海南岛橡胶根际嗜铁细菌B.subtilis CAS15筛选及嗜铁素基因dhbC克隆、表达与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是一切生命体不可或缺的必需元素,尽管其含量丰富,但由于在中性pH氧化条件下铁离子可溶性很低,常常成为限制生命体生长的营养元素。因此,许多微生物合成具有螯合铁离子能力的嗜铁素以获取所需要的铁离子。嗜铁微生物可通过分泌嗜铁素提高环境中铁的生物有效性,从而促进植物的生长,还可通过与病原微生物竞争环境中有限的铁离子,达到控制植物病害的目的。在缺铁条件下,枯草芽孢杆菌可分泌儿茶酚型嗜铁素bacillibactin(BB)以获取所需要的铁离子。
     本研究首次通过CAS(Chrome Azurol Sulphonate)检测平板法从海南岛橡胶树根际土壤分离获得一批嗜铁细菌,并以在CAS检测平板上产生较大橘黄色晕圈的拮抗细菌枯草芽孢杆菌CAS15为研究对象,克隆了B.subtilis嗜铁素基因dhbC并实现了在大肠杆菌中的表达,并通过同源重组法构建dhbC基因缺失突变株和回复株,验证了dhbC基因的功能,证明了dhbC基因在B.subtilis嗜铁素生物合成中发挥重要作用。该论文的研究结果为嗜铁微生物的筛选利用及其生防机理的研究奠定了基础,为植物病害的生物防治提供了新的思路。主要研究结果和结论如下:
     1.根据菌株的形态特征和生理生化特性,将CAS15初步鉴定为芽孢杆菌属(Bacillus);16S rDNA序列分析显示,CAS15的16S rDNA与枯草芽孢杆菌Bacillus subtilis 16S rDNA序列具有99.4%的同源性,在所构建的系统进化树上,CAS15与枯草芽孢杆菌(登录号为DQ207730和EU047884)及芽孢杆菌(登录号为AB188212)的遗传距离最近,处在同一分支,因此,将CAS15鉴定为枯草芽孢杆菌(Bacillus subtilis)。
     2.通过电喷雾离子化质谱分析(Electrospray Ionization Mass Spectrometry,ESI-MS)研究了CAS15分泌的嗜铁素,结果表明,CAS15提取物在m/z 881.2([M-H]1-)处的质谱峰值与3H2O(DHB-Gly-Thr)3的峰值一致,其准确分子质量为881.25;通过DHB(G)分析,研究了铁离子对CAS15嗜铁素产量的影响,发现铁离子抑制嗜铁素的产生,而且,培养基中FeCl3浓度越高,对嗜铁素产生的抑制作用越强。当培养基中不含FeCl3时,其OD510/OD600值为0.10~0.39;当培养基中含有5μmol/L FeCl3时,其OD510/OD600值为0.005~0.04;而当培养基中含有50μmol/L FeCl3时,其OD510/OD600值仅为0.001~0.01。
     3.对CAS15嗜铁素分泌影响因素进行了研究,结果表明,改良MM培养基为CAS15嗜铁素分泌的最适培养基,以葡萄糖为碳源,以色氨酸为外源氨基酸,pH7.2,37℃条件下培养,有利于CAS15分泌嗜铁素,可获得较高产量的嗜铁素。
     4.通过室内平板对峙试验研究了CAS15对15个常见病原菌的拮抗作用,结果显示,CAS15对这15个常见病原菌有较强的拮抗作用,拮抗带宽带为6~10 mm;并研究了CAS15菌液过滤液对15个病原菌的抑制作用,结果显示,抑制率为20.18%~94.07%,表明,CAS15具有较强较广泛的拮抗谱。
     5.黄瓜种子发芽试验结果表明,100倍液和1000倍液能有效促进芽的生长,其中100倍液效果最好。离体叶片接种试验结果显示,CAS15菌悬液对芒果炭疽病具有较强的抑制作用,病情指数下降了53.34%,防效达到78.95%,表明CAS15具有较好的促进植物生长及生物防治潜能。
     6.根据已报道的枯草芽孢杆菌基因组序列,设计特异性引物,通过PCR扩增,获得了CAS15 dhbC基因片段,该片段长1197 bp,预期编码398个氨基酸残基的多肽。BLASTn搜索结果显示,该基因片段与B.subtilis subsp. subtilis str.168和Bacillus subtilis subsp. subtilis str. NCIB 3610的dhbC基因序列( accession No.Z99120.2和NZ_ABQL01000005.1)分别具有99.74%和99.58%同源性,在核苷酸序列上,分别只有4个和5个碱基不同,在氨基酸序列上,分别有2个和3个氨基酸残基不同。
     7.通过网络工具http://www.expasy.org/对CAS15 dhbC基因编码产物DhbC进行结构分析与预测,结果显示:CAS15 dhbC基因编码产物的等电点为5.30,为酸性蛋白质,稳定系数为53.00,表明该蛋白质性质不稳定;总平均疏水指数(Grand average of hydropathicity, GRAVY)为-0.303;DhbC蛋白含有带负电荷的氨基酸残基(Asp+Glu)57个,带正电荷的氨基酸残基(Arg+Lys)39个,总原子数为6098,其分子式为C1910H3039N545O592S12;DhbC蛋白含有5个蛋白激酶C-磷酸化位点;含有6个酪蛋白激酶Ⅱ磷酸化位点,1个酪氨酸激酶磷酸化位点及2个N-豆蔻酰化位点;由于其蛋白结构的不稳定性,DhbC有可能由氨基酸14-394,122-397,69-393各形成一种三级结构模型。
     8.将CAS15 dhbC基因片段连接到表达载体pET-30a(+),并经氯化钙转化法导入大肠杆菌BL21(DE3),获得工程菌E.coli BL21(DE3)/pET-30a-dhbC,以1 mmol/L的IPTG进行诱导,经30℃诱导4 h后实现了高效表达,获得了48.8 kDa的融合蛋白,表达产物主要以可溶形式存在,重组蛋白的表达量约占菌体总蛋白的58%。由于所采用的pET-30a(+)表达系统所表达的蛋白质带有6个连续的组氨酸,可以通过Ni2+金属亲和层析进行重组蛋白的纯化并通过Western blot进行分析,结果表明,重组蛋白可与兔抗His-tag多克隆抗体发生特异性反应。
     9.通过同源重组法,将CAS15基因组中dhbC基因敲除,获得了dhbC基因缺失突变株,并将dhbC基因重新导入CAS15 dhbC基因缺失突变株,获得CAS15 dhbC基因回复株,经CAS检测平板检测,回复株能够和原CAS15菌株一样,在检测平板上产生明显的橘黄色晕圈,而CAS15 dhbC基因缺失突变株不能,表明dhbC基因与嗜铁素的产生密切相关,验证了dhbC基因在B.subtilis isochorismate生物合成过程中的重要性,说明dhbC基因在CAS15嗜铁素生物合成中发挥重要作用。
Iron is essential to the growth of virtually all organisms. Despite its abundance in nature, iron is often a growth limiting nutrient because of the low solubility of ferric iron under aerobic conditions at neutral pH. Consequently, many bacteria produce ferric iron chelating compounds known as siderophores to gain access to various iron sources. Siderophore producing microorganisms can promote plant growth by increasing the bioavailability of iron via secreting siderophore and control plant diseases by antagonizing against plant pathogens via competing iron nutrient with them. In response to iron deprivation, B.subtilis secretes the catecholic siderophore bacillibactin (BB) to acquire iron.
     In this study, we isolated a series of siderophore producing bacteria from the rhizosphere soil of the rubber trees in Hainan Island by CAS agar plate assay, and CAS15, which produced distinct orange halo at CAS agar plate and had strong antagonism to common plant pathogens, was selected for the following studies. We amplified the siderophore producing gene dhbC and expressed it in E.coli, and then verified the function of dhbC by delecting it and retransforming it into to the dhbC- mutants via the homologous recombination method. The results of this study will provide the basis for the exploitation and utilization of the siderophore producing microorganisms and the study of the mechanism of their biological control, and provide a new way for the biological control of the plant diseases. The main results and conclusions are as follows.
     According to the characteristics of morphological, cultural, physiological and biochemical, CAS15 was identified as Bacilllus primarily. 16S rDNA sequence analysis result showed that the 16S rDNA sequence of CAS15 shared 99.4% identity with that of Bacillus subtilis. The genetic distance were closest between the 16S rDNA of CAS15 and that of Bacillus subtilis (accession No. DQ207730 and EU047884) and Bacillus sp.(accession No. AB188212), they are located at the same branch of the constructed phylogenetic tree, thus, CAS15 was identified as Bacillus subtilis.
     The type of siderophore produced by CAS15 and the siderophore productivity were analyzed by ESI-MS assay and DHB(G) assay respectively. The results showed that the siderophore produced by CAS15 was catecholic siderophore 2,3-dihydroxybenzoate-glycine- threonine trimeric ester bacillibactin, with the calculated mass of 881.25, and the siderophore productivity was significantly inhibited by iron. The inhibition was stronger with the higher concentration of iron. When there was no FeCl3, the OD510/OD600 value is 0.10~0.39, when there was 5μmol/L FeCl3 in the medium, the OD510/OD600 value is 0.005~0.04, while when there was 50μmol/L FeCl3 in the medium, the OD510/OD600 value is 0.001~0.01.
     The influencing factors for the siderophore production of CAS15 were studied, the results showed that modified minimal medium (MM) was the optimal medium for CAS15 siderophore production, and when cultured at pH7.2 and 37℃with glucose as the carbon source and tryptophan as the exogenous nitrogen source, a high yield of siderophore was obtained from the culture broth of CAS15, which indicated that the up-mentioned culture condition was benefit for CAS15 siderophore production.
     The antagonism of CAS15 against the common plant fungal pathogens was studied by the duel-culture test, the result showed that CAS15 had strong antagonism against the 15 selected fungal pathogens, with the inhibition width of 6~10 mm. Then the inhibiton of the cell-free supernatant of CAS15 was studied, the result showed that the cell-free supernatant of CAS15 significantly inhibited the growth of the 15 pathogens significantly, with the inhibiting rate of 20.18%~94.07%, which indicated that CAS15 had wide range of antagonistivity against plant fungal pathogens.
     Then we study the promotion of CAS15 cell-free supernatant on the seed germination of cucumber, the result showed that 100×and 1000×dilution promoted the growth of cucumber seedling significantly, and 100×dilution had the best effect. The result of inoculation in vitro showed that the cultured broth of CAS15 inhibited the mango anthracnose effectively by decreasing 53.34% of the disease index than the control, and the prevention rate was 78.95%, which indicated that CAS15 had great potential in plant growth promotion and biological control.
     A pair of specific primers were designed based on the reported genomic sequence of Bacillus subtilis, and then a 1197 bp fragment of CAS15 dhbC was amplified by PCR. CAS15 dhbC was predicted to encode a 43.8 kDa polypeptide with 398 amino acid residues. The BLASTn result showed that the nucleotide acids of dhbC gene (accession No.FJ194456) of CAS15 shared 99.74% and 99.58% identity with that of dhbC gene of B.subtilis subsp. subtilis str.168 (accession No. Z99120.2) and Bacillus subtilis subsp. subtilis str. NCIB 3610 (accession No. NZ_ABQL01000005.1) repectively. There were only 4- and 5-base difference in nucleotide sequence and 2- and 3-residue difference in amino acid sequence with that of Bacillus subtilis strain 168 and NCIB 3610 respectively.
     The structure analysis and prediction of DhbC encoded by CAS15 dhbC was studied by network (http://www.expasy.org), the results showed that the protein encoded by CAS15 dhbC was a acidic polypeptide, with the theoretical PI of 5.30. The instability index of DhbC was computed to be 53.00, which classified the protein as unstable. The Grand average of hydropathicity (GRAVY) is -0.303. The total number of negatively charged residues (Asp + Glu) and positively charged residues (Arg + Lys) of DhbC was 57 and 39 respectively, and its formula was C1910H3039N545O592S12, with a total number of 6098 atoms. DhbC contains 5 protein kinase C phosphorylation sites, 6 casein kinaseⅡphosphoralylation sites, 1 tyrosine kinase phosphorylation site and 2 N-myristorylation sites. According to its unstability, DhbC could form 3 3D structures by 14-394, 122-397 and 69-393 amino acids.
     The gene fragment of CAS15 dhbC was ligated to expression vector pET-30a(+) and then transformed into E.coli BL21(DE3) by calcium chloride transformation method, and the recombinant E.coli BL21(DE3)/pET-30a-dhbC was obtained. The recombinant DhbC of 48.8 kDa was exressed mainly in soluble form via 1 mmol/L IPTG induction in E.coli, and the amount reached highest at 30℃for 4 h. According to the N-terminal fusion 6 His-tag, the recombinant protein was purified by Ni2+ metal affinity chromatography and then identified by western blot, the result showed that the recombinant DhbC had the antigenicity to rabbit anti-his-tag polyclonal antibody.
     Finally, CAS15 dhbC gene was deleted by gene knockout and dhbC gene-delected mutant (CAS15 dhbC-del) was obtained. Then the dhbC gene was retransformed into the CAS15 dhbC-del via homologus recombination, and dhbC gene-comlemented mutant (CAS15 dhbC-com) was obtained. The function of siderophore production was tested at CAS agar plate, the result showed that CAS15 dhbC-com could produce the distinct orange halo at CAS agar plate as CAS15, while CAS15 dhbC-del could not, which indicated that dhbC gene was directly related to the siderophore production and it was confirmed to play an important role in the siderophore biosynthesis of CAS15.
引文
1.曹慧,韩振海,许雪峰,等.植物生理学通讯,2002,38(2):180-186
    2.陈绍兴.细菌铁载体检测方法.红河学院学报,2005,3(6):16-18
    3.程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报,2003, 25(5):732-737
    4.邓泽明,胡美姣,杨凤珍,等.阿米西达对芒果炭疽病的防治.热带作物学报,2003, 24(3):42-43
    5.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001,353-385
    6.杜玉梅,左正宏.基因功能研究方法的新进展.生命科学,2008,20(4):589-592
    7.方中达.植病研究方法.北京:中国农业出版社,1998,152,182
    8.郭世伟,邹春琴,江荣凤,等.提高植物体内铁再利用效率的研究现状及进展.中国农业大学学报,2000,5(3):80-86
    9.郭予元.我国植物保护科学研究现状和21世纪的发展展望.植物保护21世纪展望论文集.北京:中国科学技术出版社,1998,3-8
    10.黄丽丹,陈玉惠.生防菌及相关生物技术在植物病害防治中的应用.西南林学院学报,2006,26(1):85-89
    11.黄伟红,丁延芹,姚良同,等.Pseudomonas mosselii E1铁载体合成相关基因cysⅠ的克隆与功能初步分析.微生物学报,2007,47(5):910-913
    12.黄晓东,季尚宁,Glick B,等.植物促生菌及其促生机理.现代化农业,2002,(7):7,13-15
    13.黄小光,徐志宏,邝哲师,等.香蕉枯萎病拮抗菌筛选试验.广东农业科学,2006(11):96-99
    14.黄玉杰,杨合同.植物病害生物防治菌的改良技术及产业化.山东科学,2006,19(6):35-39
    15.贾艳华,孙钒,庞义.获得四环素抗性的温敏同源重组载体质粒pRNT15的构建.中山大学学报(自然科学版).2008,47(5):81-85
    16.李俊峰.有益菌A18菌株铁载体的研究和铁吸收调节蛋白(Fur)基因的克隆和表达.中国海洋大学博士研究生学位论文,2005
    17.梁建根,吴吉安,竺利红,等.杭州地区黄瓜猝倒病菌产嗜铁素拮抗菌的筛选与评价.中国农学通报,2006,22(11):318-322
    18.刘杰,房春红,李琬,等.同源重组法构建枯草芽孢杆菌224 yugS基因缺失突变株.生物技术通报,2007,4:148-151
    19.刘廷辉.欧文氏杆菌铁代谢相关基因生物信息学分析.河北农业大学硕士毕业论文,2006
    20.刘先俊,刘方欣,黎波,等.胸腺素α1与复合α干扰素融合蛋白的表达及其生物学活性.生物工程学报,2008,24(7):1168-1173
    21.莫小丹,王勇军,王琦,等.蜡样芽孢杆菌905铜锌超氧化物歧化酶基因的克隆及原核表达.农业生物技术学报,2008,16(3):521-525
    22.彭其安,张西峰,吴思方,等.同源重组法构建枯草芽孢杆菌转酮酶缺失突变菌株.生物技术,2006,16(6):23-26
    23.谭周进,肖罗,谢丙炎,等.假单胞菌的微生态调节作用.核农学报,2004,18(1):72-76
    24.彭埃天,宋晓兵,凌金峰,等.香蕉枯萎病菌4号生理小种分子检测与枯萎病生物防治研究进展.果树学报,2009,26(1):77-81
    25.田方,丁延芹,朱辉,等.烟草根际铁载体产生菌G-229-21T的筛选、鉴定及拮抗机理.微生物学报,2008,48(5):631-637
    26.童晓茹,王学翠,温学森,等.植物叶片真菌病害生物防治的研究进展.山东科学,2008,21(1):41-46
    27.万海英.基因敲除技术现状及应用.医学分子生物学杂志.2007,4(1):86-90
    28.王光亮,于金友,石玉萍,等.植物病害生物防治研究进展.山东农业科学,2004,4:75-77
    29.王进强,吴刚,许文耀.植物病害生防制剂的研究进展.福建农林大学学报,2004,33(4):448-452
    30.王平,董飚,李阜棣,等.小麦根圈细菌铁载体的检测.微生物学通报,1994,21(6):323-326
    31.吴乃虎.基因工程原理(第二版).北京:科学出版社,2001,pp:117-119
    32.肖爱萍,游春平,梁关平,等.香蕉枯萎病拮抗菌的筛选及其作用机制研究.植物保护,2006,32(4):53-56
    33.徐美娜,王光华,靳学慧.土传病害生物防治研究进展.吉林农业科学,2005,30(2):39-42
    34.许煜泉,高虹,童耕雷,等.假单胞菌株JKD-2分泌铁载体抑制稻瘟病菌.微生物学通报,1999,26(3):180-183
    35.许煜泉,张彦,俞吉安,等.一株拮抗稻瘟病菌的产荧光假单胞杆菌.上海交通大学学报,1998,32(3):111-115
    36.杨频,高飞.生物无机化学.北京:科学出版社,2002,84
    37.印莉萍,祁晓廷,刘祥林等.缺铁诱导玉米根cDNA文库的构建及铁胁迫基因(fdr3)的筛选和鉴定.科学通报,2000,45:44-48
    38.印莉萍,孙铭明,刘祥林,等.铁转运机制与相关基因的研究进展.植物学通报,1999,16(6):642-647
    39.于素芳,丁延芹,姚良同,等.一株花生根际铁载体产生菌的分离鉴定及耐药性分析.生物技术通讯,2008,19(5):701-703
    40.余志强,杨明明,杨朝霞,等.同源重组法构建枯草杆菌spoO A基因缺失突变株.武汉大学学报(理学版),2004,50(2):229-233
    41.张宝中,冉多良,刘大斌,等.利用DREAM设计和同源重组进行一步定点突变.中国生物工程杂志,2008,28(11):77-81
    42.张兵兵,江鹏,鲜成玉,等.力生长因子在大肠杆菌中的表达及活性分析.生物工程学报,2008,24(7):1180-1185
    43.张力平,吴平.水稻亚铁胁迫诱导ADH的基因定位及其遗传分析.遗传学报,1999,26(4):359-362
    44.赵翔,陈绍兴,谢志雄,等.高产铁载体荧光假单胞菌Pseudomonas fluirescens sp-f的筛选鉴定及其铁载体特性研究.微生物学报,2006,46(5):691-695
    45.周建光,洪鑫,黄翠芬.重组工程及其应用.遗传学报,2003,30(10):983-988
    46.朱昌雄,孙东园,蒋细良.我国微生物农药产业化标准及产业化对策研究.现代化工,2004,24(3):6-10
    47. Arora N.K., Kang S.C., Maheshwari D,K. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against macrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci., 2001, 81(6):673-677
    48. Arshad M., Frankenberger W.T.J. Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv.Agron., 1998, 62:146-151
    49. Asirvathan A.J., Gregorie C.J., Hu Z.H., et al. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol.Immunol., 2008, 45(7): 1995-2006
    50. Awaya J.D., DuBois J.L. Identification, isolation, and analysis of a gene cluster involved in iron acquisition by Pseudomonas mendocina ymp. BioMetals, 2008, 21(3):353-366
    51. Baakza A., Vala A.k., Dava B.P., et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J.Exp.Mar.Biol.Ecol., 2004, 311:1-9
    52. Backhout T.J., Luster D.G., Chaney R.L. Iron-stress induced redoxactivity in tomato (Lycopersicon esculent um M.) is localized on the plasma memberance. Plant Physiol., 1989, 90:151-156
    53. Barona-Gómez F., Lautru S., Francou F.X., et al. Multiple biosynthetic and uptake systems mediated siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology, 2006, 152:3355-3366
    54. Berg G., Krechel A., Ditz M., et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol.Ecol., 2005, 51(2):215-229
    55. Berraho E.L., Lesueur D., Diem H.G., et al. Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J.Microbiol. Biotech., 1997, 13:501-510
    56. Bienfait H.F., Bino A.M., Bliek J.F., et al. Characterization of ferric reducing activity in roots of Fe-deficient phaseolus valgaris. Physiol.Plant, 1983, 59:196-202
    57. Bienfait H.F. Regulated redox process at the plasmalemma of plant root cells and their function in iron uptake. J.Bioenerg.Biomember, 1985, 17:73-83
    58. Bienfait H.F., Weger L.A., Kramer D. Control of the development of iron-efficient reaction in potato as a response to iron deficiency is located in the roots. Plant Physiol., 1987, 83:244-247
    59. Bienfait H.F. Prevention of stress in iron metabolism of plants. Act.Bot.Neerl., 1989, 3: 105-129
    60. Blaylock A., Jolley V.D., Brown J.C., et al. Iron-stress response mechanisms and iron uptake in iron-efficient and inefficient tomatoes and soybean treated with cobalt . J. Plant.Nutr., 1985, 8:1-14
    61. B?lker M., Basse C.W., Schirawski J. Ustilago maydis secondary metabolism—from genomics and biochemistry. Fungal Genet.Biol., 2008, 45:588-593
    62. Bsat N., Helmann J.D. Interaction of Bacillus subtilis Fur (Ferric Uptake Repressor) withthe dhb operator in vitro and in vivo. J.Bacteriol., 1999, 181(14):4299-4307
    63. Bsat N., Herbig A., Casillas-Martinez L., et al. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol.Microbiol., 1998, 29(1):189-198
    64. Brown J.C., Chaney R.L., Ambler J.E. A new tomato mutant inefficient in the transport of iron. Physiol.Plant, 1971, 25:48-53
    65. Brüggemann W., Moog P.R., Nakagawa H., et al. Plasma membrane-bound NADH: Fe3+- EDTA reductase and iron deficiency in tomato (Lycopoersicon esculentum), Is there a Turbo reductase? Physiol.Plant, 1990, 79:339-346
    66. Boukhalfa H., Crumbliss A.L. Chemical aspects of siderophore mediated iron transport. BioMetals, 2002, 15:325-339
    67. Bryant S.H., Lawrence C.E. An empircal energy function for threading protein sequence through the folding motif. Proteins, 1993, 16:92-112
    68. Calugay R.J., Takeyama H., Mukoyama D., et al. Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J.Biosci.Bioeng., 2006, 101(5):445-447
    69. Cendrowski S., MacArthur W., Hanna P. Bacillus anthracis requires siderophores biosynthesis for growth in macrophages and mouse virulence. Mol.Microbiol., 2004, 51(2):407-417
    70. Chen K.F., Lai Y.Y., Sun H.S., et al. Repression of human CAD gene by hypoxia inducible factor-1{α}. Nucleic Acids Res., 2005, 33(16):5190-5198
    71. Chen L., Dick W.A., Streeter J.G. Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization. J.Plant Nutr., 2000, 23(11-12): 2047-2060
    72. Chen L., James L.P., Helmann J.D. Metalloregulation in Bacillus subtilis: Isolation and characterization of two genes differentially repressed by metal ions. J.Bacteriol., 1993, 175(17):5428-5437
    73. Clark R.B., Zeto S.K. Mineral acquisition by mycorrhizal mazie grown on acid and alkaline soil. Soil Biol. Biochem., 1996, 28:1495-1503
    74. Cohen C.K., Fox T.C., Garrin D.F., et al. The role of iron-deficiencystress responses in stimulating heavy-metal transport in plants. Plant Physiol., 1998, 116:1063-1072
    75. Combet C., Jambon M., Deléage G., et al. Geno3D:automatic comparative molecular modelling of protein. Bioinformatics, 2002, 18:213-214
    76. Cress W.A., Johnson G.V., Barton L.L. The role of endomycorrhizal fungi in iron uptakeby Hillaria jamesii. J.plant Nutr., 1986, 9:547-556
    77. Cromack K., Sollins P.L. Calciumoxalate accumlation and soil weathering in mats of the hypogenous fungus Hysterangi umcrassum. Soi1 Bio.Biochem.,1979, 11:463-468
    78. Crosa J.H., Walsh C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol.Mol.Biol.Rev., 2002, 66(2):223-249
    79. Crowley D.E., Wang Y.C., Reid C.P.P, et al. Mechanism of iron acquisition from siderophores by microorganisms and plants. ChnY, Hadar Y(ed). Iron nutrition and interaction in plants. Dordrecht:Kluwer,1991, pp:213-232
    80. Deryl M., Skorupska A. Rhizobial siderophore as an iron source for clover. Physiol.Plant, 1992, 85:549-553
    81. Dertz E.A., Stintzi A., Raymond K.N. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. J.Biol.Inorg.Chem., 2006, 11:1087-1097
    82. Dhungana S., Michalczyk R., Boukhalfa H., et al. Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. BioMetals, 2007, 20:853-867
    83. Drechsel H., Freund S., Nicholson G., et al. Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. BioMetals, 1993, 6:185- 192
    84. Duijff B.J., Meijeran J.W., Bakker P.A.H.M., et al. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth.J.Pl.Path., 1993, 99:277-289
    85. Eide D., Fett J., Guerinot M.L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast.Proc.Natl.Acad.Sci.USA, 1996, 93:5624- 5628
    86. Ekhard E., Ziegler L.现代营养学.闻芝梅译.北京:人民卫生出版社, 1999, 267
    87. Expert D., Sauvage C., Neilands J.B. Negative transcriptional control of iron transport in Erwinia chrysanthemi involves an iron-responsive two-factor system. Mol.Microbiol., 1992, 6(14):2009-2017
    88. Fadeev E.A., Luo M., Groves J.T. Synthesis and structural modeling of the amphiphilic siderophore rhizobactin-1021 and its analogs. Bioorg.Med.Chem.Lett., 2005, 15:3771- 3774
    89. Farkas E., Bátka D., Kremper G., et al. Structure-based differences between the metal ion selectivity of two siderophores desferrioxamine B (DFB) and desferricoprogen (DFC):why DFC is much better Pb(Ⅱ) sequestering agent than DFB? J.Inorg.Biochem., 2008, 102:1654-1659
    90. Fetrow J.S., Bryant S.H. New programs for protein tertiary structure prediction. Bio/ Technology, 1993, 11:479-484
    91. Fire A., Xu S.Q., Montgomery M.K., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegants. Nature, 1998, 391(6669):806-811
    92. Franza T., MahéB., Expert D. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol.Microbiol., 2005, 55(1):261-275
    93. Franza T., Sauvage C., Expert D. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the fur repressor protein. MPMI, 1999, 12(2):119-128
    94. Friedman Y.E., O’Brian M.R. A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum. J.Biol.Chem, 2003, 278(40):38395- 38401
    95. Gaballa A., Antelmann H., Agrilar C., et al. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc.Natl.Acad. Sci.USA, 2008, 105(33):11927-11932
    96. Gaballa A., Helmann J.D. Substrate induction of siderophore transport in Bacillus subtilis mediated by a novel one-component regulator. Mol.Microbiol., 2007;66(1):164-173
    97. Gasteiger E., Hoogland C., Gattiker A., et al. A Protein Identification and Analysis Tools on the ExPASy Server. (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005, pp:571-607
    98. Govender V., Korsten L., Dharini S. Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharv.Biol. Techn., 2005, 38(1):57-65
    99. Grosjean H., Fiers W. Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in effectively expressed genes. Gene, 1982, 18:199-209
    100.Grusak M.A., Welch R.M., Kochian L.V. Physiological characterization of a signal-gene mutant of Pisum sativum exhibiting excessiron accumulation. I Root iron reduction and iron uptake. Plant Physiol., 1990, 93:976-981
    101.Grusak M.A., Pezeshgi S. Shoot-to-root signal transmission regulates root Fe3+ reductase activity in the dgl mutant of pea. Plant Physiol., 1996, 110:329-334
    102.Guerinot M.L. Iron uptake and metabolism in the rhizobia/legume symbioses. Plant Soil,1991, 130:199-209
    103.Guerinot M.L.Microbial irontransport. Annu.Rev.Microbial., 1994, 48:743-772
    104.Guerinot M.L., Yi Y. Iron: nutritious, noxious, and not readily available. Plant Physiol., 1994, 104:815-820
    105.Haas D., Défago G. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Rev.Microbiol., 2005, doi:10.1038/nrmicro1129
    106.Halfeld-Vieira B.A., Vieira Júnior J.R., Silva Romeiro R., et al. Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesq.Agropec.Bras., 2006, 41(8):1247-1252
    107.Hallmann A., Rappel A., Sumper M. Gene replacement by homologous recombination in the multicellular green alga Volvos carteri. Proc.Natl.Acad.Sci.USA, 1997, 94:7469-7474
    108.Han J.J., Lee Y., Yeom K.H., et al. Molecular basis for the recognition of primary microRNAs by the drosha-DGCR8 complex. Cell, 2006, 125:887-901
    109.Han Z.H., Shen T., Korcak R.F., et al. Iron absorption by iron-efficient and inefficient species of apples. J.Plant.Nutr., 1998, 21:181-190
    110.Harvie D.R., Vílchez S., Steggles J.R., et al. Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology, 2005, 151:569-577
    111.Harvie D.R., Ellar D.J.A. Ferric dicitrate uptake system is required for the full virulence of Bacillus cereus. Curr.Microbiol., 2005, 50:246-250
    112.Higuchi K., Kanazawa K., Nishizawa N.K., et al. Purification and characterization of nicotianamine system from Fe-deficient barley root. Plant Soil, 1994, 165:173-179
    113.Hofte M. Survival and root colonization of mutants of plant growth-promoting pseudomonads affected in siderophore biosynthesis or regulation of siderophore production. J.Plant.Nutr., 1992, 15:2253-2262
    114.Holden M.J., Luster D.G., Chaney R.L., et al. Fe3+-chelate reductase activity of plasma membranes isolated from tomato ( L ycopersicon esculent um Mill) roots. Plant Physiol., 1991, 97:537-544
    115.Holden M.J., Luster D.G., Chaney R.L. Enzymatic iron reduction at the root plasma membrane: Partial purification of the NADH-Fe chelate reductase. In:Manthey J, Luster D, Crowley DE (eds) . Biochemistry of Metal Micronutrients in the Rhizosphere.Chelsea MI, USA:Lewis Publishers, 1994, pp:284-294
    116.Huggins C.E., Domenighetti A.A., Ritchie M.E., et al. Functional and metabolic remodeling in GLUT4- deficient hearts confers hyper-responsiveness to substrate intervention. Mol.Cell.Cardiol., 2008, 44(2):270-280
    117.Hulo N., Bairoch A., Bulliard V., et al. The 20 years of prosite. Nucleic Acids Res., 2007, 35:1-5
    118.Johnson L. Iron and siderophores in fungal-host interactions. Mycol.Res, 2008, 112:170- 183
    119.Jones A.M., Lindow S.E., Wildermuth M.C. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. Tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J.Bacteriol. 2007, 189(19):6773-6786
    120.Jones D.T., Thornton J.M. Poteintial energy functions for threading. Curr.Opin.Struct. Biol., 1996, 6:210-216
    121.Jones M.D., Durall D.M., Tinker P.B. Phosphorus relationship and production of extra- metrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol., 1990, 115:259-267
    122.Karin S., Taraz K., Budzikiewicz H. The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. BioMetals, 2004, 17:409-414
    123.Khalid A., Arshad M., Zahir Z.A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J.Appl.Microbiol., 2004, 96:473–480.
    124.Khan A.G., Keuk C., Chaudhry T.M., et al. Role of plants, mycorrhizae and phyto- chelators in heavy metal contaminated land remediation. Chemosphere, 2000, 41:197-207
    125.Kloepper J.W., John L., Teintze M. Enhanced plant growth by siderophore produced by plant growth- promoting rhizobacteria. Nature, 1980, 286:885-886
    126.Koga Y., Matsuzaki A., Suminoe A., et al. Expression of cytokine-associated genes in dendritic cells (DCs): Comparison between adult peripheral blood- and umbilical cord blood-derived DCs by cDNA microarray. Immunol.Lett., 2008, 116(1):55-63
    127.Konetschny-Rapp S., Jung G., Meiwes J., et al. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur.J.Biochem., 1990, 191:65-74
    128.Koppisch A.T., Brower C.C., Moe A.L., et al. Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. BioMetals, 2005, 18:577-585
    129.Krek A., Grun D., Wolf R., et al. Combinatorial microRNA target predictions. Nat. Genet., 2005, 37(5):495-500
    130.Kunst F., Ogasawara N., Moszer I., et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390:249-256
    131.Lambert D.H., Baker D.E., Cole H.J. The role of mycorrhizae in the interactions ofphosphorus with zinc, copper and other elements.Soil.Sci.Soc.Am.J., 1979, 43:976-980
    132.Landsberg E.C. Fe-stress induced transfer cell formation-regulated by auxin? Plant Physiol., 1981, 67 (suppl.) :563-568
    133.Landsberg E.C. Regulation of iron stress response by whole-plant capacity. J.Plant.Nutr., 1984, 7:609-621
    134.Lau J., Tran C., Licari P., et al. Development of a high cell density fed-back bioprocess for the heterologous production of 6-deoxyerythronolide B in E.coli. J.Biotech., 2004, 110:95-103
    135.Lee J.Y., Janes B.K., Passalacqua K.D., et al. Biosynthetic analysis of petrobactin siderophore pathway from Bacillus anthracis. J.Bacteriol., 2007, 189(5):1698-1710
    136.Lee L., Walsh P., Prater C., et al. Characterization of an autoantigen associated with chronic uncerative stomatitis: The CUSP autoantigen is a member of the P53 family. J. Invest.Dermatol., 1999, 113(2):146
    137.Leslie A.D., Daneshfar R., Volmer D.A. Infrared multiphoton dissociation of the sidero- phore enterobaction and its Fe(Ⅲ) complex. Influence of Fe(Ⅲ) binding on dissociation kinetics and relative energetics. J.AM.Soc.Mass Spectrom., 2007, 18:632-641
    138.Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1):15-20
    139.Li J.F., Chi Z.M., Li H.F. Characterization of a mutant of Alteromonas aurantia A18 and its application in Mariculture. J.Ocean Univ.Chin., 2008, 7(1):55-59
    140.Li X.L., Geoege E., Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil inter-faces of VAMwhite clover fertilized with ammonium. New Phytol., 1991, 119:397-404
    141.Lindsay W.L., Schwab A.P. The chemistry of iron in soils and its availability to plants. J. Plant Nutr., 1982, 7:135-147
    142.Lowe C.A., Asghar A.H., Shalom G., et al. The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. Microbiology, 2001, 147: 1303-1314
    143.Lupas A., Van Dyke M., and Stock J. Predicting Coled Coils from Protein Sequences. Science, 1991, 252:1162-1164
    144.Machuca A., Milagres A.M.F. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett.App.Microbiol., 2003, 36:177-181
    145.Manthey J.A., Luster D.G., Crowley D.E. Biochemistry of metal micronutrients in therhizosphere. London:Lewis Publisher, 1994, pp:181
    146.Marschner R.V. Mechanism of iron uptake by peanut plants. I. Fe(Ⅲ) reduction, chelate splitting and release of phenolics. Plant Physiol., 1983, 71:949-954
    147.Masalha J., Kosegarten H., Elmaci ?., et al. The central role of microbial activity for iron acquisition in maize and sunflower. Biol.Fertils.Soils, 2000, 30:433-439
    148.Mass F.M., Van De wetering D.A.M., Van Beusichem M.L., et al. Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions. Plant Physiol., 1988, 87:167-171
    149.Masucci J.D., Schiefelbein J.W. Hormones act downstream of TTG and GL 2 to promote root hair outgrowth during epidermis development in the Arabidopsis root, Cell, 1996, 8(9):1505-1517
    150.May J.J., Wendrich T.M., Marahiel M.A. The dhb operon Bacillus subtilis encodes the biosynthetic template for the Catecholic siderophore 2,3-dihydroxybenzoate-glycine- threonine trimeric ester bacillibactin. J.Biol.Chem., 2001, 276(10):7209-7217
    151.Michel L., Bachelard A., Reimmann C. Ferripyochelin uptake genes are involved in pyochelin-mediated signaling in Pseudomonas aeruginosa. Microbiology, 2007, 153: 1508-1518
    152.Mies K.A., Gebhardt P., M?llmann U., et al. Synthesis, siderophore activity and iron (Ⅲ) chelation chemistry of a novel mono-hydroxamate, bis-catecholate siderophore mimic: Nα,-Nε-Bis[2,3-dihydroxybenzoyl]-L-lysyl-(γ-N-methyl-N-hydroxyamido)-L-glutamic acid. J.Inorg.Biochem., 2008, 102:850-861
    153.Miethke M., Klotz O., Linne U., et al. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol.Microbiol., 2006, 61(6):1413-1427
    154.Miranda-CasoLuengo R., Prescott J.F., Vázquez-Boland J.A., et al. The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth. J.Bacteriol., 2008, 190(5):1631-1637
    155.Moog P.R., Brggemann W. Iron reductase systems on the plant plasma membrane: A review. Plant Soil, 1994, 165:241-260
    156.Mori S. Reevaluation of the genes induced by iron deficient in barely roots. In : Ando T, Mori S (eds). Plant Nutrition-for Sustainable Food Production and Environment. The Netherlands :Kluwer Academic Publishers, 1997, pp:249-254
    157.Mount D.W. Bioinformatics:sequence and genome analysis(second edition). New York, USA: Cold Spring Harbor Laboratory Press, 2006, pp:353-430
    158.Najimi M., Lemos M.L., Osorio C.R. Identification of siderophore biosynthesis genes essential for growth of Aeromonas salmonicida under iron limitation conditions. Appl. Environ.Microbiol., 2008, 74(8):2341-2348.
    159.Nord A.S., Chang P.J., Conklin B.R., et al. The international gene trap consortium website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res., 2006, 34(Database issue):D642-648
    160.Obagwu J., Korsten L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hotwater. Postharv.Bio.Tech., 2003, 28:187-194
    161.Oberegger H., Zadra I., Schoeser M., et al. Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem.Soc.Trans., 2002, 30(4):781-783
    162.Ollinger J., Song K.B., Antelmann H., et al. Role of the Fur regulon in iron transport in Bacillus subtilis. J.Bacteriol., 2006, 188(10):3664-3673
    163.Osorio C.R., Juiz-Río S., Lemos M.L. A siderophore biosynthesis gene cluster from the fish pathogen Photobacterium damselae subsp. Piscicida is structurally and functionally related to the Yersinia high-pathogenicity island. Microbiology, 2006, 152:337-3341
    164.Pacovesky R.S., Fuller G. Mineral and lipid composition of Glycine-Glomus- Bradyrhizobium symbioses. Physiol.Plant, 1988, 72:733-746
    165.Park R.Y., Choi M.H., Sun H.Y., et al. Production of catechol-siderophore and utilization of transferrin-bound iron in Bacillus cereus. Biol.Pharm.Bull., 2005, 28:1132-1135
    166.Patino-Vera M., Jimenez B., Balderas K., et al. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. App.Microbiol., 2005, 99(3):540-550
    167.Paul D., Sarma Y.R. Rhizospheric Pseudomonas fluorescens enhances piperine production in Piper nigrum, a possible means of biochemical defence against Phytophthora capsici. Arch.Phytopathol.Plant Protect., 2006, 39(1):33-37
    168.Peitsch M.C. ProMod and SWISS-MODEL:Internet-based tools for automated comparative protein modelling. Biochem.Soc.Trans., 1996, 24:274-279
    169.Peters W.J., Warren R.A.J. Itoic acid synthesis in Bacillus subtilis. J.Bacteriol., 1968(a), 95: 360-366
    170.Peters W.J., Warren R.A.J. Phenolic acids and iron transport in Bacillus subtilis. Biochim. Biophys.Acta, 1968(b), 165:225–232
    171.Pfleger B.F., Lee J.Y., Somu R.V., et al. Characterization and Analysis of Early Enzymesfor Petrobactin Biosynthesis in Bacillus anthracis. Biochemistry, 2007, 46(13), 4147- 4157
    172.Pollard A.M., Scherbinske S.E., Nichols W.A. The tonB gene of Haemophilus parainfluenzae demonstrates strong sequence identity with that of Haemophilus influenzae. J.App.Res., 2007, 7(1):32-38
    173.Raju P.S., Clark R.B., Ellis J.R., et al. Effects of species of VA-mycrorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil, 1990, 121: 165-170
    174.Ramos Solano B., Pereyra de la Iglesia M.T., Probanza A., et al. Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant and Soil, 2006, 287(1/2): 59-68
    175.RAN Long-xian, XIANG Miao-lian, ZHOU Bin, et al. Siderophores are the Main determinants of Fluorescent Pseudomonas in Suppression of Grey Mould in Eucalyptus urophylla. ACTA Phytopathol.Sin., 2005, 35(1):6-12
    176.Ratledge C., Dover L.G. Iorn metabolism in pathogenic bacteria. Annu.Rev.Microbial., 2000, 54:881~941
    177.Raymond K.N., Carrano C.J. Coordination chemistry and microbial iron transport. Acc. Chem.Res., 1979, 12:183-190
    178.Raymond K.N., Muller G., Matazanke B.F. Complexation of iron by siderophores : A review of their solution and structural chemistry and biologiacal function. Topics Curr. Chem., 1984, 123:49-102
    179.Rêmheld V., Marschner H. Iron deficiency induced morphological and physiological changes in root tip of Sunflower. Physiol.Plant, 1981, 53:353-360
    180.Rêmheld V. Existence of two different strategies for the acquisition of iron in higher plants. In : Winkelman G, Van der Helm D,Neilands JB (eds). Iron Transport in Microbes, Plants and Animals. Weinheim: VCH Publishers, 1987, pp:353-374
    181.Rêmheld V., Marschner H. Mobilization of iron in the rhizosphere of different plant species. Adv.Plant.Nutri., 1986, 2:155-204
    182.Rivault F., Liébert C., Burger A., et al. Synthesis of pyochelin- norfloxacin conjugates. Bioorg.Med.Chem.Lett., 2007, 17:640-644
    183.Robert R.C., Mirelle C.W. Iron transport and storage. Eur.J.Biochem., 1987,164:485-506
    184.Robinson N.J., Procter C.M., Conolly E.L., et al. A ferric-chelate reductase for iron uptake from soils. Nature, 1999, 397:694-697
    185.Robinson N.J., Sadjuda T., Groom Q.J. The froh gene family from Arabidopsis thaliana :putative iron-chelate reductases. Plant Soil, 1997, 196:245-248
    186.Romera F.J., Alcantara E., Guardia M.D. Role of roots and shoots in the regulation of the 5Fe efficiency responses in sunflower and cucumber. Physiol.Plant, 1992, 85:1141-1467
    187.Romera F.J., Alcantara E. Ethylene involvement in the regulation of deficiency responses in cucumber. Plant Physiol., 1993, 102(suppl.):63-66
    188.Romera F.J., Alcantara E. Iron-deficiency stress responses in cucumber (Cucumis stativ us L.) Roots—A possible role for ethylene? Plant Physiol., 1994, 105:1133-1138
    189.Rossi J.J. Ribozyme therapy for HIV infection. Adv.Drug.Deliv.Rev., 2000,44(1):71-78
    190.Rost B. PHD:Predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol., 1996, 266:525-539.
    191.Rost B., Sander C., Schneider R. PHD:A mail server for protein secondary structure prediction. CABIOS, 1994, 10:53-60
    192.Rost B., Yachdav G., Liu J. The PredictProtein Server. Nucleic Acids Res., 2004, 32 (Web Server issue):W321-W326
    193.Rousseau J.V.D., Sylvia D.M., Fox A.J. Contribution of ectomycorrhiza to the potential nutrient absorbing surface of pine in pure culture. Agric.Ecosys.Environ., 1994, 28:421- 424
    194.Rowland B., Grossman T., Osburne M., et al. Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene, 1996, 178:119-123
    195.Rowland B., Hill K., Miller P., et al. Structural organization of a Bacillus subtilis operon encoding menaquinone biosynthetic enzymes. Gene, 1995, 167:105-109
    196.Rowland B., Taber H. Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of Menaquinone and 2,3-Dihydroxy- benzoate. J. Bacteriol., 1996, 178(3):854-861
    197.Rroco E., Kosegarten H. The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur.J.Agron., 2003, 19:487-493
    198.Sambrook J., Russel D.W.著.黄培堂等译.分子克隆实验指南(第三版).北京:科学出版社, 2002
    199.Sayyed R.Z., Chincholkar S.B. Purification of siderophores of Alcaligenes faecalis on Amberlite XAD. Bioresource Technol., 2006, 97(8):1026-1029
    200.Schmidt W. Root-mediated ferric reduction responses to iron deficiency exogenous sly induced changes in hormonal balance and inhibition of protein synthesis. J.Exp.Bot.,1994, 45:725-731
    201.Schmidt W., Yittel J., Schikora A. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol., 2000, 122:1109-1118
    202.Schrettl M., Bignell E., Kragl C., et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J.Exp.Med., 2004, 200(9): 1213-1219
    203.Schrettl M., Bignell E., Kragl C., et al. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathogens, 2007, 3(9):e128, doi:10.1371/journal.ppat.003128.
    204.Schwyn B., Neilands J.B. Universal chemical away for the detection and determination of siderophores. Anal.Biochem., 1987, 160(1): 47-56
    205.Shenker M., Oliver I., Helman M., et al. Utilization by tomatoes of iron mediated by a siderophores produced by rhizopus arrhizus. J.Plant.Nutr., 1992, 15:2173-2182
    206.Shimkets R.A., Lowe D.G., Tai J.T., et al. Gene expression analysis by transcript profiling coupled to a gene database query. Nat.Biotechnol., 1999, 17(8):798-803
    207.Shitara S., Kakeda M., Nagata K., et al. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector. Biophys.Res. Commun., 2008, 369(3):807-811
    208.Shojima S., Nishizawa N.K., Fushiya S., et al. Biosynthesis of phytosiderophores. Plant Physiol., 1990, 93:1497-1503
    209.Siebner-Freibach H., Hadar Y., Chen Y. Siderophores sorbed on Ca-montmorillonite as an iron source for plants. Plant Soil, 2003, 251:115-124
    210.Silimela M., Korsten L. Evaluation of preharvest Bacillus licheniformis sprays to control mango fruit diseases. Crop Protect, 2007, 26:1474-1481
    211.Smith K.G., Reed D.J. Mycorrhizal symbosis.London:Academic Press, 1997, pp:589-590
    212.Soengas R.G., Anta C., Espada A., et al. Structural characterization of vanchrobactin, a new catechol siderophore produced by the fish pathogen Vibrio anguillarum serotype O2. Tetrahedron Lett., 2006, 47:7113-7116
    213.Soengas R.G., Anta C., Espada A., et al. Vanchrobactin: absolute configuration and total synthesis. Tetrahedron Lett., 2007, 48:3021-3024
    214.Soerensen K.U., Twrry R.E., Jolley V.D., et al. The interaction of iron-stress response and root nodules in iron efficient and inefficient soybeans. J.Plant.Nutr., 1988,11:853-865
    215.Soerensen K.U., Twrry R.E., Jolley V.D., et al. Iron-stress response of inoculated and non-inoculated roots of an iron inefficient soybean cultivar in split-root system. J.PlantNutr., 1989, 12:437-447
    216.Spinella D.G., Bernardino A.K., Redding A.C., et al. Tandem arrayed ligation of expressed sequence tags (TAL EST): a new method for generating global gene expression profiles. Nucleic Acids Res., 1999, 27(18):e22
    217.Srinivasan G., James C.M., Krzycki J.A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science, 2002, 296(5572):1459-1462
    218.Stewart C.K., Li J.L., Golovan S.P. Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochem.Biophys.Res.Commun., 2008, 370(1): 113-117
    219.Stirrett K.L., Ferreras J.A., Jayaprakash V., et al. Small molecules with structural similarities to siderophores as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorg.Med.Chem.Lett., 2008, 18:2662-2668
    220.Sung W.L., Zahab D.M., Barbier J.R., et al. Specific degenerate codons enhanced selective expression of human parathyroid hormone in Escherichia coli. J.Biol.Chem., 1991, 266(5):2831-2835
    221.Szaniszlo P.J., Powell P.E., Reid C.C.P., et al. Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia, 1981, 73:1158-1174
    222.Takagi S.C. Production of phytosiderophores. In:Barton LL,Hemming BC (eds). Iron Chelation in Plants and Soil Microorganisms. Clarendon: Academic Press Inc, Harcourt Brace Jovanovich Publishers, 1993, pp:111-130
    223.Takagi S.C., Nomoto K., Takemoto T. Physiological aspect of mugineic acid , a possible phytosiderophore of graminaceous plants. J.Plant.Nutr., 1984, 7:469-477
    224.Takizawa R., Nishizawa N.K., Nakanishi H., et al. Effect of iron deficient on S-Adensosyl-methionine synthetase in barely roots. J.Plant.Nutr., 1996, 19:1189-1200
    225.Takeuchi T. A gene trap approach to identify genes that control development. Dev. Growth Differ., 1997, 39(2):127-134
    226.Terry R.E., Hartzook A., Jolley V.D., et al. Interactions of iron nutrition and symbiotic nitrogen fixation in peanuts. J.Plant Nutr., 1988, 11:811-820
    227.Thakuria D., Talukdar N.C., Goswami C., et al. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr.Science, 2004, 86(7):978-985
    228.Toledo F., Lu C.W., Lee C.J., et al. RMCE-ASAP: a gene knockout method for ES and somatic cells to accelerate phenotype analyses. Nucleic Acids Res., 2006, 34(13):e92
    229.Uchihashi T., Kimata M., Tachikawa K., et al. Involvement of nuclear factor Itranscription/replication factor in the early stage of chondrocytic differentiation. Bone, 2007, 41(6):1025-1035
    230.Valdebenito M., Crumbliss A.L., Winkelmann G., et al. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. In.J.Med.Microbiol., 2006, 296:513-520
    231.Vandana K., Reeta G. Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation, 2004, 42:239-244
    232.Venturi V., Ottevanger C., Leong J., et al. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Mol.Microbiol., 1993, 10(1): 63-73
    233.Venturi V., Ottevanger C., Bracke M., et al. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Mol.Microbiol., 1995, 15(6):1081-1093
    234.Wang Y., Brown H.N., Crowley D.E., et al. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ., 1993, 16:579-585
    235.WHO. http://www.who. int/ nut/ ida[EB/OL]. 2001.(http://www.who.int/nutrition/topics /ida/en/)
    236.Wallace A. The effect of nitrogen fertilizer and nodulation on lime-induced chlorosis in soybeans. J.Plant Nutr., 1982, 5:363-368
    237.Willson P.J., Gerlach G.F., Klashinsky S., et al. Cloning and characterization of the gene coding for NADPH- sulfite reductase hemoprotein from Actinobacillus pleuropneumoniae and use of the protein product as a vaccine. Can.J.Vet.Res., 2001, 65(4):206-212
    238.Yamaguchi-lwai Y., Dancis A., Klausner R.D. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J., 1995, 14:1231-1239
    239.Yamaguchi-lwai Y., Stearman R., Dancis A., et al. Iron-regulated DNA binding by the AFT1 protein controls the iron regulation inyeast. EMBO J., 1996, 15:3377-3384
    240.Yehuda Z., Chen Y., Marino P.G., et al. The role of ligand exchange in the uptake of iron from microbial siderophores by graminaceous plants. Plant Physiol., 1996, 112:1273- 1280
    241.Yehuda Z., Shenker M., Hadar Y., et al. Remdy of chlorosis induced by iron deficiency in plant with the fungal siderophore rhizoferrin. J.Plant.Nutr., 2000, 23(11-12):1991-2006
    242.Yi Y., Guerinot M.L. Genetic evidence that induction of root Fe3+ chelate reductase activity is necessary for iron deficiency. Plant J., 1996, 10:835-844
    243.Youard Z.A., Mislin G.L.A., Majcherczyk P.A., et al. Pseudomonas fluorescens CHAO produces Enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J.Biol.Chem., 2007, 282:35546-35553
    244.Zeigler D.R. Bacillus genetic stock center catalog of strains (7th Edition). Vol.4: Integration vectors for Gram-positive organisms. 2003. http://www.bgsc.org/Catalogs/ Catpart4.pdf
    245.Zeng X., Zhu Y., Lu H. NBP is the p53 homolog p63. Carcinogenesis, 2001, 22(2):215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700