不同杂草管理模式对农田潜杂草群落动态影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田杂草群落综合体是由土壤潜杂草群落(种子库)和地上显杂草群落(杂草植被)共同组成,其中潜杂草群落是决定将来田间杂草发生危害的根本性因素,研究和控制土壤潜杂草群落,对于杂草综合管理具有十分重要的意义。本文利用水洗法研究了中国农田潜杂草群落的结构特征,并结合环境条件对潜杂草群落区系进行了分析研究;对不同淹水强度下四种类型农田潜杂草群落的出苗动态进行了研究,探讨以水治草的机理;比较研究了主要农田杂草种子在不同埋藏环境下种子活力动态;进一步研究了稻麦轮作田杂草管理措施对潜杂草群落动态的影响。详细结果如下:
     中国农田土壤杂草种子库密度在333.3~2152000粒·m~(-2)之间(0~15cm耕层内),平均密度高达102851.7粒·m~(-2),通过水洗计数的方法共统计到35个科139种杂草,种类最多的为禾本科,有21种,其次为菊科18种,莎草科15种,玄参科8种。旱作物田中出现84种,水连作、水旱轮作田种子库中发现100种,在三种类型作物田中均出现的杂草有44种。各样点杂草种子库密度地区变化很大,优势种类也存在明显的地域性差异。从南到北,海南岛农田中有尖瓣花(Sphenoclea zeylanica)、簇花粟米草(Mollugo oppositifolia)、龙爪茅(Dactyloctnium aegyptiacum)、伞房花耳草(Hedyotis corymbosa)等典型的热带杂草,广西农田有胜红蓟(Ageratum conyzoides)、咸虾花(Vernonia patula)、草龙(Jussiaea linifolia)等典型南亚热带杂草,华中有裸柱菊(Soliva anthemifolia)、千金子(Leptochloa chinensis)、看麦娘(Alopecurus aequalis)、牛繁缕(Malachium aquaticum)等典型亚热带杂草,华北农田有播娘蒿(Descurainia sophia)等典型暖温带杂草,东北有藜(Chenopodium album)、止血马唐(Digitaria ischaemum)、稗(Echinochloa crusgalli)等温带杂草,内陆高原农田有棒头草(Polypogon fugax)、密花香薷(Elsholtzia densa)、鼬瓣花(Galeopsis bifida)、头状蓼(Polygonum nepalense)等高寒气候带杂草。异型莎草(Cyperus difformis)、通泉草(Mazus japonicus)、碎米莎草(Cyperus iria)、马唐(Digitaria sanguinalis)、狗尾草(Setaria viridis)、牛筋草(Eleusine indica)、荠菜(Capsella bursa-pastoris)等为全国分布的杂草。
     为明确不同淹水强度对农田杂草种子出苗动态的影响,比较研究了南方旱地、南方水旱轮作田、北方旱地、北方水旱轮作田四种类型农田潜杂草群落在淹水作用下发生数量的变化动态,结果表明淹水可以大幅度降低旱作物田杂草的萌发出苗,并在一定程度上抑制了水旱轮作田夏熟杂草的发生危害,同时在一定程度上提高水旱轮作田水田杂草的出苗率。
     将24种主要农田杂草种子埋藏于自然旱地、湿润土层、淹水土层三种土壤环境下,调查研究其种子活力随埋藏时间的动态变化,结果表明,各埋藏处理对各类型杂草种子活力的降低作用大小为淹水土层>湿润土层>自然旱地,并且土壤水分含量的增大对旱作物田杂草种子活力的影响大于对水田杂草种子活力的影响。
     进一步研究了人工除草(MW)、化学除草(CW)、无草截流(WF1)、无草不截流(WF0)及对照截流(CK)等5种控草措施持续作用下土壤种子库密度和物种组成的动态变化。发现在5种杂草管理措施作用下,种子库中的物种组成发生了较大变化,种子库的Shannon-Wiener指数、Pielou群落均匀度随控草措施地连年进行而有不同程度降低,Simpson优势度指数逐年升高。杂草种子库密度在各种杂草管理措施作用下呈逐年降低的趋势,种子库耗竭效果WF1>WF0>CW>MW>CK。种子库中杂草相对优势度在不同控草措施作用下发生了较大变化,种子库组成差异逐年增加。田间发生的杂草种群的种类和数量也有较大变化。
     进一步研究了稻鸭共作复合生态控草体系下田间杂草群落特征及杂草种子库动态变化规律,结果表明稻鸭共作显著降低了0~5cm和5~10cm土层的杂草种子比例,使杂草种子在土壤中的垂直分布趋于均匀。随着稻鸭共作的连年进行,杂草种子库的多样性及均匀度不断降低,优势度逐年上升。在一定年限内,稻鸭共作使杂草种子库规模不断缩小,其中对稻田杂草种子的影响大于麦田杂草,使稻田主要杂草的种子密度迅速降低。在稻鸭共作控草体系连年作用下,种子库优势种组成由原来的陌上菜(Lindernia procumbens)+通泉草+碎米荠(Cardamine hirsute)逐渐演变为通泉草+看麦娘+陌上菜+节节菜(Rotala indica),种子库组成与稻鸭共作前的相似性在一定年限内逐年降低,表明稻鸭共作在一定程度上改变了杂草种子库的物种组成,使潜杂草群落发生了演替;在稻鸭共作条件下,田间杂草密度逐年降低,下降趋势符合阻滞模型y=k+a·e~(bx),模型参数b反映了杂草种群的下降速率。稻鸭共作群落相似性与稻鸭共作初期相比逐年降低而后有所回升,表明田间杂草的群落结构不断发生适应演替。随着稻鸭共作的连年进行,系统的控草效果逐渐上升而后下降,总体控草效果在84%以上。稻鸭共作总体上是一种非常有效的生态控草措施,具有显著的经济和社会效益。
The "potential" weed community-soil weed seed bank and the "real" weed community-above ground weed vegetation formed the weed community complex in farmland, and the potential weed community was the primary source of future weed occurrence and infestations. The study and control of potential weed community play an important role in integrated weed management system (IWM). Elutriation of sampled soil and account of weed seeds were used to study characteristics of the potential weed communities in farmland in China, and the flora of potential weed communities was studied by associating with environmental conditions. The dynamics of germination ratio of four types of weed seed bank in farmland under different submerged intensions were studied to reveal the mechanism of controlling weeds by water management. Effects of days for the burying lasted on the dynamics of main weed seed viability under different burying environments were evaluated. Further studies were conducted to evaluate the effects of different weed management strategies on the dynamics of the potential weed community under rice-wheat cropping system. The detailed results are as followings.Fields in China had a weed seed bank with a density of ranging from 333.3 seeds·m~(-2) to 2152000seeds·m~(-2) (0~15cm soil layer) , in which average weed seed density was 102851.7 seeds·m~(-2). A total of 139 weed species belonging to 35 families was recorded in the soil seed bank. The dominant weed family was Gramineae, which had 21 weed species, the second was Compositae family, 18 weed species, the third was Cyperaceae family, 15 weed species, and the fourth was Scrophulariaceae, 8 weed species. Among them, 84 weeds were found in seed bank of dry-cropping fields, 100 in continuous wet cropping and wet-dry cropping rotation fields and 44 all in the three types of cropping system. There were the marked differences of seed bank density and dominant weed species in different fields. From south to north, Sphenoclea zeylanica, Mollugo oppositifolia, Dactyloctnium aegyptiacum, Hedyotis corymbosa were mainly found in fields in Hainan; Ageratum conyzoides, Vemonia patula, Jussiaea linifolia in Guangxi; Soliva anthemifolia, Leptochloa chinensis, Alopecurus aequalis, Malachium aquaticum in central China; Descurainia sophia was only found in northem China; Chenopodium album, Digitaria ischaemum, Echinochloa crusgalli in north-east China; Polypogon fugax, Elsholtzia densa, Galeopsis bifida, Polygonum nepalense in plateau of inland. Cyperus difformis, Mazus japonicus, Cyperus iria Digitana sanguinalis, Setaria viridis, Eleusine indica and Capsella bursa-pastons were found in most regions in China.
     The effects of different submerged intension on the dynamics of germination ratio of weed seed bank in four different cropping systems, southern dry land, southern wet-dry cropping, northern dry land, northern wet-dry cropping, were compared. The results showed that the germination of weed seed in dry cropping field under submerging reduced remarkably. Winter weed seed in wet-dry cropping rotation field was controlled to a certain extent. The germination ratio of paddy weed seed in wet-dry cropping system was increased.
     Seeds of 24 main weed species in farmland were buried in the soil under three different conditions, natural dry land, moisture soil layer, submerged soil layer, to study the dynamics of seeds viability. The results showed that the sequence for the effects of different burying treatment on the decline of seed viability was submerged soil layer>moisture soil layer>natural dry land. Influence of increasing of soil moisture content on seed viability of weed seed in dry cropping system was higher than that of paddy weeds.
     Effects of five different weed management measures, manual weeding (MW), chemical weeding (CW), weed flee (WF1), weed free without water interception (WF0) and a check with water interception (CK), on the dynamics of weed seed bank under rice-wheat cropping system were further evaluated. The results showed that under different weed management measures, Pielou evenness indices of weed seed bank and Shannon-wiener indices decreased and Simpson's dominance indices increased steadily when soil seed bank managed by the above five weed management measures. The density of weed seed bank declined annually, and the sequence for the effects of seed depletion was WF1>WF0>CW>MW>CK. There were obvious changes in relative abundance of weed species among the potential weed communities under different control measures. The differences between community similarity indices within management measures increased with the year. The density and species composition of above ground weed communities also showed marked changes.
     Further study on the effects of rice-duck farming on the dynamics of soil weed seed bank showed that the seed proportion of 0~5 cm and 5~10 cm soil depth were reduced significantly, and weed seeds tended to distribute more evenly among soil layers. With the implementation of rice-duck farming continued on, evenness and species diversity of weed seed bank decreased annually, but species dominance increased steadily. The size of weed seed bank declined annually under rice-duck farming system in a certain range of years. Influence of rice-duck farming on seeds of paddy weeds was more remarkable than wheat weeds, and the density of major weed species in paddy fields reduced rapidly. Under continuous rice-duck farming system, dominant species of weed seed bank changed from Lindernia procumbens+Mazus japonicus+Cardamine hirsute to Mazus japonicus+ Alopecurus aequalis+Lindernia procumbens+Rotala indica, Similarities of weed seed bank between rice-duck farming and pre rice-duck farming declined annually within a certain range of years, which indicated that rice-duck farming could change the species composition of weed seed bank and cause the potential weed community to shift. Continuous five-year weed survey under rice-duck farming system showed that the density of paddy weeds decreased annually and the reduction trend was best fitted by the damping model y= k+a·e~(bx), in which the parameter b could reflect the rate of declination of weed populations. The similarity index of weed communities in paddy fields decreased consecutively compared with the initiation of rice-duck farming, but increased again in the fifth year, which indicated that the structure of weed community in paddy fields was not steady. With the implementation of rice-duck farming system continued on, the weed control effects steadily enhanced in paddy fields, decreased in the fifth year and the overall effect were above 84%after five years. Rice-duck farming is an effective ecologically based weed management strategy and has significantly economic and social benefits.
引文
1.班勇.1995.土壤种子库的结构与动态.生态学杂志,14(6):42-47.
    2.甘国福,王德卿,徐生海.2000.武威地区玉米田杂草种子库调查简报.植保技术与推广,20(6):28-29.
    3.郭水良,强胜.2002.金华郊区58种杂草分布与土壤6种重金属元素关系的分析.南京农业大学学报,25(2):21~26.
    4.虎锋,李召虎,武菊英.2003.农田杂草种子库及其动态研究进展.杂草科学,(4):1-3.
    5.黄春艳,1997.杂草抗药性研究概况.黑龙江农业科学,(6):45-47.
    6.黄建中,褚建君,叶建强.1995.抗药性杂草的管理.杂草科学,(4):4-7.
    7.黄世霞,2004.油菜田看麦娘的生物学特性及其对三种除草剂抗药性的研究(南京农业大学硕士论文).南京:南京农业大学.
    8.江荣昌,1988.农田杂草的综合防治.杂草科学,(2):37-38.
    9.江苏农业地理编写组.1979.江苏农业地理.南京:江苏科技出版社.153-182.
    10.李岗.2003.江苏省稻田潜显性杂草群落特征及其防除技术研究(南京农业大学硕士论文).南京:南京农业大学.
    11.李明光,徐汉林,吴建荣,张绍明.1998.沿江棉区麦后棉田杂草发生规律及综防技术.杂草科学,(3):24-26.
    12.李扬汉.1998.中国杂草志.北京:中国农业出版社.
    13.李云明,赵守清,陈绍才,狄新贵.2004.稻鸭共育技术控制水稻主要害虫杂草效果分析.中国植保导刊,24(2):14-15.
    14.娄群峰,张敦阳,王庆亚,黄建中.1998.不同耕作型油菜田土壤杂草种子库的研究.杂草科学,(1):6-8,39.
    15.马波.2003.江苏省农田杂草群落综合体及其复配除草剂筛选控制的研究(南京农业大学硕士论文).南京:南京农业大学.
    16.马克平,刘灿然,刘玉明.1995.生物群落多样性的测度方法Ⅱβ多样性的测度方法.生物多样性,3(1):38-43.
    17.马克平,刘玉明.1994.生物群落多样性的测度方法Ⅰα多样性的测度方法(下).生物多样性,2(4):231-239.
    18.强胜,1988.安徽沿江圩丘农区杂草区系和生态的调查研究(南京农业大学硕士论文).南京:南京农业大学.
    19.强胜,胡金良.1999.江苏省棉区棉田杂草群落分布和发生规律的数量分析.生态学报.19(6): 810-816.
    20.强胜,胡金良,等.1997.江苏沿海棉区棉田杂草群落发生规律.江苏农业学报,14(2):108-111.
    21.强胜,沈俊明,张成群,邵耕耘,胡金良,王凤良.2003.种植制度对江苏省棉田杂草群落影响的研究.植物生态学报,27(2):278-282.
    22.强胜.1997.基础杂草学.南京:南京农业大学.
    23.强胜.2001a.杂草科学面向生物科学时代的机遇与挑战(下),世界农业,(5):42-43.
    24.强胜.2001b.杂草学.北京:中国农业出版社.
    25.乔丽雅,2003.江苏省稻田稗属杂草生物学特性及其对扫特和乙草胺耐药性的研究(南京农业大学硕士论文).南京:南京农业大学.
    26.沈晓昆.2003.无公害优质稻米生产新技术—稻鸭共作.农业装备技术,29(2):18-19.
    27.苏少泉.杂草抗药性及其治理.世界农业,1996,(2):31~33.
    28.唐洪元.1991.中国农田杂草.上海:上海科技教育出版社.155-170.
    29.唐洪元.1980.上海农田杂草发生消长研究.植物保护学报,7(3):184-190.
    30.唐洪元.1983.上海农田杂草种子休眠规律的研究.植物保护学报,10(1):53-60.
    31.王开金.2001.江苏省麦田潜显性杂草群落特征及防除技术的研究(南京农业大学硕士论文).南京:南京农业大学.
    32.王强盛,黄丕生,甄若宏,荆留明,唐和宝,张春阳.2004.稻鸭共作对稻田营养生态及稻米品质的影响.应用生态学报,15(4):639-645.
    33.王淑彬,黄国勤,刘隆旺.2002.稻田水旱轮作(第二年度)对农田杂草的影响.江西农业大学学报,24(1):20-23.
    34.王华,黄璜.2002.湿地稻田养鱼、鸭复合生态系统生态经济效益分析.中国农学通报,18(1):71-75.
    35.王正文,邢福,祝廷成,李宪长.2002.松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应.植物生态学报,26(6):708-716.
    36.王正文,祝廷成.2002.松嫩草地水淹干扰后的土壤种子库特征及其与植被关系.生态学报,22(9):1392-1398.
    37.魏守辉.2004.稻麦轮作田杂草群落综合体动态及可持续管理模式的研究(南京农业大学博士论文).南京:南京农业大学.
    38.魏守辉,强胜.2002.国际互联网上的国外杂草信息资源.植物保护,28(3):45-48.
    39.魏守辉.2005.土壤杂草种子库与杂草综合管理.土壤(Soils),37(2):121-128.
    40.吴建荣,张绍明,王永山,邵耕耘,李明光,唐维林.移栽棉田杂草的发生消长及其影响因子.杂草科学,1997(2):15-17.
    41.吴竞仑,周恒昌.2000.稻田土壤杂草种子库研究.中国水稻科学,14(1):37-42.
    42.吴竞仑.2000.稻田草害控制技术.江苏农业科学,14(3):41-42,63.
    43.熊利民,钟章成,李旭光,等.1992.亚热带常绿阔叶林不同演替阶段土壤种子库的初步研究.植物生态学与地植物学学报,16(3):249-257.
    44.薛达元.1987.江苏太湖农业区杂草区系的调查与研究(南京农业大学硕士论文).南京:南京农业大学.
    45.杨允菲,祝玲,张宏一.1995.松嫩平原两种碱蓬群落土壤种子库通量及幼苗死亡的分析.生态学报,15(1):66-71.
    46.尤民生,刘雨芳,侯有明.2004.农田生物多样性与害虫综合治理.生态学报,24(1):117-122.
    47.袁树忠,刘学儒.2003.旱改水稻田杂草群落的演替.杂草科学,(1):23-25.
    48.张朝贤,胡祥恩,钱益新.1997.杂草密度与作物产量损失的预测模型.植物保护,23(2):6-10.
    49.张朝贤,钱益新,胡样恩.1996.我国杂草科学研究与21世纪可持续发展农业.中国植物保护研究进展,中国科技出版社.
    50.张夕林,张谷丰,孙雪梅,张建明,张洪进.1999.轻型栽培稻田杂草群落发生特点及其综防技术.农药科学与管理,1999,20(4):21-25.
    51.张志权.1996.土壤种子库.生态学杂志,15(6):36-42.
    52.张志权.1999.土壤种子库与矿业废弃地植被恢复瓶-罐装置在土壤种子库检测中的应用.生态学杂志,18(3):70-74.
    53.章家恩,陆敬雄,张光辉,骆世明.2002.鸭稻共作生态农业模式的功能与效益分析.生态科学,21(1):6-10.
    54.郑永华,邓国彬,卢光敏.1997.稻鱼鸭复合生态经济效益的初步研究.应用生态学报,8(4):431-434.
    55.朱凤姑,丰庆生,诸葛梓.2004.稻鸭生态结构对稻田有害生物群落的控制作用.浙江农业学报,16(1):37-41.
    56.朱克明,沈晓昆,谢桐洲,等.2001.稻鸭共作技术试验初报.安徽农业科学,29(2):262-264.
    57.朱文达,马小华.1993.水旱轮作对棉田杂草及其群落的影响.杂草学报,7(3):5-9.
    58. Allen LJS, Allen EJ, Ponweera S. 1996. A mathematical model for weed dispersal and control. Bulletin of Mathematical Biology, 58(5): 815-834.
    59. Ball DA. 1992. Weed seedbank response to tillage, herbicides and crop rotation sequence. Weed Science, 40: 654-659.
    60. Barberi P, Cozzani A, Macchia M, Bonari E. 1998. Size and composition of the weed seedbank under different management systems for continuous maize cropping. Weed Research, 38: 319-334.
    61. Bello IA, Owen MDK, Hatterman VHM. 1995. Effect of shade on velvetleaf(Abutilon theophrasti) growth, seed production, and dormancy. Weed Technology, 9: 452-455.
    62. Benvenuti DC, Stefano SM, Macchia PL, et al. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science, 49(4): 528-535.
    63. Benvenuti S, Macchia M, Brown H, et al. 1996. Ecophysiology of buried weed seed germination. Proceedings of the second international weed control congress, (1-4): 177-183.
    64. Bhager RM, Bhuiyan SI, Moody K, Estorninos LE. 1999. Effect of water, tillage and herbicide on ecology of weed communities in intensive wet-seeded rice system. Crop Protection, 18(5): 293-303.
    65. Biniak BM, Aldrich PJ. 1986. Reducing velvetleaf(Abutilon theophrasti) and giant foxtail (Setaria faberi) seed production with simulated-roller herbicide applications. Weed Science, 34: 256-259.
    66. Bischoff A. 2005. Analysis of weed dispersal to predict chances of re-colonisation. Agriculture, Ecosystems & Environment, 106(4): 377-387.
    67. Brenchley WE, Warington K. 1930. The weed seed population of arable land. Journal of Ecology, 18: 235-272.
    68. Brenchley WE, Warington K. 1933. The weed seed population of arable soil. Ⅱ. The influence of crop, soil and methods of cultivation upon the relative abundance of viable seeds. Journal of Ecology, 21: 103-127.
    69. Brenchley WE, Warington K. 1936. The weed seed population of arable soil. Ⅲ. The re-establishment of weed species after reduction by fallowing. Journal of Ecology, 24: 479-501.
    70. Brust GE, House GJ. 1988. Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. American Journal of Alternative Agriculture, 3: 19-25.
    71. Buhler DD, Hartzler RG, Forcella F. 1997. Implications of weed seedbank dynamics to weed management. Weed Science, 45: 329-336.
    72. Buhler DD, Mester TC. 1991. Effect of tillage systems on the emergence depth of giant (Setaria faberi) and green foxtail (Setaria viridis). Weed Science, 39: 200-203.
    73. Buhler DD. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Science. 35: 1247-1258.
    74. Burnside OC, Moomaw RS, Roeth FW, Wicks GA, Wilson RG. 1986. Weed seed demise in soil in weed-free corn (Zea mays) production across Nebraska. Weed Science, 34: 248-251.
    75. Cardina J, Herms CP, Doohan DJ. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Science, 50: 448-460.
    76. Cardina J, Regnier E, Harrison K. 1991. Long-term tillage effects on seed banks in three Ohio soils. Weed Science, 39: 186-194.
    77. Cardina J, Sparrow DH. 1996. A comparison of methods to predict weed seedling populations from the soil seedbank. Weed Science, 44: 46-51.
    78. Champness SS, Morris K. The population of buried viable seeds in relation to contrasting pasture and soil types. Journal Ecology, 1948, 36: 149-173.
    79. Chepil WS. 1946. The germination of weed seeds. Science Agriculture. 26: 307-346.
    80. Currie RS, Peeper TF. 1988. Combine harvesting affects weed seed germination. Weed Technology, 2: 499-504.
    81. Dawson JH, Brum VF. 1975. The longevity of barnyard grass, Green foxtail and Yellow foxtail seed in soil. Weed Science, 23: 430-437.
    82. Egley GH. 1983. Longevity of weed seed after 5.5 years in the stonevle 50-years buried-seed study. Weed Science, 13: 264-279.
    83. Egley GH. 1990. High-temperature effects on germination and survival of weed seeds in soil. Weed Science, (38): 429-435.
    84. Feldman SR. 1997. The effect of different tillage systems on the composition of the seedbank. Weed Research. 37: 71-76.
    85. Forcella F, Roberto LBA, Sanchez R, Arnold B, Sanchez R, Ghersa CM. 2000. Modeling seedling emergence. Field Crop Research, 67: 123-139.
    86. Forcella F, Lindstrom MJ. 1988. Movement and germination of weeds in ridge-till crop production systems. Weed Science, 36: 56-59.
    87. Forcella F, Wilson RG, Renner KA, Dekker J, Harvey RG, Alm DA, Buhler DD, Cardina J. 1992. Weed seed banks of the U.S. corn belt: magnitude, variation, emergence, and application. Weed Science, 40: 636-644.
    88. Forcella F. 1992. Prediction of weed seedling densities from buried seed reserves. Weed Research. 32: 29-38.
    89. Forcella F. 1993. Seedling emergence model for velvetleaf. Agronomy Journal. 85: 929-933.
    90. Grundy AC, Mead A. 2000. Modeling weed emergence as a function of meteorological records. Weed Science, 48: 594-603.
    91. Huber HL, Harsh GF. 1932. A summer dermatitis caused by a common weed. Journal of Allergy, 3(6): 578-582.
    92. Kremer RJ. 1993. Management of weed seed banks with microorganisms. Ecology Application, 3: 42-52.
    93. Legere A, Samson DN. 1999. Relative influence of crop rotation, tillage, and weed management on weed associations in spring barley cropping system. Weed Science, 47: 112-122.
    94. Lewis J. 1973. Longevity of crop and weed seeds survival after 20 years in soil. Weed Research, 3: 179-191.
    95. Lindquist JL, Maxwell BD, Buhler DD, Gunsolus JL. 1995. Velvetleaf (Abutilon theophrasti) recruitment, survival, seed production, and interference in soybean (Glycine max). Weed Science, 43: 226-232.
    96. Manda M. 1992. Paddy rice cultivation using crossbred duck. Farming Japan, 26(4): 35-42.
    97. Maxwell BD. 1999. My view. Weed Science. 47: 129.
    98. Mayor JP, Dessaint F. 1998. Influence of weed management strategies on soil seedbank diversity. Weed Research, 38: 95-105.
    99. Moss SR. 1994. Survey on the contribution of weed biology and herbicides to weed management in the UK. Crop Protection, 13(5): 381-387.
    100. Mulugeta D, Stoltenberg DE. 1997. Increased weed emergence and seed bank depletion by soil disturbance in a no-tillage system. Weed Science. 45: 234-241.
    101. Mulugeta D, Stoltenberg DE. 1997. Seed bank characterization and emergence of a weed community in a moldboard plow systems. Weed Science. 45: 54-60.
    102. Pleasant MJ, Sehlather KJ. 1994. Incidence of weed seed in cow (Bos sp.) manure and its importance as a weed source for cropland. Weed Technology, 8: 304-310.
    103. Qiang S. 1994. An outline of division of weed flora and vegetation of arable land in China. The Proceedings of the 35th International Symposium on Vegetation Science, Shanghai: The East China Normal University Press. 346-354.
    104. Qiang S. 2002. Weed diversity of arable land in China. Journal of Korean Weed Science. 22(3): 187-198.
    105. Rami RS, Hukkeri SB. 1983. Effect of tillage practices on irrigation requirement, weed control and yield of lowland rice. Soil and Tillage Research, 3(2): 147-158.
    106. Roberts HA, Ricketts ME. 1979. Quantitative relationship between the weed flora after cultivation and the seed population in the soil. Weed Research, 19: 269-275.
    107. Roberts HA. 1981. Seed banks in soil. Advances in applied biology, 6: 1-55
    108. Sago R. 2000. Weed seedbank response to herbicide use in paddy rice fields. Journal of Weed Science and Technology, 45(2): 88-95.
    109. Sastroutomo SS, Yusron A. 1987. Buried weed seed population in arable soils. Proceedings, 11th Asian Pacific Weed Science Society Conference, (1): 45-55.
    110. Schafer DE, Chilcote DO. 1970. Factors influencing persistence and depletion in buried seed population. Ⅱ. The effects of soil temperature and moisture. Crop Science, 10: 342-345.
    111. Schreiber MM. 1992. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Science, 40: 645-653.
    112. Schweizer EE, Zimdahl RL. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Science, 32: 76-83.
    113. Senseman SA, Oliver LR. 1993. Flowering patterns, seed production, and somatic polymorphism of three weed species. Weed Science, 41: 418-425.
    114. Shrestha A, Knezeric SZ, Roy RC, et al. 2002. Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Research, 42: 76-87.
    115. Soni P, Ambasht RS. 1976. Effect of crop-weed competition on the mineral structure of wheat crop. Agro-Eeosystems, 3: 325-336.
    116. Staricka JA, Burford PM, Allmaras RR, Nelson WW. 1990. Tracing the vertical distribution of simulated shattered seeds as related to tillage. Agronomy Journal, 82: 1131-1134.
    117. Su ST. 2001. Evaluation of different duck varieties for the control of the golden apple snail (Pomacea canaliculata) in transplanted and direct seeded rice. Crop Protection, 20: 599-604.
    118. Swanton CJ, Shrestha A, Knezevic SZ, et al. 2000. Irtfluenee of tillage type on vertical weed seedbank distribution in a sandy soil. Canadian Journal of Plant Science, 80: 455-457.
    119. Weaver SE, Tan CS, Brain P. 1988. Effect of temperature and soil moisture on time of emergence of Tomatoes and four weed species. Candian Journal Plant Science, 68: 877-886.
    120. Wiese AF. 1967. Weed emergence from two soils at various moisture, temperature and depths. Weed Science, 15: 118-121.
    121. Wilson RG, Derr ED, Nelson LA. 1985. Potential for using weed seed content in the soil to predict future weed problems. Weed Science, 33: 171-175.
    122. Yenish JP, Doll JD, Buhler DD. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Science, 40: 429-433.
    123. Zhang J, Hamill AS, Gardiner IO, Weaver SE. 1998. Dependence of weed flora on the active soil seedbank. Weed Research, 38: 143-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700