重金属污染土壤修复淋洗剂遴选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述和分析了重金属污染土壤的来源及危害,简要介绍了重金属污染土壤修复的国内外研究现状以及淋洗剂提取重金属的反应机理。在对重金属污染土壤修复技术进行了比较深入分析的基础上,通过模拟土壤重金属污染,探究了重金属污染土壤中重金属形态分布;通过淋洗剂浸提实验,分析了壳聚糖、柠檬酸三钠、EDTA(乙二胺四乙酸)三种淋洗剂,对铜、镍、铬三种重金属污染土壤提取效果并遴选出了适合的淋洗剂;同时应用一级动力学方程、二级动力方程、双常数模型、Elovich模型四种常用动力学模型对淋洗剂提取重金属的反应过程进行了动力学特性研究。
     通过研究得出以下主要结论:
     (1)配制的铜、镍重金属污染土样中,其可交换态、碳酸盐结合态、铁锰氧化物结合态、硫化物及有机结合态、残渣态所占重金属总含量的比重,铜分别为31.95%、7.29%、23.51%、7.05%、30.20%,镍分别为29.53%、3.46%、8.29%、1.23%、57.49%;采用重铬酸钾配制的铬污染土壤,铬主要以六价铬的形式存在,仅有微量三价铬。
     (2)对于铜污染土壤,三种淋洗剂提取效果排序为:壳聚糖>EDTA>柠檬酸三钠;反应时间对三种淋洗剂的提取率的影响均较小;随着pH值的增大,三种淋洗剂的提取率均下降,趋势很明显。
     (3)对于镍污染土壤,三种淋洗剂提取效果排序为:壳聚糖>EDTA>柠檬酸三钠;三种淋洗剂提取率均随反应时间的延长而有所提高;随着pH值的增大,壳聚糖、柠檬酸三钠的提取率均有明显下降,而pH对EDTA的提取率影响不明显,提取率稳定在31%附近。
     (4)对于铬污染土壤,三种淋洗剂提取效果排序为:柠檬酸三钠>EDTA>壳聚糖;反应时间对三种淋洗剂提取率的影响均不是很明显,提取率浮动在3%以内;pH值对EDTA、壳聚糖的提取率均无明显影响,提取率比较稳定,随着pH的升高,柠檬酸三钠对铬的提取率有小幅增长。
     (5)不同的重金属与不同的淋洗剂之间的反应适用的动力学模型并不一致,总体上四种模型的拟合度排序为:Elovich模型>双常数模型>二级动力方程>一级动力方程。但四种模型的拟合结果并不显著,这是由于淋洗剂提取污染土壤中重金属的反应是一个及其复杂的反应动力学过程,很难用现有的某一种具体动力学模型来描述。
This paper summarized and analyzed the source & harm of the heavy metal contaminated soil, briefly introduced the research situation of the remediation of heavy metal contaminated soil at home and abroad and the reaction mechanism of extracting heavy metal with eluents .Base on the deeply analysis of the technology of remediating heavy metal contaminated soil, this paper investigated the speciation distribution of heavy metal in the heavy metal contaminated soil through simulating the polluting of heavy metal on the soil.In the extraction test of eluents, with the chitosan,sodium citrate ,EDTA as eluents, the different eluents were screened from the analysis of screening effect in the soil polluted by heavy metal: cuprum ,nickel ,chrome. Then kinetic attributes of the reaction process of extracting heavy metal with eluents was investigated ,applying the 4 common kinetic models : the first-order kinetics equation ,the second-order kinetics equation,the double constant model,the kinetics model.
     The main conclusions produced through the research:
     (1) The proportion of exchangeable speciation , copperbonded to carbonates,Fe-mn oxide form ,sulfide & bound organic , residual state of cuprum and nickel in the confected heavy metal contaminated soil were 31.95%,7.29%,23.51%,7.05%,30.20% and 29.53%, 3.46%, 8.29%,1.23%,57.49%; the chromium in the potassium dichromate contaminated soil was almost hexad.
     (2) In the cuprum contaminated soil , the sequence of extraction effect was : chitosan > EDTA> sodium citrate ; the reaction time had a small effect on the extraction proportion of the 3 kinds of eluents; the trend was obvious that the extraction proportion of the 3 kinds of eluents all dropped as the value of pH increased.
     (3) In the nickel contaminated soil , the sequence of extraction effect was : chitosan > EDTA> sodium citrate ; the extraction proportion of the 3 kinds of eluents increased as the reaction time prolonged;the extraction proportion of chitosan ,sodium citrate dropped obviously as the value of pH increased, but the extraction proportion of EDTA on which the value of pH did not have a significant effect, maintained at about 31%.
     (4) In the chrome contaminated soil ,the sequence of extraction effect was : sodium citrate > EDTA>chitosan ; the reaction time did not have a significant effect on the extraction proportion of 3 kinds of eluents , the extraction proportion waved in range of 3 percentage points; the extraction proportion of EDTA on which the value of pH did not have a significant effect , kept stable.
     (5) The kinetic models applied in the reaction between different heavy metals and different eluents were different. The sequence of fitting degree of the four models general was: the Elovich model > the double constant model >the second-order kinetics equation > the first-order kinetics equation.But the fitting results of the four models were not significant. Because the reaction of extracting heavy metal in the polluted soil with eluents was a very complex reaction kinetic process, which was difficult to describe through a simple model.
引文
[1] Mcgrath S P, Zhao FJ , Lombi E. Phytoremediation of metals ,metalloids and radionuclides [J]. Adv Agron ,2002, 75: 156
    [2] Keller C, Hammer D, Kayser A, et al. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field[J ]. Plant Soil ,2003 , 249(1): 67-81
    [3]严密,杨红飞,姚婧等.马唐对Pb污染土壤的修复作用[J].土壤通报, 2007, 38(3): 549-552
    [4]王新,贾永锋.杨树、落叶松对土壤重金属的吸收及修复研究[J].生态环境2007, 16(2): 432-436
    [5] Salt D E, Smith R D, Raskin I. Annual Review of Plant Physiology and Plant Molecular Biology [J]. Phytoremediation,1998, 49: 643-668
    [6]陈亚华,李向东,刘红云等. EDTA辅助下油菜修复铅污染土壤的潜力[J].南京农业大学学报, 2002, 25(4): 15-18
    [7] Shen Z G, Li X D, Wang C C, et al. Lead phytoextraction fromcontaminated soil with high- biomass plant species[J]. Journal of EnviromentalQuality, 2002, 31: 1893-1900
    [8] Blaylock MJ, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in Indian Mustard by soil- applied chelating agents[J]. Environmental Science and Technology, 1997, 31: 860-865
    [9]杨智宽,舒俊林,刘良栋.壳糖螯合剂对Pb污染土壤植物修复的促进作用[J].农业环境科学学报, 2006, 25(1): 86-89
    [10]周建民,党志,陈能场等. NTA对玉米体内Cu Zn的积累及化学形态的影响[J].农业环境科学学报, 2007, 26(2): 453-457
    [11] Chen X,Schauder S,Potier N,et al. Structural identification of abacterial quorum–sensing signal containing boron [J]. Nature, 2002, 415: 545–549
    [12] Pace N R, Stahl D A, Lane D J, et al. The analysis of natural microbial populations by ribosomal RNA sequences [J]. ASM News, 1985, 51: 4-12
    [13] Johri A K,Dua M,Singh A,et al. Characterization and regulation of catabolic genes[J]. Critical Reviews in Microbiology, 1999, 25(4): 245–273
    [14] Sayler G S,Fleming J T, Nivens D E. Gene expression monitoring in soils by mRNA analysis and gene lux fusions [J]. Curr. Opin. Biotechnol., 2001, 12(5): 455–460
    [15] Lipski A, Friedrich U, Altendorf K. Application of rRNA–targeted oligonucleotide probes in biotechnology [J]. Appl. Microbiol. Biotechnol., 2001, 56: 40–57
    [16]孟庆恒,傅珊,张海江等.微生物在铬污染土壤中的分布及铬累积菌株的初步筛选.农业环境科学学报, 2007, 26(2): 472-475
    [17] Page M M, Page C L. Electroremediation of contaminated soils [J].Journal of Environmental Engineering, 2002, 128 (3): 208-219
    [18] Acar Y B, Alshawabkeh A N. Principle of electrokinetic remediation [J]. Environmental Science & Technology, 1993, 27(13): 2638-2647
    [19] Puppala S K, Alshawabkeh A N, Acar Y B, et al. Enhancedelectrokinetic remediation of high sorption capacity soil[J]. Journal of Hazardous Materials, 1997, 55:203-220.
    [20]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学, 2005, 25(1): 10-14.
    [21]钱暑强,金卫华,刘铮.从土壤中去除Cu2+的电修复过程[J].Journal of Chemical Industry and Engineering (China), 2002, 53 (3): 236-240
    [22] Gent D B, Bricka R M, Alshawabkeh A N, et al. Bench and field-scale evaluation of chromium and cadmium extraction by electrokinetics [J]. Journal of Hazardous Materials, 2004, 110: 53-62
    [23] Marks R, Acar Y, Gale R. Electrochemical decontamination of mixed wastes and slurries, US Patent 5458747, Washington, D.C.,October 17, 1995
    [24] Alshawabkeh A N, Bricka R M, Gent D B. Pilot-Scale Electrokinetic Cleanup of Lead-Contaminated Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 3: 283-291
    [25] Li Z M, Yu J W, Neretniek S I. A new approach to electrokinetic remediation of soils polluted by heavy metals [J]. Journal of Contaminant Hydrology, 1996, 22: 241-253
    [26] Raymond S L, Loretta Y L. Enhancement of electrokinetic extraction from lead-spiked soils [J]. Journal of Environmental Engineering, 2000, 126: 849-857
    [27] Yeung A T, Hsu C N, Menon R M. EDTA-enhanced electrokinetic extraction of lead [J]. Journal of Environment Engineering, 1996, 122(8): 666-673
    [28] Popov K, Yachmenev V, Kolosov A, et al. Effect of soil electroosmotic flow enhancement by chelating reagents [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,160: 135-140
    [29] Cox C D, Shoesmith M A, Ghosh M M. Electrokinetic remediation of mercury-contaminated soil using iodine/ iodide lixiviant [J]. Environmental Science & Technology, 1996, 30(6):1933-1938
    [30]孟凡生,王业耀.污染高岭土电动修复适宜电压研究[J].农业环境科学学报2007,26(2):449- 452
    [31]郑燊燊,申哲民,陈学军等.逼近阳极法电动力学修复重金属污染土壤.农业环境科学学报, 2007, 26(1): 240- 245
    [32]张丰如,何江.微波消解-紫外分光光度法测定水中总氮[J].分析测试学报,2006 ,25 (3) :112-114.
    [33]刘雯.微波萃取气相色谱法测定土壤中六六六、滴滴涕[J].环境科学与技术, 2005, 28(S1): 35-36
    [34] Tai Huashan ,Chih-ju G J . Immobilization of chromiu contaminated soil by means of microwave energy [ J ] . Journal of Hazardous Material s ,1999, B65: 267-275
    [35] Abramovitch R A ,Lin Changqing , Hicks E ,et al . Insitu remediation of soils contaminated with toxic metal ions using microwave energy[J]. Chemosphere, 2003, 53(9): 17-19
    [36] Chih-ju G J . An efficient technology to t reat heavy metal lead contaminated soil by microwave radiation [J]. Journal of Environmental Management ,2006 ,78(1): 124
    [37]郑庆锋.含重金属危险固体废弃物药剂稳定化处理及机理研究[D].浙江工业大学, 2003: 29-31
    [38]杨晓英,杨劲松,黄铮等.螯合剂对铅污染土壤上玉米幼苗生长及铅积累特性的影响[J].农业环境科学学报, 2007, 26(2): 482-486
    [39]钱猛,沈振国,魏岚.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究[J].农业环境科学学报, 2006, 25(1): 113-118
    [40]易秀,杨胜科,胡安焱.土壤化学与环境[M].北京:化学工业出版社, 2008: 88-98
    [41]陈满怀.土壤-植物系统中的重金属污染[M].北京:科学出版社, 1996: 78-81
    [42]国家环境保护总局编.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社, 2002: 88-284
    [43]水利部国际合作与科技司编.水利技术标准汇编水资源水环境卷分析方法[M].北京:中国水利水电出版社, 2002
    [44]陈苏,孙丽娜,晁雷等.不同浓度组合的镉、铅在不同污染负荷土壤中的吸附-解吸动力学行为[J].应用基础与工程科学学报, 2007, 15(1): 34-44
    [45]丁真真.中国农田土壤重金属污染与其植物修复研究[J].水土保持研, 2007, 14(3): 25-27
    [46] Huang J W, Chen J J, Berti W R, et al. Phytoremediation of lead- contaminated soils: role of synthetic chelates in lead phytoextraction[J]. Envrionment Science and Technology, 1997, 31(3): 800-805
    [47] Wu J, Hsu F C, Cunningham S D. Chelate- Assisited Pb phytoextration:Pb availability, uptake and translocation constraints [J]. EnvrionmentScience and Technology, 1999, 33(11): 1898-1904
    [48]姜理英,杨肖娥,石伟勇,等.植物修复技术中有关土壤重金属活化机制的研究进展[J].土壤通报, 2003, 34(2): 154-157
    [49]陈能场,陈怀满.重金属在根际中的化学行为[J].土壤学进展, 1993, (1): 9-14
    [50] Xian , X. Effect of chemical form of cadmium, zinc , and lead in polluted soil on their uptake by cabbage plants [J ] . Plant Soil ,1989, 1(13): 257-264
    [51] Szteke B, Jedrzejczak R. Influence of the environmental factors on cadmium content in strawberry fruit [J] . Fruit Sci Rep, 1989 ,16(1): 1-6
    [52]闫峰,刘合满,梁东丽等.不同土壤对Cr吸附的动力学特征[J].农业工程学报, 2008, 24(6): 21-25
    [53]吴虹霁.西南某地红壤中铯的吸附动力学研究[D].成都理工大学, 2007: 26-27
    [54] Hingston F J. A review of anion adsorption in Anderson,M.A.(eds),Adsorption of inorganics at soild-liquid surface[J]. Ann Arbor:Ann, Arbor Sci, 1981: 51-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700