生物量分布特征的研究[J].林业资源管理,2009,4:61-67.
    [52]励龙昌.光安落叶松天然林生长过程的研究——关于单木与距离无关模型[D].哈尔滨:东北林业大学,1988.
    [53]马志海.东北林区天然混交林单木生长模型的研究[D].哈尔滨:东北林业大学,2006.
    [54]中国生物多样性国情研究报告编写组.中国生物多样性国情研究报告[R].北京:中国环境科学出版社.1988.
    [55]宋永昌.中国东部森林植被带划分之我见[J].植物学报,1999,41(5):541-552.
    [56]吴征镒.中国植被[M].北京:科学出版社.1980.
    [57]宋永昌.中国常绿阔叶林分类试行方案[J].植物生态学报,2004,28(4):435-448.
    [58]陈卫娟.中亚热带常绿阔叶林植物区系地理研究[D].上海:华东师范大学.2006
    [59]宋永昌,陈小勇,等.中国东部常绿阔叶林生态系统退化机制与生态恢复[M].北京:科学出版社.2007.
    [60]杨玉盛,董彬,谢锦升,等.森林土壤呼吸及其对全球变化的响应[J].生态学报,2004,24(3):583-591.
    [61]Ebermeryer, E. Die gesamte lehre der waldstreu mit rucksicht auf die chemische static des waldbaues. Belin:Julius Springer.1876.116.
    [62]Boysen J P. Studier over skovtraernes forhold til lyset Tidsskr[J]. F. Skorvaessen,1910,22:11-16.
    [63]Burger H H, Blattmenge Z. Fichten im Plenterwald Mitteil, Schweiz, Anst. Forttl [J]. Versuchsw,1952,28:109-156.
    [64]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,4(3):283-288.
    [65]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190.
    [66]Reichle D E, Franklin J F, Goodwell D E. Productivity of world ecosystems[M]. Washington D C:National Academy of Sciences.1975.
    [67]Lieth H F H, Whittaker R H. Primary productivity of biosphere[M]. Berlin: Springer-verlag.1975.
    [68]Lieth H F H. Patterns of primary production in the biosphere. Stroudsburg, Pennsylvania:Dowden, Hutchinson & Ross, Inc.1978.
    [69]Cannell M G R. World forest biomass and primary production data. London: Academic Press.1982.
    [70]李文化,邓坤枚,李飞.长白山主要森林类型生物量与生产力研究[C].森林生态系统研究,1981,2:34-50.
    [71]冯宗炜,陈楚莹,张家武,等.湖南会同两种森林群落生物生产量研究[J].植物生态学与地植物学丛刊,1982,6:257-267.
    [72]陈灵芝,陈清朗,鲍显诚,等.北京侧柏林及其生物量研究[J].植物生态学与地植物学学报,1986,10:17-25.
    [73]邱学忠,谢寿昌,荆桂芬.云南哀牢山徐家坝区水果石栎林Lithocarpus xylocarpus林分生物量的初步研究[J].云南植物研究,1984,6(1):85-92.
    [74]党承林,吴兆录.季风常绿阔叶林Castanopsis echidnocarpa群落净初级生产力研究[J].云南大学学报,1992,14:95-107.
    [75]陈章和,张宏达,王伯荪,等.广东黑石顶常绿阔叶林生物量及其分配研究[J].植物生态学与地植物学报,1993,17:289-298.
    [76]黄全,李意德,赖巨章,等.海南岛黎母山热带山地雨林生物量研究[J].植物生态学与地植物学学报,1991,15(3):197-206.
    [77]冯志立,郑征,张建侯,等.西双版纳热带湿性季节雨林生物量及其分配规律研究[J].植物生态学报,1998,22(6):481-488.
    [78]郑征,刘宏茂,刘伦辉,等.西双版纳原始热带季节雨林生物量研究[J].广西植物,1999,19(4):309-314.
    [79]郑征,刘伦辉,冯志立,等.西双版纳原始热带季节雨林净初级生产力[J].山地学报,1999,17(3):212-217.
    [80]郑征,刘宏茂,冯志立.西双版纳热带山地雨林生物量研究[J].生态学杂志2006,25(4):347-353.
    [81]彭少麟,余作岳,张文其,等.鹤山亚热带丘陵人工林群落分析[J].植物生态学报,1992,16(1):1-10.
    [82]罗天祥,赵士洞.中国杉木林生物生产力格局及其数学模型[J].植物生态学报,1997,21(5):403-415.
    [83]唐建维,张建侯,宋启示,等.西双版纳热带次生林生物量的初步研究[J].植物生态学报,1998,22(6):489-498.
    [84]唐建维,张建候,宋启示,等.西双版纳热带人工雨林生物量及净第一性生产力的研究[J].应用生态学报,2003,14(1):1-6.
    [85]潘维俦.杉木人工林生态系统中的生物产量及其生产力研究[J].中南林科技,1978,2:2-14.
    [86]冯宗炜.我国亚热带湖南桃源杉木人工林生态系统生物量的研究(摘要).中国科学院林业土壤研究所,1978.
    [87]谌小勇,田大伦,彭元英,等.我国杉木人工林生物产量研究概况[C].见:刘煊章主编.森林生态系统定位研究.北京:中国林业出版社,1993.10-17.
    [88]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,2:1-12.
    [89]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社.1999.226-227.
    [90]刘世荣,俆德应,王兵.气候变化对中国生产力的影响[J].林业科学研究,1994,7(4):425-430.
    [91]陈灵芝,钱迎倩.生物多样性科学前沿[J].生态学报.1997,1 7(6):565-572.
    [92]党承林,吴兆录.黄毛青冈群落的第一性生产量研究[J].1994,16(3):210-219.
    [93]田大伦,宁小波.不同龄组马尾松林凋落物量及养分归还量研究[J].中南林学院学报.1995,15(2):163-169
    [94]赵坤,田大伦.会同杉木人工林成熟阶段生物量的研究[J].中南林学院学报.2000,20(3):7-13.
    [95]宿以明,刘兴良,向成华.峨眉冷杉人工林分生物量和生产量研究[J].四川林业科技.2000,21,(2)31-35.
    [96]刘煊章,文仕知,项文化.马尾松人工林生物量间伐效应的研究[J].林业资源管理.1995,(5):43-48.
    [97]孙启祥,於凤安,彭镇华.长江滩地杨树人工林生物量的研究[J].学术园地.1998.
    [98]廖利平,马越强,汪思龙,等.杉木与主要阔叶造林树种叶凋落物的混合分解[J].植物生态学报.2000,24(1):27-33.
    [99]刘玉萃,吴明作,郭宗民,等.宝天曼自然保护区锐齿栎树生态系统营养元素循环[J].生态学报.2003,23(8):1488-1497.
    [100]张茂震,王广兴.浙江省森林生物量动态[J].生态学报,2008.
    [101]李晓娜,国庆喜,王兴昌,等.东北天然次生林下木树种生物量的相对生长[J].林业科学,2010,46(8):22-32.
    [102]程远峰,国庆喜,李晓娜.东北天然次生林下木树种的生物量器官分配规律[J].生态学杂志,2010,29(11):2146-2154.
    [103]王超,高红真,臧永琪.白桦林木单株生物量的研究[J].林业科技,2010,35(1):7-11.
    [104]姚迎九.樟树人工林生物量和养分积累与分布[D].湖南:中南林学院,2003.
    [105]方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [106]陈存根,龚立群,彭鸿等.秦岭锐齿栎林的生物量和生产力[J].西北林学院学报,1996,11(增):103-114.
    [107]杨德军,张劲峰,邱琼,等.2种西南桦人工林与同地2天然次生林的林分生物量对比研究.云南省林业科学院,2009
    [108]张志.红松人工林土壤质量演变规律[D].东北林业大学,2004.
    [109]黄宇.杉木纯林、杉-阔混交林与阔叶纯林生态系统土壤质量研究[D].中国科学院生态环境研究中心,2004.
    [110]郭俊誉,时忠杰,徐大平,等.天然次生林人工更新后对土壤物理性质及碳贮量的影响[J].生态环境,2008,17(6):2366-2369.
    [111]Whittaker R H, Likens G E. Carbon in the Biota[A]. Woodwell G M. Carbon and the biosphere[C]. Virginia:Springfield.1973.281-302.
    [112]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响Ⅰ.中国森林现实生产力的特征及地理分布格局[J].林业科学研究,1993,6(6):635-641.
    [113]李高飞,任海.中国不同气候带各类型森林的生物量和净第一性生产力[J].热带地理,2004,24(14):306-310.
    [114]吴刚,冯宗炜.中国寒温带、温带落叶松林群落生物量的研究概述[J].东北林业大学学报,1995,23(1):95-101.
    [115]李克让,陶波,邵雪梅,等.中国陆地生态系统碳通量及其年际变化[C].《新世纪气象科技创新与大气科学发展——中国气象学会2003年年会“气候系统与气候变化”分会论文集》.2003.
    [116]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-55.
    [117]张治军,王彦辉,袁玉欣,等.马尾松天然次生林生物量的结构与分布[J].河北农业大学学报,2006,29(5):37-43.
    [118]闫平.帽儿山林场4类天然次生林碳储量研究[J].林业资源管理,2006,4:61-65.
    [119]彭少麟,方炜.南亚热带森林演替过程生物量和生产力动态特征[J].生态科学,1995(2):1-9.
    [120]江西省常绿阔叶林课题研究组.江西省常绿阔叶林地上部分生物量研究[J].江西林业科技,1996(2):1-4.
    [121]党承林,吴兆录.云南松林的生物量研究[J].云南植物研究,1991,13(1):59-64.
    [122]代海燕,张秋良,魏强,等.不同林分生物量分配格局受密度影响效应的研究[J].安徽农业科学,2008,36(11):4514-4516.
    [123]苏芳莉,刘明国,谭学仁,等.辽东山区天然次生林间伐强度研究[J].西北林学院学报,2007,22(4):106-109.
    [124]罗天祥.中国主要森林类型生物生产力格局及其数学模型[A].中国科学院自然资源综合考察委员会博士论文[C],1997.
    [125]刘兴良,鄢武先,向成华,等.沱江流域亚热带次生植被生物量极其模型[J].植物生态学报,1997,21(5):441-454.
    [126]殷淑燕,刘玉成.大头茶构件种群生物量及叶面积动态[J].植物生态学报,1997,21(1):83-89.
    [127]石培礼,钟章成,李旭光.四川桤柏混交林生物量的研究[J].植物生态学报,1996,20(6):524-533.
    [128]张祝平,何道泉,敖惠修.任豆林的生物量和光能利用率[J].植物生态学报,1996,20(6):502-509.
    [129]胡自治,孙吉雄,李洋,等.甘肃天祝主要高山草地的生物量及光能转化率[J].植物生态学报,1994,18(2):121-131.
    [130]杨福囤,沙渠,张松林.青海高原北高寒灌丛和高寒草甸初级生产量[A].高寒草甸生态系统[C].甘肃人民出版社,1982.44-51.
    [131]王庆琐,李博.鄂尔多斯沙地油蒿群落生物量初步研究[J].植物生态学报,1994,18(4):347-353.
    [132]西藏自治区土地管理局,西藏自治区畜牧局.西藏自治区草地资源[M].北京:科学出版社,1994.
    [133]杜庆,孙庆洲.柴达木地区植被及其利用[M].北京:科学出版社,1990.
    [134]姜倏.关于草原合理利用策略的探讨[A].草原生态系统研究(第2集)[C].北京:科学出版社,1988.1-10.
    [135]陈敏,宝音陶格涛.草原区非灌溉条件下建立人工草地的试验研究[A].草原生态系统研究(第2集)[C].北京:科学出版社,1988.209-217.
    [136]王启基,周兴民,张堰青等.高寒小蒿草草原化草甸植物群落结构特征及其生物量[J].植物生态学报,1995,19(3):225-235.
    [137]杨福囤,王启基,史顺海.矮嵩草草甸生物量季节动态与年间动态[A].高寒草甸生态系统国际讨论文集[C].北京:科学出版社,1989.61-71.
    [138]王启基,周兴民,沈振西等.高寒藏嵩草沼泽化草甸植物群落结构及其利用[A].高寒草甸生态系统(第4集)[C].北京:科学出版社,1995.91-100.
    [139]李英年,王启基,周兴民.矮嵩草草甸地上生物量与气候因子的关系及其预报模式的建立[A].高寒草甸生态系统(第4集)[C].北京:科学出版社, 1995.1-10.
    [140]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理[M].北京:科学出版社,1997.
    [141]蒋延龄,周广胜.兴安落叶松林碳平衡及管理活动影响研究[J].植物生态学报,2002,26(3):317-322.
    [142]肖兴威.中国森林生物量与生产力的研究.东北林业大学.2005
    [143]王仲锋,冯仲科.样地林木生物量精度评定的研究[J].北京林业大学学报,2005,27(2):173-176.
    [144]赵士洞,罗天祥.区域尺度陆地生态系统生物生产力研究方法[J].资源科学,1998,20(1):23-34.
    [145]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报,2000,55(1):36-45.
    [146]胡晓龙.林分枯损模型的研究[J].林业科学研究,1996,9(5):525-529.
    [147]Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology,2003,9(2):161-185.
    [148]冯宗炜,陈楚莹,王开平,等.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究[J].植物生态学与地植物学丛刊,1985,9(4):245-256.
    [149]黄建辉,陈灵芝.北京百花山附近杂灌丛的化学元素含量特征[J].植物生态学与地植物学学报,1991,15(3):224-233.
    [150]田大伦,项文化,康文星.马尾松人工林微量元素生物循环的研究[J].林业科学,2003,39(4):1-8.
    [151]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [152]Kimmins J P. Forest Ecology[M]. New York:Macmillan Publishing Company, 1987.85-92.
    [153]杨凯.辽东山区次生林生态系统主要林型土壤磷素特征[D].沈阳:中国科学院沈阳应用生态研究所.2009.
    [154]刘广全,土小宁,倪文进.锐齿栎森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246.
    [155]IPCC.Organization about IPCC.http://www.ipcc.ch/organization/organizat-ion.shtml.
    [156]CGCP.Canadian Global change program.http://www.globalcentres.org/cgcp/ english/html_documents/eindex.html.
    [157]U.S.Carbon Cycle Science Program(CCSP).USGS Carbon Cycle Research. http://geochange.er.usgs.gov/carbon/index.html.
    [158]中国生态系统研究网络CERN.1988.http://www.cern.ac.cn/1wljs/index.asp
    [159]国家生态系统观测网络2004.http://www.cnern.org/web/index3.aspx?menu ID=2292
    [160]Cox Peter M,Betts Richard A,Jones Chris D.et al.Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J].Nature, 2000.408:184-187.
    [161]Knorr W,Prentice I C,House J I,et al.Long-term sensitivity of soil carbon turnover to warming[J].Nature,2005,433:298-301.
    [162][日]木村、允薯(姜恕、陈乃全、焦振家评),陆地植物,群落的生产量测定法.北京:科学出版社,1981:58-75。
    [163]李博.生态学[M].北京:高等教育出版社.2000,122.
    [164]Magurran A E.Ecological Diversity and Its Measurement[M].New Jersey: Princeton University Press,1988.
    [165]马克平,生物群落多样性的测定方法Ⅰ.α多样性的测度方法(上)[J].生物多样性,1994,2(3):162-168.
    [166]马克平,刘玉明.生物群落多样性的测定方法Ⅰ.a多样性的测度方法(下)[J].生物多样性,1994,2(3):231-239.
    [167]李振基,陈小麟,郑海雷,等.生态学[M].北京:科学出版社,2000:205-206.
    [168]李志洪,赵兰波,窦森主编.土壤学.北京:化学工业出版社,2005:130-144.
    [169]李洁云,曲向荣,吴龙华,等编.污染土壤生物修复理论基础与技术.北京:化学工业出版社,2006,38-39
    [170]马克平,试论生物多样性的概念[J],生物多样性,1993,1(1):20-22.
    [171]李延梅,牛栋,张志强,等.国际生物多样性研究科学计划与热点述评[J].生态学报,2009,29(4):2115-2123.
    [172]陈灵芝,王祖望.人类活动对生态系统多样性的影响.杭州:浙江科学技术出版社,1999.
    [173]Hooper D U,Chapin F S, Ewel J J,et al. Effects of biodiversity on ecosystem functioning A consensus of current knowledge. Ecol Monograph,2005,75(1): 30-35.
    [174]汪永华,陈北光,苏志尧,等.物种多样性研究的进展[J],生态科学,2000,19(9):50-54.
    [175]游水生.不同人为干扰强度对米槠林乔木层组成和物种多样性的影响[J].林业科学,2001,37(1):106-110.
    [176]张丽霞,张峰,上官铁梁.芦芽山植物群落的多样性研究[J]生物多样性,2000,8(4):361-369.
    [177]Burslem D F R P. Garwood N C, Tbomas S C. Tropical forest divesity-the plot thickens[J]. Science.2001,291:606-607.
    [178]Kremen c, Niles Jo, Dalton M G et al. Economic incentives for rain forest conservation across scales[J]. Science,2000,288:1828-1832.
    [179]Vandermeer J, Cerda I G D I, Boucher Det al. Hurricane disturbance and Tropical tree Species diversity[J]. Science,2000,290:788-791.
    [180]刘世荣,蒋有诸,史作民.中国暖温带森林生物多样性研究[M].北京:中国林业出版社,1998.
    [181]马克平,试论生物多样性的概论[J].生物多样性.1993,1(1):20-22.
    [182]郭正刚,刘慧霞,孙系刚,等.白龙江上游地区森林植物群落物种多样性的研究[J].植物生态系数,2003,27(3):388-395.
    [183]Zev Naveh, R H Whittaker. Structural and Floristic Diversity of Shrublands and Woodlands in Northern Israel and Other Mediterranean Areas[J]. Vegetatio vol.1979,41,3:171-190.
    [184]谢晋阳,陈灵芝.暖温带落叶阔叶林的物种多样性特征[J].生态学报,1994,14(4):337-343.
    [185]彭少麟.广东亚热带森林群落的生态优势度[J].生态学报,1987,7(1):36-42.
    [186]贺金生,陈伟烈.中国亚热带地区退化生态系统:类型、分布、结构及恢复途径,中国退化生态系统研究,北京:中国科学技术出版社,1995.
    [187]李振基,刘初铀,杨志伟等,武夷山自然保护区郁闭稳定甜储林与人为干扰 甜储林物种多样性比较[J].植物生态学报2000.24(1)64-68.
    [188]朱锦懋,姜志林,郑群瑞,等.福建万木林自然保护区森林群落物种多样性研究[J].南京林业大学学报,1997,21(4):11-16.
    [189]王兵,李海静,郭泉水,等.江西大岗山森林生物多样性研究[M].北京:中国林业出版社,2005.
    [190]陈北光,苏志尧.广东八宝山常绿阔叶林物种多样性分析[J].华南农业大学学报,1995,16(4):32-36.
    [191]杨梅,林思祖,曹光球.不同人为干扰强度下甜槠群落物种多样性比较分析[J].东北林业大学学报,2009,37(7):30-32.
    [192]常学礼,邬建国.科尔沁沙地沙漠化过程中的物种多样性[J].应用生态学报,1997,8(2):151-156.
    [193]吴统贵,吴明,萧江华.杭州湾滩涂湿地植被群落演替与物种多样性动态[J].生态学杂志,2008,27(8):1284-1289.
    [194]金则新.浙江天台山落叶阔叶林物种多样性研究[J].浙江大学学报(农业与生命科学版),2001,27(4):427-432.
    [195]温远光,陈放,刘世荣,等.广西按树人工林物种多样性与生物量关系[J].林业科学,2008,44(4):14-19.
    [196]雷淑慧,卢爱英,张先平,等.庞泉沟自然保护区森林群落物种多样性[J].生态学杂志,2009,28(12):2431-2436.
    [197]岳明,任毅,党高弟,等.佛坪国家级自然保护区植物群落物种多样性特征[J],生物多样性,1999,7(4):263-269.
    [198]杨梅,林思祖,曹光球,等.不同人为干扰强度下甜储群落物种多样性比较分析[J].东北林业大学学报,2009,37(7):30-32.
    [199]Ebermayer E. Die qesamte Lehre der Woldeteru mit Rucksicht auf die chemische static woldbaues[M]. Berlin:Julius Springer,1876:116.
    [200]Leith H R H, Whittaker. Primary Productivity of Biosphere [M]. Berlin: Springer Varlag,1975.
    [201]IPCC,2003. Good practice guidance for land use, land-use change and forestry. [EB/OL]. [2004-05-01], http://www, pcc-nggip.Iges.Or jp/public/gpg/u/ucf/gp glulucf.html.
    [202]Brown S, Lugo A E. Biomass of tropical forests:A new estimate based on forest volumes [J]. Science,1984,223:1290-1293.
    [203]Brown S L, Schroeder P E. Spatial patterns of aboveground production and mortality of woody biomass for eastern U. S. forests. Ecological Applications, 1999,9:968-980.
    [204]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
    [205]潘维涛,李利村,高正衡,等.杉木人工按生态系统中的生物产量及其生产力的研究[J].中南林科林,1978(2):2-4.
    [206]朱守谦,杨世逸,杉术生产结构及生物量的初步研究[J].贵州农学院农业科技资料,林业研究报告专辑(一),1978(5):1-9.
    [207]李文华,邓中枚,李飞.长白山主要生态系统生物量的研究[J],森林生态系统研究[M],北京:中国林业出版社,1981:81-87.
    [208]冯守炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力[J].植物生态系与地植物学丛刊,1984,8(2):93-100.
    [209]Kramer P J. Carbon dioxide concentration, photosynthesis, and dry matter production[J]. Bioscience,1981,31:29-33.
    [210]Piao S H, Fang J Y, Philippe C, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7944):1009-1014.
    [211]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global ecosystems[J]. Science,1994,263(14):185-191.
    [212]Houghton R A. Balancing the global carbon budget[J]. Annual Review Earth Planet. Sci,2007,35:313-347.
    [213]David S, Jerry M, Tian H G, et al. Contribution of increasing CO2 and climate to carbon storagt by ecosystems in the United States[J]. Science,2000, 287:2004-2006.
    [214]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学版,2000,20(5):733-739.
    [215]冯宗炜,王效科,吴刚.中国森林生态系统生物量[M].北京:科学出版社,1999.
    [216]Yan J I. Estimation of Carbon sink function of forests in China[J]. Chinese Journal of Applied Eco logy,1996,7(3):230-234.
    [217]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [218]吕晓涛,唐建维,何有才,等.西双版纳热带季雨林的生物量及其分配特征.植物生态学报,2007,31(1):11-22.
    [219]谌小勇,彭元英,康文星,等.亚热带常绿阔叶林黄杞木荷群落生物量和生产力研究[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993,68-72.
    [220]杨同辉,达良俊,李修鹏.浙江天童国家森林公司常绿阔叶林生物量研究-群落生物量及其分配规律[J].浙江林学院学报,2007,24(4):389-395.
    [221]张家贤,袁水珍.海南五针松人工林分生物量的研究[J].植物生态学与地植物学学报,1988,12(1):63-69.
    [222]刘煊章,不同年龄马尾松生物量的研究[J].林业资源管理,1993,293-296.
    [223]郭跃东,郭晋平.山西三道川林场主要森林生态系统生物量和生产力研究[J].山西农业大学学报,2009,29(3):234-237.
    [224]吴刚,冯宗炜.中国油松林群落特征及生物量的研究[J].生态学报,1994,14(4):415-422.
    [225]郑征,刘宏茂,冯志立.西双版纳热带山地雨林生物量研究[J].生态学杂志.2006,25(4):347-353.
    [226]郑征,冯志立,曹敏,等.西双版纳原始湿性季节雨林生物量和净生产力研究[J].植物生态学报,2000,24,197-203.
    [227]冯宗炜,张宏达,张家武,等.湖南会同两个森林群落的生物生产力[J].植物生态学与地植物学丛刊,1982,6(6):257-266.
    [228]邓仕坚,廖利平,汪思龙,等.湖南会同红栲-青冈-刨花楠群落生物生产力的研究[J].应用生态学报,2000,11(5);651-654.
    [229]易利萍,文仕知,王珍珍,等.2008.枫香人工林的生物产量及生产力.中国林业科技大学学报,28(2):50-53.
    [230]谌小勇,田大伦,彭元英,等.我国杉木人工林生物产量研究概况[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:10-17.
    [231]谌小勇,彭元英,张昌剑,等.亚热带两类森林群落产量结构及生产力的比较研究[J].中南林学院学报,1996,16(1):23-30.
    [232]温达志,魏平,孔国辉,等.鼎湖山锥栗+黄果厚壳桂+荷木群落生物量及其 特征[J].生态学报,1997,17(5)497-504.
    [233]李淑花,第二代杉木人工林生物量估测与分布特征研究[J].森林工程,2006,48-49.
    [234]李淑花,石军南,吴梅俏.二代杉木人工林生物量及其垂直分布研究[J].森林工程,2007,23(1):1-4.
    [235]Overman J P M, Witte H J L, Saldarriaga J G. Evaluation of regression models for above 2 ground biomass determination in Amazon rainfores[J]. Journal of Tropical Ecology,1994,10(2):207-218.
    [236]Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190.
    [237]Brown S, Sathaye J, Canell M, et al. Mitigation of carbon emissions to the atmosphere by forest management[J]. Common wealth Forestry Review,1996, 75:80-91.
    [238]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势,应用生态学报,2004,15(8):1468-1472.
    [239]Tans P P. How can global warming be traced to CO2[J]. Scientific American, 2006,295(6):124.
    [240]Artuso F, Chamard P, Piacentino S, et al. Influence of transport and trends in atmospheric CO2 at Lampedusa[J]. Atmospheric Environment,2009,43(19): 3044-3055.
    [241]IPCC. Climate Change. Cambridge University Press[J]. Cambridge,2001: 12-14.
    [242]Sabine C L, Heimann M, Artaxo P, et al. Currentstatus and past trends of the global carbon cycle//Field C B, Raupach M R, MacKenzie S H. The global carbon cycle:integrating humans, climate and the naturalworld[J]. Washington: Island Press,2004:17-44.
    [243]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [244]Lieht H, Whittaker R H. Primary Productivity of The Biosphere. New York: Springer-Verlag.1975.
    [245]徐宏远,郑世锴,卢永农,等.Ⅰ-72杨人工林生物量的研究[J].林业科学, 1990,26(1):22-29.
    [246]田大伦,潘维俦,张昌剑,等.杉木人工林生态系统生产量的结构特征[J].中南林学院学报,1995,8(2):115-122.
    [247]杨宗武,谭芳林,肖祥希,等.福建柏人工林生物量的研究[J].林业科学,2000,36(1):121-124.
    [248]崔浪军,梁宗锁,韩蕊莲,等.沙棘-杨树混交林生物量林地上壤特征及其根系分布特征研究[J].林业科学,2003,39(6):1-7.
    [249]罗云建,王效科,张小全,等.华北落叶松人工林的生物量估算参数,林业科学,2010,46(2):6-11.
    [250]陈灵芝,陈清朗,鲍显诚,等.北京山区的侧柏林(Platycladus orientalis)及其生物量研究[J].植物生态学与地植物学学报,1986,10(1):17-25.
    [251]吴刚,冯宗炜.1995.中国寒温带、温带落叶松林群落生物量的研究概述.东北林业大学学报,23(1):95-101.
    [252]陈章和,王柏荪,张宏达,等.广东黑石顶常绿阔叶林生物量分布研究[J].植物生态学与地植物学学报,1993,17(4):289-298.
    [253]党承林,吴兆录,张强.西双版纳山地热带雨林生物量研究,云南植物研究.1997,123-128.
    [254]潘瑞炽,董愚得.植物生理学[M].北京:人民教育出版社,1979:156-200.
    [255]理永霞,茶正早,罗微,等.3种檫树幼苗叶片养分变化及其转移特性.林业科学,2009,45(1):152-157.
    [256]Grime J P. Competition and the struggle for existencell Anderson B M. Turner B D. Taylor L R. Population dynamics, Proc zoth Symp B E S [J]. oxford: Blackwell Scientific Publications,1979:123-139.
    [257]Chapin F S Ⅲ. The mineral nutrition of wild plants[J]. Annual Review of Ecology and Systematics,1980,2:233-260.
    [258]Berendse F, Aerts R, Nitrogen use efficiency:a biologically meaningful definition[J]. Functional Ecology,1987,1:293-296.
    [259]Aerts R. Nutrient use efficiency in evergreen and deciduos species from heathlands[J]. Oecologia,1990,84:391-397.
    [260]May J D, Killingbeck K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrent dynamics[J]. Ecology,1992,73:1868-1878.
    [261]潘维涛,田大伦,康文星,等.杉木人工林养分循环的研究(二)丘陵区建生杉木林的养分含量,积累速率和生物循环,中南林学院学报,1983:3(1):1-17.
    [262]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报,2002,26(1):89-95.
    [263]刘世荣,蔡体见,柴一新.荷叶松人工林生态系统营养元素生物循环规律的研究[A].森林生态系统定位研究(周晓峰主编).哈尔宾:东北林业大学出版社,1991:179-191.
    [264]Yang H, Wang Z, Jefers J N R, et al. Proccedings of International symposium on Temperate Forest Ecosystem nanagement and Environmental Protection[J]. Institute of Terrestrial Ecology,1987:86-90.
    [265]Salifn K F, Timmer V R. Nutrient retranslocation response of picea mariana Seedlings to nitrogen supply[J]. Soil Science Society of America,2001, 65:905-913.
    [266]Pabal L P, Gargaglione V, Pastur G M. Above-and belowground nutrients storage and biomass accumulation in marginal Nothofagus Antarctica forests in Southern Patagonia[J]. Forest Ecology and Management,2008, 255(7):2502-2511.
    [267]Gord W S, Jackson R B, Nutrient concentrations in fine roots. Ecology,2000, 81(1):275-280.
    [268]Van Heerwaarden L M. Toet S, Aerts R. Nitrogtn and phosphorus resorption efficiency and proficiency in six subarctic bog species after4 years of nitrogen fertilization[J]. Journal of Ecology,2003,91:1060-1070.
    [269]Tobon C S, Verstraten M. Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia[J]. Biogeochemistry,2004, (70): 1-25.
    [270]Kimmins J P. Forest Ecology. New york:Macmillan Publishing company,1987: 85-92.
    [271]White J G, Zasoski R J. Mapping soilicr onutrients. Field Crops Research, 1999,60:11-26.
    [272]Jiang Y, Liang W J, Wen D Z. Middle and Microelements in Cultivated soils of Shenyang Suburbs[M]. BeiJing:China Agricultural Science and Technology Press,2003.
    [273]黄健辉,陈灵芝.北京百花山附近杂灌丛的化学元素含量特片[J],植物生态学报,1991,15(3):224-232.
    [274]沈国舫,董世仁,聂道平.油松人工林养分循环的研究Ⅰ营养元素含量及分布[J].北京林业学院学报,1985,7(4):1-13.
    [275]冯宗炜,陈书莹,王开平.亚热带杉木纯林生态系统中营养元素的积累分布和循环的研究[J].植物生态学与地桂物学丛刊,1985,9(4):245-256.
    [276]张成林,天然次生白桦林生态系统营养元素的积累,分配和循环的研究[A].森林生态系统定位研究(元周晓峰主编)(C).哈尔滨:东北林业大学出版社,1991,160-170.
    [277]杨玉盛,陈尧水,谢锦升,等.杉木—观光木混交林群落N.P养分循环的研究[J].植物生态学报,2002,26(4):473-480.
    [278]张希彪,上官周平,黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J],生态学报,2006,26(2):373-382.
    [279]刘广全,土小宁,倪义进.锐齿栋森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246.
    [280]Wu G, Wei J, Deng HB, et al. Nutrient Cyling in an Alpine tundra ecosystem on Changbai Mountain, Northeast china[J]. Applied soil Ecology,2006, 32(2):199-209.
    [281]Duvigneaud P. S Denaeyer-Desmet温带荷叶林矿质元素的生物循环.植物生态学译丛,北京:科学出版社,1974:72-75.
    [282]阮宏华,孙多,叶镜中.空青山次生栎林营养元素的生物循环.下蜀森林生态系统定位研究论文集(姜志林主编).北京:中国林业出版社,1992:73-77.
    [283]Whittakcr R H, Likcns G E. The hubbard brook ceosystcms study:Forest cycling and element behavior. Ecology,1979,60(1):203-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700