香蕉果皮带毛突变相关基因的分离和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香蕉是世界重要的热带水果,因其多为三倍体,长期以来,香蕉育种多以筛选突变体为主,然而,人们对香蕉自发突变的分子机理知之甚少。研究突变机理,可以更好的了解突变的规律,为更好的利用突变进行有效的育种提供指导。香蕉果皮带毛突变体由“巴西”香蕉突变而来,其花梗、果实、雄花苞片等部位均表现有毛特征,花期提前。本研究以香蕉果皮带毛突变体为试材,构建突变体/野生型SSH库,筛选与突变有关的候选基因,同时,进一步优化香蕉遗传转化条件,为更好的验证香蕉基因功能奠定基础。主要研究结果如下:
     利用抑制性差减杂交(SSH)技术,分别以香蕉果皮带毛突变体和野生型为"tester"和‘'driver",构建正反双向两个差减cDNA文库,共获得591个基因片段,其中来自正向文库的325个,来自反向文库的266个。所得序列经BLAST比对分析结果显示:正向文库中206条序列与NCBI数据库中已知功能基因有较高同源性,7条序列与未知功能基因具有同源性,112条序列未能找到同源基因;反向文库中238条序列与NCBI数据库已知功能基因有较高同源性,9条序列与未知功能基因具有同源性,19条序列未能找到同源基因。通过gene ontology (GO)功能推测及归类,可将这些基因分为21亚类。
     根据前人关于植物表皮毛发育调控的研究结果和差减cDNA文库中筛选到的基因的功能推测,本研究选取4组22个可能与表皮毛发育相关的基因,采用半定量RT-PCR和实时荧光定量PCR的方法分析它们在野生型与突变体中的表达差异及在果实表皮毛发育过程中的表达变化。4组基因如下:(1)3个可能的关键转录因子:①MYB在表皮毛快速发育过程中,野生型中的表达量明显高于突变体中;②WD40在表皮毛发育的初始阶段在突变体中的表达量较高;③B-ZIP在表皮毛发育的成熟期及后期在突变体中的表达量稍高;(2)9个与激素信号相关的基因:①ARP(auxin repressed protein)在表皮毛快速生长期,突变体中表达量高于野生型;②ILR (IAA-amino acid hydrolase ILRl)在果实表皮毛发育过程中表现为折线状,虽然在两种表型中的趋势一致,但在表达量上还有一定差异:③2个ABAR(abscisic acid8'-hydroxylase)表达模式不同,编号M49在突变体和野生型中的表达差异不大,M286在表皮毛发育初期在野生型中的表达明显高于突变体;④4个ARF (auxin response factor)表达趋势各异,但总体表现为在表皮毛快速生长期,野生型中的表达高于突变体;⑤P2/ERF在野生型中的表达量始终高于突变体;(3)4个MAPK基因中,其中1个片段表现为表皮毛发育期在野生型中的表达量较高,另外3个在表皮毛发育期在两种表型差异不大;(4)与细胞分裂有关的6个基因,在两种表型中的变化趋势大体相同,基本上表现为随着果实及其表皮毛的发育表达量逐渐降低。可见,突变引起一系列基因的表达出现变化。
     MaERF基因在果实表皮毛发育过程中,在野生型中的表达量始终大于在突变体中的表达量。为了深入了解其功能,通过RACE技术获得其cDNA全长,对其编码的氨基酸序列进行生物信息学分析,认为该基因属于ERF亚家族的B2亚群,含有一个AP2/ERF保守结构域,多个亲水区和疏水区,但无跨膜结构,为非分泌蛋白:MaERF基因在基因组中低拷贝存在,含有一个内含子。RT-PCR分析表明,MaERF在香蕉各组织中均有表达,在生殖器官中的表达量较高。MaERF在拟南芥中的超表达研究显示,转基因植株表型没有明显变化,可能与表皮毛发育关系不大。
     MaMYB基因在突变体和野生型香蕉果皮中表达也有明显差异,通过RACE技术获得其cDNA全长,对其编码的氨基酸序列进行生物信息学分析,认为该基因属于R2R3MYB基因亚族,含有两个保守结构域,多个亲水区和疏水区,但无跨膜结构,为非分泌蛋白;MaMYB基因在基因组中低拷贝存在,含有一个内含子。RT-PCR分析表明,MaMYB在香蕉各组织中均有表达,其中在生殖器官中的表达量较高。MaMYB基因在拟南芥中的超表达研究显示,转基因植株叶片表皮毛减少,花器官表皮毛缺失,根系加长,果夹较野生型短,表明MaMYB可能参与了调控果皮表皮毛的发育,同时还可能与果实发育有关。
     为了更好的利用功能基因进行香蕉生物技术育种,对“巴西”香蕉胚性悬浮细胞遗传转化体系进行了优化,结果表明悬浮细胞对卡那霉素有一定抗性,适合作为筛选剂的抗生素为潮霉素和除草剂(Basta),浓度分别为10mg/L和5mg/L;悬浮细胞每2周继代一次,以继代5-6d的悬浮细胞为试材,以bar基因为筛选标记,悬浮细胞与菌液共培养6h后直接进行筛选培养,再生植株的转化率较高,可达到75%,阳性植株抗除草剂能力明显提高。
Banana (Musa spp.) is very important fruits around the world. For a long time, the principal means for banana breeding were selected mutants because of its triploid. However, the molecular mechanism of banana mutations poorly understood. The law about mutation would be known better and provide more effective guidance for breeding through research mutation mechanism. The pilose fruit mutant was from Brazil banana(Musa spp."Cavendish" AAA), it is characterized with the rachis, fruit and brach were combined by hairy phenotypes, and early flowering. In this research, suppression subtractive hybridization library (SSH) had been built by the mutant and wild and some genes about mutant were selected. To lay the foundation for better validation banana gene function, conditions of embryogenic suspension cells transformation were further optimized. The main results were following:
     The pros and cons of two subtractive cDNA libraries were built with banana pilose fruit mutant and wild type as "tester" and "driver" by suppression subtractive hybridization (SSH) technology and a total of591gene fragments were obtained, including325from the forward library and266from the reverse library. The results of BLAST analysis showed that the forward library which have206fragments with high homology to known functional genes from NCB1database,7fragments with homology but unknown function,112fragments failed to find the homology gene; the forward library which have266fragments with high homology to known functional genes from NCBI database,9fragments with homology but unknown function,19fragments failed to find the homology gene. These genes can be divided into21categories by gene ontology (GO).
     According to the results of previous research on the regulation of plant trichome and genes function prediction from subtractive cDNA libraries,4groups including22genes that may be associated with trichome were detected by RT-PCR and fluorescence quantitative Real-time PCR about their differences expression in wild and mutant during fruit development. The results were as follows:(1)3key transcription factors:①In the process of trichomes fast development, MYB was significantly higher expression level in wild than the mutant;②WD40was higher expression level in mutant in the initial stage of the trichome development;③B-ZIP was slightly higher expression levels in mutant in the maturity and late stage of the trichome development;(2)9genes about hormone-related:①ARP (auxin repressed protein) was higher expression in mutant than wild in the process of trichomes fast development;②ILR was similar expression trend but some differences level in the two phenotypes of fruit development;③The two ABAR (abscisic acid8'-hydroxylase) genes had different expression patterns, the expression of No. M49was little difference in mutant and wild, the expression of No. M286was significantly higher in wild than mutant:④4ARF (auxin response factor) were different expression, they were all higher expression in wild than mutant in the process of trichomes fast development;⑤AP2/ERF was always higher expressionn wild than mutant;(3)1gene of4MAPK were high expression in the wild type, the expression of the other3genes were little difference;(4)6genes related to the cell division were similar expression in two phenotypes, the more development of fruit, the lower expression.So, a series of genes expression had been changed in mutation.
     MaaERF is always higher expression in the wild than the mutant during fruit development. Full-length cDNA of MaERFwas obtained by RACE technology. The analysis of the amino acid sequence of this gene showed it belongs ERF subfamily B2subsets contains one AP2/ERF conserve domain, some hydrophilic and hydrophobic regions, but no transmembrane domain structure; MaERF gene contains one intron and low-copys in the genome. RT-PCR analysis showed that MaERF was expressed in all organizations of banana, but the expression was higher in reproductive organs. Overexpression MaERF in Arabidopsis, there was no significantly diversification of phenotype, indicating that the gene were little effect in the process of trichome.
     One AYB gene named MaMYB was obtained by RACE technology for better understood its role in the banana peel trichome process. The analysis of the amino acid sequence of this gene showed it belongs R2R3MYB subgenotype family, contains two conserve domains, some hydrophilic and hydrophobic regions, but no transmembrane domain structure; MaMYB gene contains one intron and low-copys in the genome. RT-PCR analysis showed that MaMYB was expressed in all organizations of banana, but the expression was higher in reproductive organs. Overexpression MaMYB in Arabidopsis, the trichomes reduced in transgenic plants leaves and missing in their flower organs, roots were longer, the fruit clip shorter than the wild, so that MaMYB not only participated in the development of trichomes but also related to fruit development.
     In the process of transformation about banana embryogenic suspension cells, the suspension cells had some resistance to kanamycin, hygromycin and herbicide (Basta) were suitable as a selecting agent antibiotic, and the concentrations were10mg/L and5mg/L; Banana embryogenic suspension cells were subculture5-6days, and co-culture with Agrobacterium6h and then direct selected on selective medium, bar gene as a selection marker,75%regenerated plants were positive plants, and their herbicide-resistant capacity has significantly improved.
引文
1.陈明杰.1.F9315,控制拟南芥开花时间和表皮毛发育2.F9231,拟南芥糖信号传导途径中的重要基因.中国科学院博士学位研究生学位论文,2001.19-45
    2.陈伟强,李芹,张光勇,赵立宾,刘学敏,刘湘永.高产、优质香蕉新品种“红河一号”的选育.热带农业科学,2010,30(9):13-16
    3.戴雪梅,黄霞,陈云凤,黄学林.大蕉与巴西蕉胚性悬浮系的建立及其原生质体融合的研究.全国“植物生物技术及其产业化”研讨会论文摘要.2007.3
    4.戴雪梅.香蕉(Musa spp.)胚性细胞悬浮系的建立及其原生质体培养与融合的研究.中山大学博士论文,2009
    5.杜中军,翟衡,黄俊生,徐兵强.基于STK激酶保守结构域克隆香蕉R基因和RLKs同源序列.农业生物技术学报,2005,13(6):817-818
    6.房栋.棉纤维初始发育相关基因及转录因子的克隆与鉴定.南京农业大学硕士学位论文,2006
    7.高典林.伽马射线诱发香蕉突变育种之研究.中国园艺,1979,25(5&6):197197-206
    8.郭建辉,蔡恩兴,林庆同,陈丽萍.黄锡栋,沈明山.香蕉离体试管芽诱变育种研究Ⅳ:“漳蕉8号”株系生化分析.亚热带植物科学.2003.32(1):11-13
    9.郭建辉,黄锡栋.香蕉离体试管芽诱变育Ⅲ.辐照后代优良株系的筛选.福建农业大学学报,2001,30(4):473-476
    10.郭建辉,沈明山,蔡恩兴,洪富祥,陈丽萍,黄锡栋.香蕉离体试管芽诱变育种的研究(九)漳蕉8号株系基因组变异检测.核农学报,2003,17(4):255-258
    11.何自福,李华平,肖火根,范怀忠.香蕉束顶病的研究进展,热带作物学报,2000,21(3):76-81
    12.胡春华,魏岳荣,易干军,黄秉智,黄永红.根癌农杆菌介导的香蕉高效遗传转化系统的建立.分子植物育种,2010,8(1):172-178
    13.胡莉莉,窦美安,谢江辉,蔡胜忠.香蕉枯萎病抗病性研究进展.广西热带农业,2006,(1):16-18
    14.黄新川.组培技术在香蕉黄叶病防治上之应用.植物病理学会刊.2002,11(2):57-61
    15.黄鑫.牡丹花芽内休眠解除相关基因的分离与功能分析,北京林业大学博士学位论文,2008
    16.黄怡菁,许圳涂,马溯轩.香蕉AAA基因组华蕉系亚群及AAB品种胚性细胞悬浮培养之生长周期及循环生长特性.中国园艺,1999,45(2):130-143
    17.霍妙娟,魏岳荣,胡家金,黄秉智,易干军.影响根癌农杆菌介导香蕉胚性悬浮细胞遗传转化的因素.果树学报,2008,4(4):597-600
    18.霍妙娟.香蕉胚性悬浮细胞超低温保存及遗传转化的研究.湖南农业大学硕士学位论文,2008,6
    19.李华平,胡晋生.香蕉茎尖遗传转化法研究.热带作物学报,2000,4(6):33-38
    20.李敬阳,唐粉玲,John S. Hu, Wayne Borth, Kheng Cheah,谷会,金志强.香蕉胚性细胞悬浮培养方法的改进.热带作物学报,2012.33(5):876-880
    21.李梅亭.香蕉枯萎病菌毒素在香蕉抗病品种选育和抗病性鉴定中的应用.福建农林大学博士学位论文,2010
    22.李梅婷a,严琰,张绍升.香蕉枯萎病菌及其粗毒素对香蕉的致病性比较.热带作物学报,2010,31(3):446-452.
    23.李梅婷b,张绍升.香蕉枯萎病菌细胞壁降解酶的诱导及其对香蕉组织的降解.中国农学通报,2010,26(5):228-231
    24.凌定厚,陈琬瑛,陈梅芳.香蕉花序顶端组织的离体形态发生.植物学报,1990,32(]2):966-968
    25.刘长全.香蕉寒害研究进展.果树学报,2006,23(3):448-453
    26.刘代,魏岳荣,胡家金,易干军,邓夫平.野生阿宽蕉胚性细胞悬浮系原生质体分离及植株再生.分子植物育种,2010,3(5):542-546
    27.刘代,魏岳荣,胡家金.香蕉原生质体的电融合研究.湖南农业科学.2010,8(3):128-130
    28.刘庆.‘暗柳’甜橙红色突变体性状形成的分子机理研究.华中农业大学,博士学位论文,2008
    29.马雪筠,周丽依,陈俊秋.香蕉快速繁殖法—花序的组织培养.广东农业科学,1988,1
    30.蒲金基,刘晓妹,曾会才.香蕉抗枯萎病育种研究进展.中国南方果树,2003,32(1):31-34
    31.普莉,索金凤,薛勇彪.植物表皮毛发育的分子遗传控制.遗传学报,2003,30:1078-1084
    32.漆艳香,朱水芳,谢艺贤,张辉强,肖启明,廖晓兰.香蕉细菌性枯萎病菌16SrDNA片段的克隆及序列分析.农业生物技术学报,2005,13(1):129-130
    33.苏伟.香蕉采后果实成熟特异表达基因的分离.华南热带农业大学,硕士学位论文,2003
    34.王长林.香蕉新品系选育及生产试验.华南热带农业大学硕士论文,2007
    35.王国芬,黄俊生,谢艺贤,彭军,代鹏,谢玉萍.香蕉叶斑病的研究进展,果树学报,2006,23(1):96-101
    36.王钱洁,陈厚彬,徐春香,胡桂兵.香蕉遗传育种研究进展.福建果树,2006,138:15-22
    37.王水琦,甘勇辉,梁赛英.香蕉抗枯萎病育种研究进展.中国热带农业,2007.1:26-27
    38.魏岳荣,黄学林,黄霞,李佳,肖望,李筱菊.‘过山香’香蕉多芽体的诱导及其体细胞胚的发生.园艺学报,2005,32(3):414-419
    39.魏岳荣,黄学林,李佳,黄霞,李哲,李筱菊.贡蕉胚性细胞悬浮系的建立和植株再生.生物工程学报,2005,1(8):58-65
    40.翁迈东.果树育种学.北京:农业出版社,1989:321-332
    41.吴静,李瑞珍,徐碧玉,金志强.香蕉ACC合成酶反义基因转化香蕉的研究.分子植物育种,2007,5(4):497-501
    42.肖望,黄霞,魏岳荣,赵杰堂,戴雪梅,黄学林.‘过山香’香蕉原生质体培养及植株再生.园艺学报,2008,35(6):873-878
    43.徐碧玉,苏伟,张建斌等.香蕉果实SMARTcDNA文库的构建及利用PCR方法筛选香蕉Actin2基因.热带亚热带植物学报,2005,13(5):375-381
    44.徐碧玉.香蕉果实特异表达cDNA及果实特异表达启动子的分离鉴定.华南热带农业大学,博士学位论文,2005
    45.徐春香,PANIS B, STROSSE H, SWENNEN R,李华平,肖火根,范怀忠.香蕉胚性愈伤组织的诱导及胚性细胞悬浮系的建立.华南农业大学学报(自然科学版),2004,25(1):70-73
    46.徐春香,Panise B, Strosse H, Swennen R,李华平,肖火根,范怀忠.香蕉胚性愈伤组织的诱导及胚性细胞悬浮系的建立.华南农业大学学报,2004,1(4):70-73
    47.徐春香,陈厚彬,胡桂兵,尉义明.香蕉选育种的途径与方法研究进展.仲恺农业技术学院学报,2008,21(1):60-64
    48.徐春香,何勇强,尉义明,卢博彬,胡桂兵,陈厚彬.抗冻蛋白(afp)基因表达载体的构建及对香蕉胚性细胞悬浮系的转化,广西植物,2009,29(5):664-668
    49.徐春香,李华平,肖火根,范怀忠.香蕉分生小球体途径胚性细胞悬浮系的建立.园艺学报,2003,30(5):580-582
    50.徐进,陈林,许景生,张争,张昊,冯洁.香蕉细菌性枯萎病在中国的潜在适生区域.植物保护学报,2008,3(6):233-238
    51.徐立新,林栖凤,李冠一,何雪梅,张永清.用微弹轰击法将GUS基因导入香蕉茎尖组织胞.海南大学学报(自然科学版),1994,4(3):308-310
    52.杨晓颖,刘菊华,徐碧玉,等.香蕉MuMADS2的克隆、序列分析和表达分析.分子植物育种,2008,6(4):781-786
    53.杨秀娟,杜宜新,甘林,阮宏椿,陈福如.香蕉枯萎病生物防治和抗病育种研究进展.中国果树,2008,6:42-45
    54.叶春海,丰锋,吕庆芳,李洪波.香蕉60Co辐射诱变效应的研究.西南农业大学学报,2000,22(4):301-303
    55.张建斌,贾彩红,刘菊华,金志强,徐碧玉.香蕉未成熟雄花组织培养与快速繁殖研究.热带作物学报,2012,33(7):1225-1229
    56.张金智.利用抑制性差减杂交研究早实积成花转变的分子机理.华中农业大学,博士学位论文,2010
    57.张妙霞.野生香蕉(Musa spp., AB group)抗寒相关基因的克隆与表达分析.福建农林大学,博士学位论文,2010
    58.张银东,张锡炎,曾宪松,郑学勤.香蕉CMV—BH外壳蛋白基因转化香蕉的研究初报.热带作物学报,1995
    59.朱军,胡永华,黄惠琴,鲍时翔.巴西蕉愈伤组织的诱导.热带农业科学,2006,26(3):15-17
    60. Acereto-Escoffie POM, Chi-Manzanero BH, Echeverria-Echeverria S, Grijalva R, James KA, Gonzalez-Estrada T, Castario E, Rodriguez-Zapata LC. Agrobacterium-mediated transformation of Musa acuminate cv. "GrandNain" scalps by vacuum infiltration, Scientia Horticulturae,2005,105(3):359-371
    61.Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel GV, Pereiraa A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell,2004,16:2463-2480
    62. Anonymous. List of new mutant cultivars:Musa spp. (banana). Mutation breeding Newsletter,1990,35:32-41
    63. Assani A. Haicour R, Wenzel G, Cote FX, Bakry F, Foroughi-Wehr B, Ducreux G, Aguillar ME, Grapin A. Plant regeneration from protoplasts of dessert banana cv. Grande Naine(Musa spp., Cavendish sub-group AAA)via somatic embryogenesis. Plant Cell Report,2001,20:482-488
    64. Assani A, Haicour R, Wenzel G, Foroughi-Wehr B, Bakry F, Cote FX, Ducreux G, Ambroise A, Grapin A. Influence of donor material and genotype on protoplast regeneration in banana and plantain cultivar s(Musa spp.). Plant Science,2002, 162:355-362
    65. Azhar M, Heslop-Harrison JS. Genomes, diversity and resistance gene analogues in Musa species. Cytogenetic and Genome Research,2008,121:59-66
    66. Bakry F.Choix du matriel utiliser pour isolenment de protoplaster de bananiers (Musa spp.). Fruit,1984,39:449-453
    67. Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv'Grand Nain' via microprojectile bombardment. Plant Cell Reports,2000,19:229-234
    68. Bhagwat B. Duncan E J. Mutation breeding of banana cv. Highgate(Musa spp., AAA Group)for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Scientia Horticultura, 1998,3 (1):11-22
    69. Broertjes C. and Van Harten AM. Applied mutation breeding for vegetatively propagated crops. Amsterdam Elsevier Sci. Pub. Co.,1988,345.
    70. Buddenhagen, IW. Disease susceptibility and genetics in relation to breeding of bananas and plantains,1987,95-109. In:G.J. Persley and E.A. De Langhe (eds.). Banana and plantain breeding strategies. Proc. Intl. Wkshp., Cairns, Australia, 13-17 Oct.1986. ACIAR Proc. no.21. Australian Centre for Intl. Agr. Res.,Canberra.
    71. Chen MJ. Yuan Z, Huang H. DELAYED FLOWERING, an Arabidopsis gene that acts in the autonomous flowering promotion pathway and is required for normal development. Journal of Integrative Plant Biology,2006,48,27-34.
    72. Chen YP, Chen YF,Zhao JT,Huang X, uang XL. Cloning and Expression of Resistance Gene Analogs (RGAs) from Wild Banana Resistant to Banana Fusarium Wilt. Journal of Plant Physiology and Molecular Biology,2007, 33(6):567-563
    73. Cheng J. Functional analysis of MAPK phosphatase atMKP2. University of British Columbia, Master of science,2009
    74. Cote FX, Domergue R. Monmarson S, Schwendiman J, Teisson C, Escalant JV. Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand naine. Physiologia plantarum,1996,97:285-290
    75. Cromauer SS, Krikorian AD. Plant regeneration via somatic embryogenesis in the seeded dipoil banana Musa ornata Roxb. Plant Cell Reports,1988,7:23-25
    76. Cronauer SS, Krikorian AD. Banana(Musa spp.) biotechnology. In Bajay YPS, ed. Agriculture and forestry. Berlim:Springer Verlag,1986,233-252
    77. Dale JL. Banana bunchy tpo:An economically important tropical plant virus disease. Adv. Virus Rea,1987,33:301-325
    78. Dantas JLL, Shepherd K, Silva S de O, et al. A cultura da banana, aspectos tecnicos socioeconomicos eagroindustriais.Classificacao botanica, origem, evolucao edistribuica ogeografica,1997:27-34
    79. De Guzman EV, DelRosario AG, Pagcaliwagan PC. Plantlet regeneration from unirradiated and irradiated banana shoot tip tissues cultured in vitro, Philipp. Agric.1980,63:136-140.
    80. De Guzman EV, DelRosario AG, Pagcaliwagan PC. Production of mutants by irradiation of in vitro cultured tissues of coconut and banana and their mass propagation by the tissue culture techniques. Induced mutations in vegetatively propagated plants, Vol. I. Vienna, IAEA,1980,113-118.
    81. Dhed a D, Dumortier F, Panis B, Vuylsteke D, Langhe DE. Plant regeneration in cell suspension cultures of the cooking Banana cv.'Bluggoe'(Musa spp.ABB group). Fruits,1991,46:125-135
    82. Diatachenko L, Lau YFC, Campbell AP. Ession subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Pro Natl Acad Sci USA,1966,93:6025-6030
    83. Dominguez-Puigjaner E, Llop I, Wendrell M, Prat S. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases. Plant Physiology,1997,114(3):1071-1076
    84. Epp MD. "Somaclonal variation in bananas:a case study with Fusarium wilt" banana and plantain breeding strategies. (Persley GJ, De Langhe EA, eds), ACIAR, Canberra 1987,21,140-150
    85. Esch JJ, Chen MA, Hillestad M, Marks MD. Comparison of TRY and the closely related Atlg01380 gene in controlling Arabidopsis trichome patterning. Plant J,2004,40:860-869
    86. Espino RRC. "Mutation breeding on selected Philippine fruit crops". Nuclear techniques and in vitro culture for plant improvement. IAEA, Vienna,1986, 429-433
    87. Feng DR, Li WY, He YM, Qi KB, Wang HB, Wang JF. Over-expression of a cold-induced plasma membrane protein gene (MpRCl) from plantain enhances low temperature-resistance in transgenic tobacco. Environmental and Experimental Botany.2009,65:395-402
    88. Fukaki H, Tameda S. Masuda H. Tasaka M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOTLAA14 gene of Arabidopsis.Plant 2002.29:153-68
    89. Ganapathi TR, Higgs NS. Baint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM. Agrobacterium-mediated transformation of embryogenic cell suspension of the banana cultivar Rasthali (ABB). Plant Cell Reportss,2001,20:157-162
    90. Gao Y, Gong X, Cao W, Zhao J, Fu L, Wang X, Schumaker KS, Guo Y. SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression. J Integr Plant Biol,2008, 50:906-917
    91. Ghosh A, Ganapathi TR, Nath P.6-BAat VA. Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell, Tissue and Organ Culture, 2009,97(2):132-139
    92. Grapin A, Ortiz J L, Lescot T, et al. Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell, Tissue and Organ Culture,2000,61(3):237-244
    93. Grapin A, Schwendiman J, Teisson C. Somatic embryogenesis in plantain banana. In Vitro Cellular&Developmental Biology-Plant,1996,32:66-71
    94. Grapin A,Ortiz JL, Lescot T,Ferriere N.Cote FX. Recovery and regenetation of embryogenic cultures from female flower of False Horn Plantain. Plant Cell,Tissue and Organ Culture,2000,61:237-244
    95. Guo P, Bai G, Carver B, et al.Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Gene Genomics,2007,277(1):1-12
    96. Huang X, Huang XL, Xiao W, Zhao JT, Dai XM, Chen YF. Li XJ. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminate cv. Mas (AA) via a liquid co-cultivation systen. Plant Cell Reports.2007,26(10):1755-1762
    97. Huang X, Lu XY. Zhao JT, Chen JK, Dai XM, Xiao W. Chen YP, Chen YF, Huang XL.MaSERKl Gene Expression Associated with Somatic Embryogenic Competence and Disease Resistance Response in Banana(Musa spp.). Plant Molecular Biology Reporter,2010,28(2):309-316
    98. Hulskamp M, Misra S. Jurgens G. Genetic dissection of trichome cell development in Arabidopsis.1994,Cell,76:555-566
    99. Hulskamp M, Schneitz K, Pruitt RE. Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell,1995,7(1):57-64
    100. Hulskamp M, Schnittger A, Folkers U. Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. Int Rev Cytol,1999, 186:147-178
    101. Hulskamp M. Plant trichomes:a model for cell differentiation. Nature Reviews Molecular Cell Biology,2004,5:471-480
    102. Hwang SC, Ko WH, Chao CP. GCTCV-215-1:A promising Cavendish clone resistant to race 4 of Fusarium oxysporum f.sp. cubense. Plant Protection Bulletin (Taiwan),1994,36:281-291.
    103. Ishida T, Kurata T, Okada K, Wada T. Development of trichomes and root hairs. Plang Biol,2008,59:365-386
    104. Jalil M, Khalid N, Othman RY.Plant regeneration from embryogenic suspension cultures of Musa acuminata cv. Mas (AA). Plant Cell, Tissue and Organ Culture, 2003,75:209-214
    105. Johnson C S, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell,2002,14:1359-1375
    106. Vishnevetsky J, Thomas L, White J, Aaron J. Palmateer, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A. Improved tolerance toward fungal diseases in transgenic Cavendish banana(Musa spp. AAA Group) cv. Grand Nain. Transgenic Research,2011,20(1):61-72
    107. Bernardo J, Perez-Hernandez, Purificacion, Rosell-Garcia. Inflorescence proliferation for somatic embryogenesis induction and suspension-derived plant regeneration from banana (MusaAAA, cv.'Dwarf Cavendish') male flowers. Plant Cell Reportss,2008,27:965-971
    108. Khalil SM, Cheah KT, Perez EA, et al. Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Reportss, 2002,20(12):1128-1134
    109. Kirik V, Simon M, Huelskamp M, Schiefelbein J. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICEin trichome and root hair cell patterning in Arabidopsis. Dev Biol,2004,268:506-513
    110. Kirik V, Grini PE, Mathur J, Klinkhammer I, Adler K. Bechtold N, Herzog M. Bonneville JM, Hulskamp M. The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance. Plant Cell,2002,14:2265-2276
    111. Kitomi Y, Ito H, Hobo T,Aya K, Kitano H, Inukai Y.The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRRl, a type-A response regulator of cytokinin signaling. The Plant Journal, 2011,67(3):472-484
    112. Knox K, Grierson CS, Leyser O. AXR3 and SHY2 interact to regulate root hair development. Development,2003,130:5769-77
    113. Koshino-Kimura Y, Wada T, Tachibana T, Tsugeki R, Ishiguro S, Okada K. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol,2005,46:817-826
    114. Kurn U. Sommer F, Hemmrich G. Bosch T C.G, Khalturin K. Allorecognition in urochordates:identification of a highly variable complement receptor-like protein expressed in follicle cells of Ciona. Dev Comp Immunol,2007. 31(4):360-371
    115. Larkin JC, Oppenheimer DG, Lloyd AM, Paparozzi ET. Marks MD. Roles of the GLABROUS 1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell,1994,6:1065-1076
    116. Larkin JC, Brown ML, Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol,2003,54:403-430
    117. Li SJ, Wen RM. Pei XW, Chen SK, Li WM, Jia SR. Transformation of GbSGT1 gene into banana by an Agrobacterium-mediated approach. Progress in Natural Science,2007,7(10):1241-1243
    118. Liu J, Xu B, Hu L, et al. Involvement of a banana MAD-box transcription factor gene in ethylene-induced fruit ripening. Plant Cell Reports,2009.28:103-111
    119. Marks MD.Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant PhysiolPlant Mol Biol,1997,48:137-163
    120. Marroquin CG, Paduscheck C, Escalant JV, Teisson C. Somatic embryogenesis and plant regeneration through cell suspensions in Musa acuminata. InVitro Cellular&Developmental Biology-Plant,1993.29:43-46
    121. Matsumoto K. Barbosa ML, Souza LAC, et al. In vitro selection for resistance in banana. II:Resistance to culture filtrates of race 1 Fusarium oxysporum f.sp. cubense. Fruits,1999,54 (3):151-157.
    122. Matsumoto K, Barbosa M L, Souza L C, et al. Race 1 fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica,1995,84:67-71.
    123. Matsumoto K, Oka S.Plant regeneration from protoplasts of a Brazilian dessert banana(Musa spp., AAB group). Acta Horticulturae,1998,490:455-462
    124. Matsumoto K, Vilarinhos A D, Oka S. Somatic hybridization by electrofusion of banana protoplasts. Euphytica,2002,125(3):17-32.
    125. Matsumoto K. Isolation and culture of bract protoplasts of banana. In International Rice Research Institute(IRRI) and Academia Sinica, Eds,Genetic manipulation in crops, Cassell Tycooly, Philadelphia USA,1988:414-415
    126. May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ, Generation of transgenic banana(Muse acuminata)plants via Agrobacterium-mediated transformation. Biolechnol,1995,13:486-492
    127. Maziah M, Sariah M, Smeraman S. Transgenic banana Rastali(AAB) with β-1, 3-ghcanase gene for tolerance to fusarium wilt race 1 disease via Agrobacterium-mediated transformation system. Plant Pathology Journal,2007, 6(4):271-282
    128. Megia R, Haicour R, Rossignol L, Sihachakr D, Callus formation from cultured protoplasts of banana(Musa spp.). Plant Science,1992,85:91-98
    129. Menendez T. A note on the effect of ethyl-methanesulphonate on Musa acuminata seeds. Induced mutations in vegetatively propagated plants,1973, 85-90
    130. Micke A, Donini B, Maluszynski M. Induced mutations for crop improvement. Trop. Agric.1987,64:259-278
    131. Mishra PJ, Ganapathi TR, Suprasanna P,6-BAat VA. Effect of single and recurrent gamma irradiation on in vitro shoot culture of banana. International Journal of Fruit Science,2007.7(1):45-57
    132. Moham Ram HY, Steward FC. The induction of growth in explanted tissue of the banana fruit. Canadian Journal of Botany,1964,42(11):1559-1580
    133. Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol,2007,145:736-746
    134. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, et al. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol,2000,123:563-74
    135. Navarro Cuauhtemoc, Escobedo Rosa Ma, Mayo Alberto. In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell, Tissue and Organ Culture,1997,51(1):17-25
    136. Novak FJ and Micke A. Mutation breeding and in vitro techniques for crop improvement in developing countries. Gene manipulation for plant improvement in developing countries. Kualalumpur SABRAO Proceedings,1990:63-86
    137. Novak FJ, Brunner H., Afza R. and VanDuren M. Mutation breeding of Musa spp. (banana and plantain). Mutation Breeding News letter,1993,40:2-3
    138. Novak FJ, Donini B, Hermelin T. Micke A. Potential for banana and plantain improvement through in vitro mutation breeding. Costa Rica ACORBAT. Memorias VII Reunion CATIE,1987,67-70
    139. Novak FJ. "Micropropagation and radiation sensitivity in shoot-tip cultures of banana and plantain". Nuclear techniques and in vitro culture for plant improvement. IAEA, Vienna.1986.167-174
    140. Novak FJ. Mutation induction by gamma irradiation of in vitro cultured shoot-tips of banana and plantain (Musa cvs). Trop. Agr.1990, (Trinidad) 67 (1): 21-28
    141. Omar MS. In vitro action of ethyl-methanesulphonate on banana shoots tips. Sci. Hort.1989,40:283-295
    142. Panis B, Warwe VA, Swennen R. Plant regeneration through direct somatic embryogenesis from protoplasts of banana (Musa spp.). Plant Cell Reports,1993, 12:403-407
    143. Panton CA, Menendez T. Possibilities and implication of mutation breeding in Jamaica. Proc. Study Group Meeting Buenos Aires (Eds.), Induced Mutations and plant Improvement. Vienna, Austria IAEA,1972.61-65
    144. Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics,2000,156:1349-1362
    145. Payne, T, Clement, J, Arnold, D, and Lloyd, A. Heterologous myb genes distict from GLl enchance trichome production when overexpressed in Nicotiana tabacum. Development,1999,126,671-682.
    146. Pei X, Li S, Jiang Y, Zhang Y, Wang Z, Jia S. Isolation, characterization andVan den Berg N, Berger DK Hein I, Birch PRJ, Wingfield MJ, Viljoen A. Tolerance in banana to Fusarium wilt is associated with early up—regulation of cell wall—strengthening genes in the roots. Molecular Plant Pathology,2007, 8:333-341
    147. Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, Zhang YQ, Wang BS, Wang ZX, Jia SR. Creation of transgenic bananas expressing human lysozyme gene for Panama wilt resistance. Journal of Integrative Plant Biology,2005,47(8):971-977
    148. Pei XW, Li SJ, Jiang Y, Zhang YQ, Wang ZX, Jia SR. Isolation, characterization and phylogenetic analysis of the resistance gene analogues(RGAs)in banana(Musa spp.). Plant Science,2007,172:1166-1174
    149. Peraza-Echeverria S, Dale JL, Harding RM, Smith MK, Collet C. Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Molecular Breeding, 2008,22(4):565-579
    150. Peraza-Echeverria S, James-Kay A, Canto-Canche B, Castillo-Castro E. Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Molecular Genetics and Genomics,2007,278(4):443-453
    151. Perazza D, Vachon G, Herzog M. Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiol,1998,117:375-83
    152. Pillay M, Nwakanma DC, Tenkouano A. Identification of RAPD markers linked to A and B Genome sequences in Musa. Genome,2000,43:763-767
    153. Pillay M, Tripathi L.Banana breeding.In:Keang MS, Priyadarshan PM (eds) Breeding Major Food Staples.2007, Blackwell Science
    154. Poethig, R.S. Small RNAs and developmental timing in plants. Current opinion in genetics& development,2009,19:374-378
    155. Pua EC, Lee YC. Expression of a ripening-related cytochromeP450 cDNA in Cavendish banana(Musa acuminata cv.Williams). Gene,2003,305(1):133-140
    156. Rafael GK, Manuel de FS, Laisyn PP, Terrence G, Franciso BM, Maritza RV, Maite CM, Elisa QM. Somatic embryogenesis of the banana hybrid cultivar FHIA-18(AAAB) in liquid medium and scaled-up a bioreactor. Plant Cell, Tissue and Organ Culture,2001,68:21-26
    157. Robinson JC. Bananas and Plantains. Crop Production Science in Horticulture No.5.CAB International. Wallingford, UK,1996
    158. Roux N. "Complementary approaches to cross-breeding and mutation breeding for Musa Improvement", Proceedings of the first Global Conference of the International Musa testing program, FHIA, Honduras,1994,213-218
    159. Roux NS. Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell, Tissue Organ Culture,2001,66:189-197
    160. Rowe P, Rosales FE. New frontiers in resistance breeding for nematode, fusarium and Sigatoka. Current approaches and future opportunities for improving Gros Michel(AAA Dessert)banana.1995,119-122
    161. Sagi L, Panis B, Remy S, Schoofs H, Desmet K, Swennen R, Cammue BPA. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Biotechnology,1995,13:481-485
    162. Sagi L, Remy S, Panis B, Swennen R, Volckaert G. Transient gene expression in electroporated banana (Musa spp.,cv'Bluggoe', ABB group.)Protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Reports,1994, 13(5):262-266
    163. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Biuauct A. Brottier P,Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S,Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Aaurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J and Boucher CA. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature,2002,415(6871):497-502
    164. Schellmann S, Hulskamp M. Epidermal differentiation:trichomes in Arabidopsis as a model system. Int J Dev Biol,2005,49:579-584
    165. Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jurgens G, Hulskamp M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J,2002,21:5036-5046
    166. Schoofs H, Panis B, Swennen R. Competence of scalps for somatic embryogenesis in Musa. Acta Horticulturae.1998,490:475-483
    167. Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC. Xu YH, Zhang DP. The Mg-chelatase H subunit is an abscisic acid receptor. Nature,2006,443:823-826
    168. Skaltsa H, Verykokidou E, Harvala C, Karabourniotis G, and Manetas, Y. UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex. Phytochemistry,1994,37:987-990
    169. Sreeramanan, Subramaniam and Mahmood, Maziah and Abdullah, Mohd Puad and Meon, Sariah and Xavier, Rathinam. Transient Expression of gusA and gfp Gene in Agrobacterium-mediated Banana Transformation Using Single Tiny Meristematic Bud. Plant Sciences,2006,5(3):468-480
    170. Szymanski DB, Jilk RA, Pollock SM, Marks MD. Control of GL2 expression in Arabidopsis leaves and trichomes. Development,1998,125:1161-1171
    171. Szymanski DB, Lloyd AM, Marks MD. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci,2000,5:214-219
    172. Szymanski, D., Lloyd, A., and Marks, M. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Science,2000,5:214-219
    173. Tominaga R, Iwata M, Okada K, Wada T. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell,2007,19(7):2264-2277
    174. Tominaga R, Lwata M, Sano R, Lnoue K, Okada K, Wada T. Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development,2008, 135:1335-1345
    175. Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol.2003, 133:1367-1375
    176. Traw, M.B., and Feeny, P. Glucosinolates and trichomes track tissue value in two sympatric mustards. Ecology,2008,9:763-772.
    177. Tripathi L, Tripathi JN, Hughes JA, Agrobacterium—mediated transformation of plantain (Musa spp.) cultivar Agbagba. African Journal of Biotechnology, 2005,4(12):1378-1383
    178. Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol,2010,73:481-492
    179. Upendra K.SS, Ganapathi TR, Srinivas L. Cloning and characterization of a novel stress-responsive WRKY. Molecular Biology Reports. 2011.38(6):4023-4035
    180. Upendra K.SS, Srinivas L, Ganapathi TR. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought-and salt-stress tolerance in banana.Planta,2011,234(5):915-932
    181. Van den Berg N, Berger DK Hein I, Birch PRJ, Wingfield MJ, Viljoen A. Tolerance in banana to Fusarium wilt is associated with early up—regulation of cell wall—strengthening genes in the roots. Molecular Plant Pathology,2007, 8:333-341
    182. Vishnevetsky J, White Jr TL, Palmateer AJ. Flaishman M, Cohen Y, Elad Y, Margarita Velcheva M, Uri Hanania U, Nachman Sahar N, Oded Dgani O, Avihai Perl A.Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Research. 2011,20. (1):61-72
    183. Vonstrin OD, Thies WG. Hofmann M. A high through put screening for rarely transeribed differentially espressed genes. Nucleic Acids Research,1997, 25(13):2598-2602
    184. Wada T, Okada K. Development of root-hair and trichome in Arabidopsis. Tanpakushitsu Kakusan Koso,2002,47:1599-1604
    185. Wada T,Tachibana T,Schimura Y,Okada K. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog CPC. Science,1997,277:1113-1116
    186. Walker AR, Davison PA. Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC. The TRANSPARENT TESTA GLABRAl locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell,1999, 11:1337-1350
    187. Wang S. Kwak SH, Zeng Q, Ellis BE. Chen XY, Schiefelbein J, Chen JG. TR1CHOMEKESSl regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development.2007,134:3873-3882
    188. Wang Y, Wu J, Xu BY, et al. Cloning of an ADP-ribosylation factor gene from banana(Musa acuminata) and its expression patterns in postharvest ripening fruit. Journal of Plant Physiology,2010,167(12):989-995
    189. Wang Z, Zang QW, Guo ZA, et al. A prelim inary study on gene expression profile induced by water stress in wheat (Triticum aestivum L.) seeding. Yi Chuan Xue Bao,2004,31(8):842-849
    190. Wu, G., and Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development,2006,133: 3539-3547.
    191. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., and Weigel, D. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell,2009,138:750-759
    192. Xiao Wang, Huang Xia, Gong Qing, et al. Somatic hybrids obtained by asymmetric protoplast fusion between Musa Silk cv. Guoshanxiang (AAB) and Musa acuminate cv. Mas (AA). Plant Cell, Tissue and Organ Culture.2009, 97(3):313-321
    193. Yu N, Cai WJ., Wang S, Shan CM, Wang LJ, Chena XY. Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana. The Plant Cell,2010,22:2322-2335
    194. Zhao J, Zhang W, Zhao Y, Gong X, Guo L, Zhu G, Wang X, Gong Z, Schumaker KS, Guo Y. SAD2, an importin-like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. Plant Cell,2007, 19:3805-3818
    195. Zimmermann P, Hirsch-Hoffmann M, Henning L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology,2004,36(1):2621-2692
    196. Zhu Y, Dong A, Meyera D, Pichond 0, Renoud JP, Cao K, Shen WH. Arabidopsis NRP1 and NRP2 Encode Histone Chaperones and Are Required for Maintaining Postembryonic Root Growth. Plant Cell,2006, 18 (11):2879-2892

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700