嗜热毛壳菌热稳定超氧化物歧化酶的纯化及基因克隆和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超氧化物歧化酶(Superoxide Dismutase,简称SOD)(EC.1.15.1.1)系一类金属酶,广泛存在于生物体中。它能够催化超氧阴离子(O2.-)发生歧化反应,从而清除超氧阴离子。在生物体防御氧化损伤的过程中,发挥着重要作用。根据酶分子中所含金属辅基的不同,超氧化物歧化酶主要可分为CuZn-SOD(存在于真核生物中),Mn-SOD(存在于原核生物和真核生物中),Fe-SOD(存在于原核生物和高等植物的叶绿体中)等类型。Mn-SOD和Fe-SOD的氨基酸组成相似,可能起源于同一祖先。
     嗜热毛壳菌(Chaetomium thermophilum)是一种广泛分布的,生长上限温度较高的嗜热真菌,从该菌中已分离了多种嗜热酶,但未见超氧化物歧化酶的报道。本研究中C. thermophilum在含干酪素的合成培养基中生长产生超氧化物歧化酶,通过硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Phenyl-Sepharose疏水层析等步骤获得了凝胶电泳条带均一的超氧化物歧化酶。
     分别用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)的方法和Sephacryl S-100凝胶过滤层析的方法,测定出本研究所获得的超氧化物歧化酶的分子量分别为23.5kDa和94.4kDa,证明在本研究中所得到的超氧化物歧化酶是一种由4个相同的亚基所构成的蛋白质。本研究所得到的超氧化物歧化酶的反应最适pH值为7.5,酶的反应最适温度为60℃。在pH值为7.5的条件下,该酶在50℃和60℃时保温1h是基本稳定的,在70℃时保温1h后,仍保留有60%的酶活性;在80℃时,酶的半衰期约为25min。
     C. thermophilum超氧化物歧化酶(Mn-SOD) N-端10个氨基酸序列为KATLPDLKYD,与Aspergillus fumigatus和Paracoccidioides brasiliensis超氧化物歧化酶(Mn-SOD)的N-端氨基酸序列有较高的同源性。
     根据超氧化物歧化酶的氨基酸保守序列设计兼并引物,克隆了C. thermophilum热稳定超氧化物歧化酶CuZn-SOD和Mn-SOD的基因,随后提取C. thermophilum的基因组DNA,克隆了CuZn-SOD DNA序列,该序列包含三个内含子区域。这三个基因在GenBank中的注册号分别为DQ493760、EF569987、DQ683184。
     将超氧化物歧化酶的基因cz1与酵母表达载体pPIC9K用EcoRⅠ和NotⅠ双酶切后体外连接构建了酵母分泌型表达载体pPIC9K/cz1,转化巴斯德毕赤酵母获得了转酵母工程菌GS-CZ-10,酶蛋白表达量为0.56mg/mL,同时对重组超氧化物歧化酶的性质进行了研究。
The superoxide dismutase (SOD, EC1.15.1.1) are metallo-enzymes that catalyze the dismutation of superoxide(O2.-)to hydrogen peroxide(H2O2) and molecular oxygen(O2). They have been found in nearly all organisms examined to date and play a critical role in the defense against oxidative stress. There are three general classes of SODs in organisms, which differ in their metal cofactor: copper zinc-containing SOD (CuZn-SOD), manganese- containing SOD (Mn-SOD) and iron-containing SOD (Fe-SOD).
     Chaetomium thermophilum is a widely distributed soil-inhibiting fungus of considerable interest producer of thermostable enzymes, including cellulase, endocellulase, xylanase and laccase which have been purified and well studied. However, the superoxide dismutase from the genus C. thermophilum has not yet been studied. During growth in a medium containing Casein, C. thermophilum also produced superoxide dismutase. The enzyme was purified to homogeneity from the culture supernatant of the strain by fractional ammonium sulphate precipitation, DEAE-Sepharose chromatography and Phenyl-Sepharose chromatography.
     The molecular mass of a single band of the enzyme was estimated to be 23.5 kDa, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using gel filtration on Sephacryl S-100, the molecular mass was estimated to be 94.4 kDa, indicating that this enzyme was composed of four identical subunits of 23.5 kDa each. The SOD exhibited maximal activity at pH 7.5 and optimum temperature at 60oC. It was thermostable at 50 and 60oC and retained 60% activity after 60 min at 70oC. The half-life of the SOD at 80oC was approximately 25 min.
     The first 10 amino acids from the N-terminal of the Mn-SOD were KATLPDLKYD. The sequence showed a certain similarity with some other fungal manganese superoxide dismutase such as those from Aspergillus fumigatus and Paracoccidioides brasiliensis.
     Degenerate primers based on the conserved domain of other reported superoxide dismutase, and the cDNA fragments encoding the copper zinc superoxide dismutase and manganese superoxide dismutase were obtained through RT-PCR. The RACE-PCR was used to generate full-length cDNA clones. Then partial DNA encoding the copper zinc superoxide dismutase was cloned and it contained three introns. They have been registered in GenBank with accession number DQ493760, EF569987 and DQ683184.
     The cz1 gene and expression vector pPIC9K were digested with EcoR I and Not I, then ligationed in vitro to construct the expression plasmid pPIC9K/cz1. The pPIC9K/cz1 was transformed to Pichia GS115 competent cell after linearized with restriction enzyme Sal I. The recombinant Pichia GS-CZ-10 was got and the expressed superoxide dismutase was purified and characterized. The expression level was up to 0.56 mg/mL.
引文
1. 蔡全信, 刘娥英, 张用梅. 1999. 苏云金杆菌超氧化物歧化酶的纯化和性质研究. 微生物学通报, 26: 110~112.
    2. 陈春, 陈躬瑞, 刘树滔, 卢菀华, 饶平凡. 2004. hCuZn-SOD基因的克隆、表达及其产物的初步纯化和表征. 福州大学学报(自然科学版), 32: 763~768.
    3. 陈淮扬, 刘望夷. 1996. 从超氧化物歧化酶的分布和结构看其分子进化. 生物化学和生物物理进展, 23: 408~413.
    4. 陈惠芳, 王琦, 付学池, 梅汝鸿. 2003. 超氧化物歧化酶(SOD)的分子生物学. 生命的化学, 23: 291~293.
    5. 范立强, 贺华君, 袁勤生, 杨冠珍, 吴祥甫. 2002..人EC-SOD的克隆及高效表达. 华东理工大学学报, 28: 39~42.
    6. 方允中等. 1989.自由基与酶. 北京: 科学出版社, 71~79.
    7. 高健, 许晓风, 陈学平. 2005. 特异种质烟草HZNH的Fe-SOD基因的克隆与表达. 中国生物化学与分子生物学报, 21: 840~845.
    8. 顾小勇, 李强, 曹竹安. 2001. 毕赤酵母基因工程茵胞内 AOX1 酶的检测方法. 生物工程报, 17: 474.
    9. 何诚,朱运松. 1998. 甲醇营养型酵母表达系统的研究进展. 生物工程进展, 18: 7~11.
    10. 何炜, 袁汉英, 高卜渝, 陈向岭, 李育阳. 2004. 人类超氧化物歧化酶在酿酒酵母系统中的高效表达. 复旦学报(自然科学版), 43: 156~162.
    11. 口如琴, 白玉明, 袁静明. 1997. 赤霉菌超氧化物歧化酶的纯化及部分理化性质. 微生物学报, 37: 115~118.
    12. 李多川, 杨依军, 彭友良. 1997. 嗜热真菌 Thermomyces lanuginosus 热稳定 α-淀粉酶的纯化及特性. 微生物学报, 37: 107~114.
    13. 李洪钊, 李亮助, 孙强明. 2003. 巴斯德毕赤酵母表达系统优化策略. 微生物学报, 43: 288~292.
    14. 李伟, 夏立秋, 周源, 王先酉, 邹国林. 2003. 苏云金杆菌4. 0718菌株超氧化物歧化酶的纯化和性质研究. 武汉大学学报(理学版), 49:247~251.
    15. 李文杰. 1989. 超氧化物歧化酶在治疗超氧阴离子自由基引起的疾病及抗衰老上的应用. 中华药学杂志, 24: 397~401.
    16. 李雪莲, 马一君, 武峰, 史兆兴, 王恒梁, 黄留玉. 2007. 人铜锌超氧化物歧化酶真核表达载体的构建及在酿酒酵母中的分泌表达. 郑州大学学报(医学版), 42: 127~130.
    17. 李益新, 方允中, 刘智峰. 1984. 铜锌超氧化物歧化酶的重组研究. 生物化学生物物理学报, 16: 472~478.
    18. 李泽浩. 1996. 应用生物化学. 乌鲁木齐: 新疆大学出版社, 66~70.
    19. 梁涌涛, 罗贵民, 孙启安等. 1993. 棕色固氮菌铁超氧化物歧化酶的化学修饰. 生物化学杂志, 9: 601~604.
    20. 林延鹏,杨娟,刘新民,等. 2000. SOD 称猴桃果汁对体液免疫、血清与红细胞丙二醛水平的影响.中国微生态学杂志, 12: 166~168.
    21. 凌敏, 赖祥进, 谢科. 2005. 人Mn-SOD cDNA的克隆及其在巴斯德毕赤酵母中的表达. 生物工程学报, 21: 478~481.
    22. 凌敏, 谢科, 苏上贵. 2004. 人锰超氧化物歧化酶基因在大肠杆菌中的表达. 广西医科大学学报, 21: 476~477.
    23. 刘美珍, 魏宜琴. 1998. 超氧化物歧化酶. 海峡药学, 10: 72~75.
    24. 刘明胜, 胡昆, 陈红漫, 阚国仕. 2005. Mn-SOD 的纯化方法研究. 化学与生物工程, 11: 33~35.
    25. 刘天兵, 冯宗炜. 1997. 植物 SOD 活性变化与其抗污染能力的关系. 环境污染与防治, 19: 12~13.
    26. 刘勇, 张恩平, 龚月生. 2004. 蜡样芽孢杆菌分泌超氧化物歧化酶特性的研究. 酶工程, 25: 46~48.
    27. 罗广华. 1983. 植物 SOD 的凝胶电泳及活性显示. 植物生理学通讯, 6: 44~45.
    28. 马歇克等著, 朱厚础等译. 2000. 蛋白质纯化与鉴定实验指南. 北京: 科学出版社, 24~50.
    29. 欧阳立明, 张惠展, 张嗣同. 2000. 巴斯德毕赤酵母的基因表达系统研究进展. 生物化学与生物物理进展, 27: 151~154.
    30. 彭毅, 杨希才, 康良仪. 2000. 影响甲醇酵母外源蛋白表达的因素. 生物技术通报, 4: 33~36.
    31. 尚玉磊, 张炳欣, 王琦, 梅汝鸿. 2004. 蜡样芽胞杆菌M22铜锌超氧化物歧化酶基因的克隆及表达. 中国生物化学及分子生物学报, 20: 738~744.
    32. 施惠娟, 贺华君, 魏东芝. 1999. 人Mn-SOD cDNA的克隆及高效表达. 生物化学与生物物理学报, 31: 707~710.
    33. 施慧娟, 陈哲宇, 李明峰, 魏东芝, 吴祥南, 袁勤生. 2000. 人 Cu, Zn SOD 在酵母系统中的表达. 华东理工大学学报, 26: 601~603.
    34. 石磊,杨秀艳,赵丽华. 2005. 超氧化物歧化酶在微生物中的含量及分布情况. Journal of Qiqihar Medical College, 26: 794.
    35. 苏宁, 王桂峰, 徐维敏. 1998. 蜡质芽孢杆菌超氧化物歧化酶(SOD)的纯化研究. 农业生物技术学报, 6: 235~238.
    36. 苏瑛, 唐咏, 王成春. 2005. 蛹虫草超氧化物歧化酶的分离纯化及性质研究. 安徽农业科学, 33: 1388~1389.
    37. 孙淑斌, 赵艳霞, 刘常金. 1997. 超氧化物歧化酶研究的几个问题. 曲阜师范大学学报, 23: 95~98.
    38. 唐香山,张学文. 1992. 酿酒酵母表达系统. 生命科学研究, 2004. 8: 106~109.
    39. 屠幼英, 倪福弟, 陆应钰. 1992. 从嗜热栖热菌中提取超氧化物歧化酶的研究. 微生物学通报, 19: 18~20.
    40. 王黎明, 尚玉磊, 王勇军, 王琦, 梅汝鸿. 2005. 蜡样芽孢杆菌M22锰超氧化物歧化酶基因在毕赤酵母中的表达. 农业生物技术学报, 13: 360~364.
    41. 王琦,徐维敏,梁化荣. 2000. 自由基 SOD 微生态制剂.中国微生态学杂志, 12: 169~170.
    42. 王琦,徐维敏,梅汝鸿. 1999. 一种农业增产的新途径-益微. 农资科技杂志, 1: 22~24.
    43. 王宪泽, 王保莉, 王晓云. 2002. 生物化学实验技术原理和方法. 北京: 中国农业出版社, 113~118.
    44. 吴国荣, 程光宇, 陶明煊. 1998. 佛州侧耳子实体锰型 SOD 的纯化及性质研究. 菌物系统, 17: 167~173.
    45. 吴国荣, 邹玉珍, 程光宇. 1996. 猴头子实体锰型超氧化物歧化酶的纯化及性质鉴定. 植物资源与环境, 5: 9~14.
    46. 夏文超, 李素霞, 范立强, 袁勤生. 2003. 钝顶螺旋藻Fe-SOD的纯化及性质. 华东理工大学学报, 29: 20~22.
    47. 向华, 卫文仲, 谭华荣. 2000. 人铜锌超氧化物歧化酶基因的克隆和在乳酸乳球菌中的表达.生物工程学报, 16: 6~9.
    48. 熊永德, 叶松柏, 梁永娱. 1997. 超氧化物歧化酶的抗炎作用研究. 华西医大学报, 8: 58~61.
    49. 徐军发, 凌天翼, 唐俊杰. 1996. 伤寒沙门氏菌 SOD 的提取及抗原性研究. 生物化学杂志, 12: 720~723.
    50. 许平, 袁原. 大蒜超氧化物歧化酶活性及某些性质研究. 1997. 渝州大学学报(自然科学版), 14: 43~47.
    51. 阎家麒, 谢文正. 1994. 月桂酸修饰超氧化物歧化酶的制备及其性质研究. 生物化学与生物物理进展, 21: 154~157.
    52. 杨明琰, 张晓琦, 沈俭. 2004. 微生物超氧化物岐化酶的研究进展. 微生物学杂志, 24: 49~51.
    53. 杨天鸣, 邹国林. 超氧化物歧化酶化学研究进展. 1999. 中南民族学院学报(自然科学版), 18: 90~94.
    54. 袁勤生. 1982. 超氧化物歧化酶. 国外医学分子生物学分册, 4: 278.
    55. 袁勤生. 1985. 超氧化物歧化酶. 中国医药工业杂志, 16: 31~33.
    56. 曾庆平. 1995. SOD 蓦因的组织结构, 表达与分子克隆. 药物生物技术, 2: 4651.
    57. 张博润, 黄英, 田宇清. 1995. 酿酒酵母超氧化物歧化酶(SOD)基因的克隆和表达. 生物工程学报, 11: 77~80.
    58. 张博润, 谭华荣. 1992. SOD 的研究进展和应用前景. 微生物学通报, 19: 352~357.
    59. 张翊, 王军志, 吴勇杰. 2000. 重组人超氧化物歧化酶的基因克隆、表达及产物纯化研究. 生物工程学报, 16: 557~560.
    60. 张羽航, 江汉湖, 董明盛, 姚汝华. 1998. 少抱根霉RT-3胞外产超氧化物歧化酶的研究. 微生物学通报, 25: 265~268.
    61. 赵翔, 霍克克, 李育阳. 2000. 毕赤酵母的密码子用法分析. 生物工程学报, 16: 308~311.
    62. 郑淑芬, 郑连军, 周晓云. 2003. 胞外高产超氧化物歧化酶菌株的筛选及其发酵工艺条件研究. 科技通报, 19: 428~430.
    63. 朱俭, 曹凯鸣, 周润琦. 1981. 生物化学实验. 上海: 上海科学技术出版社, 110~116.
    64. 朱文杰, 宋瑛, 汪杰. 1995. 东方弧菌 SOD 的分离纯化和特性研究. 华东师范大学学报(自然科学版). 1: 90~95.
    65. 邹国林, 罗时文, 裘名宜. 1992. 小白菜线粒体锰超氧化物歧化酶的纯化和性质研究. 生物化学与生物物理学报, 24(2): 180~183.
    66. Abe K, Aoki M, Ikeda M, Watanabe M, Hirai S, Itoyama Y. 1996. Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations. J. Neurol. Sci., 136: 108~116.
    67. Angelova M, Angelova P D, Ianova E, Serkedjieva J. 2001. A novel glycosylated Cu/Zn-containing superoxide dismutase: production and potrntial therapeutic effect. Microbiology, 147: 1641~1650.
    68. Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K. 1993. Current Protocols in Molecular Biology. NewYork: Greene Publishing and Wiley-Interscience, 66~67.
    69. Barra D, Schinina M E, Bannister W H, Bannister J V, Bossa F. 1987. The primary structure of iron-superoxide dismutase from Photobacterium leiognathi. J. Biol. Chem., 262: 1001~1009.
    70. Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assay and assay applicable to acrylamide gel. Anal. Biochem., 44: 276.
    71. Benny C, Yona C, Yitzhak H. 1998. Purification and Characterization of Laccase from Chaetomium thermophilum and Its Role in Humification. Appl. Environ. Microbiol., 64: 3175~3179.
    72. Beyer J W, Imlay, Fridovich I. 1991. Superoxide dismutase. ProgressNucleic. Acid Res. Mol. Biol., 40: 221~253.
    73. Bostwick D G, Alexander E E, Singh R, Shan A, Qian J, Santella R M, Oberley L W, Yan T, Zhong W, Jiang X, Oberley T D. 2000. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer, 89: 123~134.
    74. Bradford M M. 1976. A rapid and sensitive method for quantitation of microgram quantitie of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 1105~1112.
    75. Brioukhanov A L, Nesatyy V J, Netrusov A I. 2006. Purification and characterization of Fe-containing superoxide dismutase from Methanobrevibacter arboriphilus strain AZ. Biochemistry (Mosc), 71: 441~447.
    76. Brock C J, Walker J E. 1980. Superoxide dismutase from Bacillus stearothermophilus. Complete amino acid sequence of a manganese enzyme. Biochemistry, 19: 2873~2882.
    77. Cereghino J L, and Cregg J M. 2001. Heterologous protein ex pression in the methylotrophic yeast Pichia pastoris. FEMS. Micrrobiol. Rev., 24: 45~66.
    78. Chamber S P, Brehm J K, Michael N P, Atkinson T, Minton N P. 1992. Physical characterization and over-expression of the Bacillus caldotenax superoxide dismutase gene. FEMS. Microbiol. Lett., 91: 277~284.
    79. Chen J, Li D C, Zhang Y Q, Zhou Q X. 2005. Purification and characterization of a thermostable glucoamylase from Chaetomium thermophilum. J. Gen. Appl. Microbiol., 51: 175~181.
    80. Cornelis P H, Gerd G. 1997. Production of Recombinant Proteins by Methylotrophic Yeasts. Current Opinion in Biotechnology, 8: 554~560.
    81. Corpas F J, Fernandez-Ocana A, Carreras A, Valderrama R, Luque F, Esteban F J, Rodriguez-Serrano M, Chaki M, Pedrajas J R, Sandalio L M, del Rio L A, Barroso J B. 2006. The Expression of Different Superoxide Dismutase Forms Is Cell-Type Dependent in Olive (Olea europaea L.)Leaves. Plant. Cell. Physiol., 47: 984~994.
    82. Cortez N, Carrillo N, Pasternak C, Balzer A, Klug G. 1998. Molecular Cloning and Expression Analysis of the Rhodobacter capsulatus sodB Gene, Encoding an Iron Superoxide Dismutase. J. Bacteriology., 180: 5413~5420.
    83. Crameri R, Faith A, Hemmann S, Jaussi R, Ismail C, Menz G, Blaser K. 1996. Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J. Exp. Med., 184: 265~270.
    84. Cregg J M , Cereghino J L, Jingying Shi. 2000. Recombiant Protein Expression in Pichia pastoris. Molecular Biotechnology, 16: 23~52.
    85. Cregg J M and Madden K N. 1987. Development of transformation systems and construction of methanol-uitilisation-defective mutants of Pichia pastoris by gene disruption. In Stewart G G. Russell I, Klein R D. (Eds) Biological research on Industrial Yeast. Vol II. CRC Press, 1~18.
    86. Cregg J M, Vedvick T S, Raschke W C. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology, 11: 905~910.
    87. Cregg J M. 1997. Functional charaecterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol. Cell. Biol., 9: 1316~1326.
    88. Crowell D N, Amasino R M. 1991. Nucleotide Sequence of an Iron Superoxide Dismutase Complementary DNA from Soybean. Plant. Physiol., 96: 1393~1394.
    89. Cullen J J, Weydert C, Hinkhouse M M, Ritchie J, Domann F E, Spitz D, Oberley L W. 2003. The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer. Res., 63: 1297~1303.
    90. Deng H X, siddique T. 2000. Transgenic mouse models and human neurodegenerative disorders. Arch. Neurol., 57: 1695~1702.
    91. Diez B, Schleissner C, Moreno M A, Rodriguez M, Collados A, Barredo J L. 1998. The manganese superoxide dismutase from the penicillin producer Penicillium chrysogenum. Curr. Genet., 33: 387~394.
    92. E S J, Guo F X, Liu S A, Chen J, Wang Y J and Li D C. 2007. Purification,Characterization,and Molecular Cloning of A thermostable Cu, Zn-SOD from the thermophilic fungus Thermoascus aurantiacus. Biosci. Biotechnol. Biochem., 71: 1090~1093.
    93. E11is S B, Brust P F, Koutz P J. 1985. Isolation of alcohol oxidase and two othermethanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol., 5: 1111~1121.
    94. Ekanayake P M, Kang H S, De Zyosa M, Jee Y, Lee Y H, Lee J. 2006. Molecular cloning and characterization of Mn-superoxide dismutase from disk abalone (Haliotis discus). Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 145: 318~324.
    95. Endo T, Fujii T, Sato K. 2000. A pivotal role of Zn-binding residues in the function of the copper chaperone for SOD1. Biochem. Biophys. Res. Commun., 276: 999~1004.
    96. Forman H J. 1973b. Histidine at the active site of superoxide dismutase. Biochemistry, 12: 823.
    97. Forman H J, Fridovich I. 1973a. On the stability of bovine superoxide dismutase: The effects of metals. J. Biol. Chem., 248: 2645.
    98. Foyer D P, Kunert K J. 1994. Protection against to oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell and Environment, 17: 507~523.
    99. Frank L. 1985. Superoxide Dismutase. Florida: CRC Press, 2~30.
    100.Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64: 97~112.
    101.Fukumori Y, Fujiwara T, Okada-Takahashi Y, Mukohata Y, Yamanaka T. 1985. Purification and properties of a peroxidase from Halobacterium halobium L-33.J. Biochem (Tokyo), 98: 1055~1061.
    102.Ganju R K, Vithayathil P J, and Murthy S K. 1989. Purification and characterization of two xylanase from Chaetomium thermophile var. coprophile. Can. J. Microbiol., 35: 836~842.
    103.Gu W, Hecht N R. 1996. Translation of a testis-specific Cu/Zn superoxide dismutase (SOD-1) mRNA is regulated by a 65-kilodalton protein which binds to its 5' untranslated region. Mol. Cell. Biol., 16: 4535~4543.
    104.Hallewell R A, Masiarz R C, Puma J P. 1985. Human Cu/Zn superoxide dismutase cDNA: isolation of clones synthesizing high levels of active or inactive enzyme from an expression library. Nucheic. Acids. Research., 13: 2017~2034.
    105.Hassan H M. 1989. Microbial superoxide dismutase. Adv. Genet., 26: 65~97.
    106.Herouart D, Van Montagu M, Inze D. 1993. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc. Natl. Acad. Sci. USA., 90: 3108~3112.
    107.Holdom M D, Lechenne B, Hay R J, Hamilton A J and Monod M. 2000. Production and characterization of recombinant Aspergillus fumigatus Cu,Zn superoxide dismutase and its recognition by immune human sera. J. Clin. Microbiol., 38: 558~562.
    108.Honda Y, Honda S. 1999. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB. J., 13: 1385~1393.
    109.Jacob C, Courbot M, Brun A. 2001. Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. Eur. J. Biochem., 268: 3223~3232.
    110.James M, Joan L C, Shi J Y. 2000. Recombinant Protein Expression in Pichia pastoris. Mollecular Biotechnology, 16: 23~52.
    111.Jones T, Federspiel N A, Chibana H, Dungan J, Kalman S, Magee B B, Newport G, Thorstenson Y R, Agabian N, Magee P T, Davis R W, Scherer S. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA., 101: 7329~7334.
    112.Keele B B, McMord J M, Fridovich I. 1970. Superoxide dismutase fromEscherichia coil. J. Biol. Chem., 245: 6176~6181.
    113.Keller G, Warner T G, Steiner K S. 1991. Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc. Natl. Acad. Sci. USA., 88: 7381~7385.
    114.Ken C F, Lee C C, Duan K J, Lin C T. 2005. Unusual stability of manganese superoxide dismutase from a new species, Tatumella ptyseos ct: its gene structure, expression, and enzyme properties. Protein. Expr. Purif., 40: 42~50.
    115.Kim E J, Chung H J, Suh B, Hah Y C, Roe J H. 1998. Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Muller. Mol. Microbiol., 27: 187~195.
    116.Kim E J, Kim H P, Hah Y C. 1996. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicotor. Eur. J. Biochem., 241: 178~185.
    117.Kim T S, Jung Y, Na B K, Kim K S, Chung P R. 2000. Molecular Cloning and Expression of Cu/Zn-Containing Superoxide Dismutase from Fasciola hepatica. Infect. Immun., 68: 3941~3948.
    118.Kim Y C, Miller C D, Anderson A J. 1999. Transcriptional regulation by iron of genes encoding iron (Fe) and manganese (Mn) superoxide dismutases from Pseudomonas putida. Gene., 239: 129~135.
    119.Kirby T W, Lancaster J R Jr, Fridovich I. 1981. Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch. Biochem. Biophys., 210: 140~148.
    120.Kjeldsen T, Pettersson A F, Hach M. 1999. Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol. Appl. Biochem., 29: 79~86.
    121.Kosuge T, Umehara K, Hoshino T. 1998. Cloning and sequence analysis of fumarase and super dismutase genes from an extreme thermophile Thermus thermophilus HB27. Journal of Fermentation and Bioengineering,86: 125~129.
    122.Kowluru R A, Atasi L, Ho Y S. 2006. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 47: 1594~1599.
    123.Laemmli U K. 1970. Clearage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277: 680~685.
    124.Lamarre C, LeMay J D, Deslauriers N. 2001. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. J. Biol. Chem., 276: 43784~43791.
    125.Li D C, Gao J, Li Y L, Lu J. 2005. A thermostable manganese-congtaining superoxide dismutase from the thermophilic fungus Thermomyces lanuginosus. Extremophiles, 9: 1~6.
    126.Li D C, Lu M, Li Y L, and Lu J. 2003. Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2. Enzyme & Microbial Technology, 33: 932~938.
    127.Li J R, Yu P. 2007. Expression of Cu, Zn-Superoxide Dismutase Gene from Saccharomyces cerevisiae in Pichia pastoris and Its Resistance to Oxidative Stress. Appl. Biochem. Biotechnol., 136: 127~140.
    128.Lu M, Gong X, Lu Y, Guo J, Wang C, Pan Y. 2006. Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells: inhibition cell proliferation through the akt/p27kip1 pathway. J. Biol. Chem., 281: 13620~13627.
    129.Maheshwari R, Bharadwaj G and Bhat M K. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev., 64: 461~488.
    130.Martin M E, Byers B R. 1986. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. J. Biol. Chem., 261: 9361~9367.
    131.May B P, Dennis P P. 1987. Superoxide dismutase from the extremely halophilic archaebacterium Halobacterium cutirubrum. J. Bacteriol., 169:1417~1422.
    132.McCord J M, Fridovich I. 1969. Superoxide dismutase: An enzymic function for erythrocuprein. J. Biol. Chem., 244: 6049~6055.
    133.Mclord J M, Fridovieh Z. 1997. Superoxiele and Superoxide dismutase. New York: Academic, 129.
    134.Melov S, Ravenscroft J, Malik S, Gill M S, Walker D W, Clayton P E, Wallace D C, Malfroy B, Doctrow S R, Lithgow G J. 2000. Extension of life-span with superoxide dismutase/catalase mimetics. Science, 289: 1567~1569.
    135.Montesino R, Garcia R, Quintero O. 1998. Variation in N2linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expr. Purif., 14: 197~207.
    136.Moore S M, de Vries O M H, Tudzynski P. 2002. The major Cu, Zn SOD of the phytopathogen Claviceps purpurea is not essential for pathogenicity. Mol. Plant Pathol., 3: 9~22.
    137.Motoshima H, Minagawa E, Tsukasaki F. 1998. Cloning and nucleotide sequencing of genes encoding Mn-superoxide dismutase and class II fumarase from Thermus aquaticus YT-1. J. Ferm. Bioeng., 6: 21~27.
    138.Murao K, Takamiya M, Ono K, Takano H, Takio S. 2004. Copper deficiency induced expression of Fe-superoxide dismutase gene in Matteuccia struthiopteris. Plant. Physiol. Biochem., 42: 143~148.
    139.Nes I F, Holo H. 2000. ClassⅡantimicrobial peptides from lactic acid acteria. Biopolymers, 55: 50.
    140.Nichols T L, Whitehouse C A, Austin F E. 2000. Transcriptional analysis of a superoxide dismutase gene of Borrelia burgdorferi. FEMS. Microbiol. Lett., 183: 37~42.
    141.Oberegger H, Schoeser M, Zadra I, Abt B, Haas H. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol. Microbiol., 41: 1077~1089.
    142.Oberegger H, Zadra I, Schoeser M, Haas H. 2000. Iron starvation leads toincreased expression of Cu/Zn-superoxide dismutase in Aspergillus. FEBS. Lett., 485: 113~116.
    143.Pace C N, Shirley B A, Thomson J A. 2000. Measuring the conformational stability of a protein. In Protein structure. England: A practical approach. IRL Press at Oxford University Press, 311~330.
    144.Pan S M, Ye J S, Hseu R S. 1997. Purification and characterization of manganese superoxide dismutase from Ganoderma microsporum. Biochem. Mol. Biol. Int., 42: 1035~1043.
    145.Paramchuk W J, Ismail S O, Bhatia A. 1997. Cloning characterization and overexpression of two iron superoxide dismutase cDNA from Leishmania. chagasi: role in pathogenesis. Molecular and Biochemical Parasitology, 90: 203~221.
    146.Park N S, Lee K S, SohnH D, Kim D H, Lee S M, Park E, Kim I, Je Y H. Jin B R. 2005. Molecular cloning, expression, and characterization of the Cu, Zn superoxide dismutase (SOD1) gene from the entomopathogenic fungus Cordyceps militaris. Mycologia, 97: 130~138.
    147.Rhie G E, Hwang C S, Brady M J, Kim S T, Kim Y R, Huh W K, Baek Y U, Lee B H, Lee J S, Kang S O. 1999. Manganese-containing superoxide dismutase and its gene from Candida albicans. Biochim. Biophys. Acta., 1426: 409~419.
    148.Roger K B, Francis J C. 1999. Glycosylation of Pichia pastoris-derived proteins. Biotechnol. Appl. Biotechem., 30: 193~200.
    149.Romanos M A, Scorer C A and Clare J J. 1992. Foreign gene expression in yeast: a review. Yeast, 8: 423~488.
    150.Ruiz-Lozano J M, Collados C, Barea J M, Azcon R. 2001. Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J. Exp. Bot., 52: 2241~2242.
    151.Sadosky A B, Wilson J W, Steinman H M. 1994. The iron superoxide dismutase of Legionella pneumophila is essential for viability. Journal ofBacteriology, 176: 3790~3799.
    152.Sato S, NakadaY, Nakazawa-Tomizawa K. 1987. Purification and properties of a tetrameric manganese superoxide dismutase from Thermus thermophilus HB8. Biochim. Biophys. Acta., 912: 178~184.
    153.Scorer C A, Clare J J, McCombie W R. 1994. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/Technology, 12: 181~184.
    154.Sharp M P, Tuohy T M, Mosurski K R. 1986. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nuecleic Acids Res., 14: 5125~5128.
    155.Shen X, Zheng S, Metreveli N S, Epstein P N. 2006. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55: 798~805.
    156.Soini Y, Kallio J P, Hirvikoski P, Helin H, Kellokumpu-Lehtinen P, Tammela T L, Peltoniemi M, Martikainen P M, Kinnula L V. 2006. Antioxidant enzymes in renal cell carcinoma. Histol. Histopathol., 21: 157~165.
    157.Sreekrishina K, Tschopp J F, Fuke M. 1987. Invertase gene (SUC2) of Saccharomyces cereviciae as a dominant marker for transformation of Pichia pastoris. Gene., 59: 115~125.
    158.Stewart R C, Bewley J D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol., 65: 245~248.
    159.Sugino N. 1998. Hormonal regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase messenger ribonucleic acid in the rat corpus luteum: induction by prolactin and placental lactogens Biology of reproduction, 59: 599~605.
    160.Takahashi S, Makino T, Asanagi M. 1991. Recombinant plasmid for human manganese superoxide dismutase manufacture with Escherichia coli. Eur. Pat. App., EP462. 836.
    161.Tanaka Y, Hibio T, Hayashi Y. 1999. Salt tolerance of transgenicoverexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science, 148: 131~138.
    162.Touati D. 1997. Superoxide dismutase in bacteria and pathogen protests. In Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory, 447~493.
    163.Tsang E W T, Bowler C, Herouart D. 1991. Differential regulation of superoxide dismutase in plants exposed to environmental stress. Plant Cell, 3: 783~796.
    164.Tschopp J F, Brust P F, Cregg J M. 1987. Expression of the LacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic. Aclds. Res., 15: 3859~3876.
    165.Urbatsch I L, Wilke-Mounts S, Gimi K. 2001. Purification and characterization of N2glycosylation mutant mouse and human P2glycoproteins expressed in Pichia pastoris cells. Arch. Biochem. Biophys., 388: 171~177.
    166.van der Klei I J , Harder W, Veenhuis M. 1991. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts.Yeast, 7: 195~209.
    167.Wan F, Wang H, Liu B, Wang J. 2006. Cloning and characterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L). Plant. Cell. Rep., 24: 734~742.
    168.Wang Z, He Z, Shen Q, Gu Y, Li S, Yuan Q. 2005. Purification and partial characterization of recombinant Cu, Zn containing superoxide dismutase of Cordyceps military is in E.coli. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 826: 114~121.
    169.Wartmann T, Kunze G. 2000. Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Applied Microbiology and Biotechnology, 54: 619~624.
    170.Wegner E H. 1983. Biochemical conversions by yeast fermentation at high-cell dendities. US. Patent, 4414329.
    171.Whitaker J R. 1980. Changes occurring in proteins in alkaline solutions. Washington, D C. American Chemical Society, 145~164.
    172.Wright G, Eichenbecher V, Green T. 1997. Praquat inhibits the processing of human manganese-dependent superoxide dismutase by SF-9 insect cell mitochondria. Exp. Cell. Res., 234: 78.
    173.Yamano S, Sako Y, Nomura N, Maruyama T. 1999. A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J. Biochem (Tokvo)., 125: 186~193.
    174.Yost, F J J, Fridovich I. 1973. An iron-containing superoxide dismutase from Escherichia coli. J. Biol. Chem., 248: 4905~4908.
    175.Youn H D, Kim E J. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J., 318: 889~896.
    176.Yun Y S, Lee Y N. 2004. Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium. Extremophiles, 8: 237~242.
    177.Zheng Z, Jiang Y H, Miao J L, Wang Q F, Zhang B T, Li G Y. 2006. Purification and characterization of a cold-active iron superoxide dismutase from a Psychrophilic Bacterium, Marinomonas sp. NJ522. Biotechnol. Lett., 28: 85~88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700