4种园林植物挥发性有机物成分动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨园林植物挥发性有机物成分及其动态特征,本研究选取绿化中使用频率较高桂花、香樟、杨梅和刚竹4种园林植物为研究对象,采用动态顶空套袋法和热脱附/气相色谱/质谱联用分析法(TDS/GC/MS)对4种植物释放挥发性有机物成分及其动态特性进行了系统地研究,目的是为园林植物科学配置和管理提供理论依据。主要结果如下:
     1.桂花共检测到醛类、烯类、醇类、酮类、酯类、萜类和酸类七类化合物桂花在日动态和5-9月季动态中,都以酯类化合物含量所占比例最高,其次是萜类化合物。酯类化合物都以(Z)-乙酸-3-己烯-1-醇酯为主;萜类化合物在日动态中以二氢香茅醇、六-氢-法呢醇为主,在5-9月份季动态中以二氢香茅醇、Z-罗勒烯为主。桂花最主要是以释放酯类化合物(Z)-乙酸-3-己烯-1-醇酯为主的树种。
     2.香樟共检测到醛类、烯类、醇类、酮类、酯类、萜类和酸类七类化合物,香樟在日动态和5-9月季动态中,萜类化合物含量都占有绝对的优势。在9:00-17:00日动态中,萜类化合物以π罗勒烯、(E)-罗勒烯、(+)-2-樟脑和二氢香茅醇为主,5-9月生长季动态中,以π罗勒烯、(Z)-罗勒烯、(E)-罗勒烯、(+)-2-樟脑、1R-π派烯、莰烯为主。香樟是以释放萜类化合物以罗勒烯和樟脑为主的树种。
     3.刚竹共检测到醛类、烯类、醇类、酮类、酯类、萜类和酸类七类化合物,在日动态和5-9月份季动态中,刚竹主要是以释放萜类化合物,其次为醇类化合物和醛类化合物,萜类化合物以罗勒烯、二氢香茅醇、别香树烯为主;醇类化合物以(Z)-3-己烯-1-醇为主,醛类化合物在日动态中以2-甲基-4-戊烯醛、癸醛为主,在5-9月季动态中,以壬醛和癸醛为主。刚竹最主要是以释放萜类化合物罗勒烯和二氢香茅醇为主树种。
     4.杨梅共检测到醛类、烯类、醇类、酮类、酯类、萜类和酸类七类化合物,在9:00-17:00日动态中,主要释放萜类化合物,其次是醇类化合物,萜类化合物以π罗勒烯、石竹烯、π石竹烯、二氢香茅醇和(Z)-罗勒烯,醇类化合物以2-乙基-1-己醇为主,在5-9月生长季动态中,主要释放萜类化合物,萜类化合物以石竹烯、π石竹烯、π罗勒烯、(Z)-罗勒烯、(E)-罗勒烯、二氢香茅醇和(+)-π芹子烯为主。杨梅最主要是以释放萜类化合物石竹烯和罗勒烯为主的树种。
     5.植物所释放的挥发性有机物的种类和含量主要是由植物本身的遗传特性所决定。同种植物一天中不同时刻和生长季内不同月份所释放VOCs的成分、含量不同,另外,4种植物种属之间的亲缘关系不同,释放出的挥发性化合物种类与含量不同。
To explore the Garden Plant Volatile Organic Compounds and its dynamics characteristics, Osmanthus fragrans、Cinnamomum camphora、Phyllostachys viridis and Myrica rubra were selected as the research object, because they were frequencly used in greening. This study use dynamic headspace collection and thermal desorption / Gas chromatography / mass spectrometry (TDS / GC / MS) to analysis volatile organic constituents and its dynamics characteristics, The purpose of this study is to provide a theoretical basis for the scientific disposition and management of the Garden Plant .The main results are following:
     1. Osmanthus fragrans volatilize seven types of compounds which include aldehydes、alkenes、alcohols、ketones、esters、terpenoids、and acids. The esters accounted for the highest proportion of all compounds in day and May-September, followed by terpenoids. Esters were mainly consisted of (Z)-acetate -3-Hexen-1-ol, terpenoids were mainly consisted of dihydrocitr- onellol、hexa-hydro- farnesol in day and dihydrocitronellol、Z-ocimene in May-September. Osmanthus fragrans the most important release of esters to (Z)-acetate-3-Hexen-1-ol-based species.
     2. Cinnamomum camphora volatilize seven types of compounds which include aldehyde, alkenes, alcohols, ketones, esters, terpenoids, and acids. The terpenoids occupy an absolute superiority in day and May-September. In the 9:00-17:00 diurnal dynamics, terpenoids mainly consisted ofπ-ocimene、(E)-ocimene、(+)-2-camphor and dihydrocitronellol ; In May-September dynamics, its mainly consisted ofπ-ocimene、(Z)-ocimene、(E)-ocimene、(+) -2-camphor、1R-πPinene、camphene. Cinnamomum camphora is the most important release of terpenoids to ocimene and camphor-based species.
     3. Phyllostachys viridis volatilize seven types of compounds which include aldehydes、alkenes、alcohols、ketones、esters、terpenoids and acids. The Phyllostachys viridis mainly released terpenoids, followed by alcohols and aldehydes in day and May-September, terpenoids was mainly consisted of ocimene、dihydrocitronellol and alloaromadendrene; alcohols was mainly consisted of (Z)-3-hexene- 1-ol, aldehydes was mainly consisted of 2-methyl-4-Pentenal、decanal in day and nonanal、Decanal in May-September. Phyllostachys viridis is the most important release of terpenoids to ocimene and dihydrocitronellol-based species.
     4. Myrica rubra volatilize seven types of compounds which include aldehyde、alkenes、alcohols、ketones、esters、terpenoids and acids, In the 9:00-17:00 diurnal dynamics, Myrica rubra To explore the Garden Plant Volatile Organic Compounds and its dynamics characteristics, Osmanthus fragrans、Cinnamomum camphora、Phyllostachys viridis and Myrica rubra were selected as the research object, because they were frequencly used in greening. This study use dynamic headspace collection and thermal desorption / Gas chromatography / mass spectrometry (TDS / GC / MS) to analysis volatile organic constituents and its dynamics characteristics, The purpose of this study is to provide a theoretical basis for the scientific disposition and management of the Garden Plant .The main results are following:mainly released terpenoids which were mainly consisted ofπ-ocimene、caryophyllene、πcaryophyllene、dihydrocitronellol and (Z)--ocimene, followed by alcohols which were mainly consisted of 2-ethyl-1-hexanol; In May-September dynamics, its mainly released terpenoids which were mainly consisted of caryophyllene、πcaryophyllene、π-ocimene、(Z)-ocimene、(E)-ocimene、dihydrocitronellol and (+)-πSelinene. Myrica rubra is the most important release of terpenoids to caryophyllene and ocimene-based species.
     5. The types and concentration of VOCs from plants is mainly determined by their genetic characteristics. That the same species released the VOCs components and concentration was different when was at different times of day and in different months during the growing season, That four plants released VOCs components and concentration is different when belong to the different kinship.
引文
[1]Theis N and Lerdau M.The ecology and evolution of plant secondary metabolites[J]. Int. J. Plant Sci., 2003, 164(3 Suppl.): S93-S102.
    [2]Benthey R. Secondary metabolites play primary roles in human affairs[J]. Prospect Biol. Med., 1997, 40:197-221.
    [3]]Loreto F,Sharkey TD.A A gas-exchange study of photosynthesis and isoprene emission in Quercus rubru L[J].Planta,1990,(182):523-531.
    [4]Loreto F, Velikova V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxideation of cellularmembranes [J]. Plant Physiol, 2001, 127:1781-1787.
    [5]Monson RK,Guenther AB, Fall R. Physiological reality in relation to ecosystem and global leve estimates of isoprene emission. In TD Sharkey, EA Holland, HA Mooney, Eds, Trace Gas Emissions by Plants[M]. Academic Press, San Diego, CA, 1991, pp.
    [6] Staudt M, Seufert G.Light-depentdent emission of monoterpenes by holm Oak (Quercus ilex L) [J]. Naturwissenschaften, 1995,(82): 89-92.
    [7]Josep P,Joan L. Effects of carbon dioxide,water supply and seasonally on terpene content and emission by Rosmarinus officials [J].Journal of Chemical Ecology, 1997, 23:979-993.
    [8]Wink M. Functions of plant secondary metabolites and their exploitation in biotechnology [M].Sheffield:Sheffield Academic Press,1999:1-14.
    [9] Shelton AL. Variable chemical defenses in plants and their effects on herbivore behavior [J]. Evolutionary Ecology Research, 2000.2:231-249.
    [10]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望[J].地球科学进展,2005, 20(5):556-570.
    [11]孙启样.从生命周期角度评估木材的环境友好性[J].安徽农业大学学报,2001,28(2): 170-175.
    [12]孙启祥,彭镇华,张齐生.自然状态下杉木木材挥发物成分及其对人体身心健康的影响[J].安徽农业大学学报,2004, 31(2):158-163.
    [13]宫崎良文.官能评价の客观化[J].ぶんせ,1993a,15(4):247-252.
    [14]宫崎良文.树木がもたちす快适性[J].山林,1993b,1308(5):30-38.
    [15]阿岸佑幸.森林浴と健康保养地医学[J].ケ-リソ·エッジ(Green Age),1996.(265):31-37.
    [16]石井健次著.サソティ一ノ研究会[M].モのミ木の不思议话,东京:B&Tブツクス日刊工,1998.
    [17][33]唐泽豊编.21世纪の食·环境·健康そ考ぇゐ-ニれからの生物生产科学—[M].东京:共立出版株式会社,1999.
    [18]谷田貝光克.树木挥发性微量成分の化学と效用[J].木材学会志,1991, 37 (7): 583-589.
    [19]宫崎良文.森の香り[M].东京:フレゲラソスヅヤ一ナル社,1996.
    [20]森田慎一,谷田貝光克,大平辰郎.ャクスキ土埋木ヘキサソ抽出物の杀タニと抗菌活性[J].木材学会志,1991,37 ( 4 ): 352-357.
    [21]土井恭次.木材、树木成分の新利用开发がんていゐ一平成三年度技术研究组合成果发表会かい一[J] .山林,1992,1293 (2 ): 28-33.
    [22]谷田貝光克.树木抽出成分利用技术研究组合とその研究成果[J].山林,1995, 1335 (8) : 70-77.
    [23]Owen SM,Boissard C, Street R, et al. The BEMA project: screening of 18 Mediterranean plant species for volatile organic compound emissions[J]. Atmospheric Environment,1997,31(S1): 101-118.
    [24]Owen SM,Boissard C. Hewitt CN.Volatile organic compounds emitted from 40 Mediterranean plant species[J].Atmospheric Environment. 2001, (5): 5393-5409.
    [25]Fall R.Biogenic emissions of volatile organic compounds from higher plants In: Hewitt, C.N.(Ed.) Reactive Hydrocarbons in the Atmosphere[M]. New York: Academic Press,1999.
    [26]Simon V, Luchetta L, Tomes L. Estimating the emission of volatile organic compounds(VOC) from the French forest ecosystem[J]. Atmos Environ, 2001,35(1): 115-126.
    [27]Klinger LF, Li QJ, Guenther AB.Assessment of volatile organic compound emissions from ecosystems of China[J].J Geophys Res, 2002, (107): 1-21.
    [28] Padhy P.K,Varshney C.K. Emission of volatile organic compounds (VOCs) from tropical plant species in India[J].Chemosphere,2005, (59): 1643-1653.
    [29] Suleiman Afsharvpuor, Samira Sepehrnejad. Analysis of the Volatile Constituents of the Seeds, Roots, Leaves And Whole Flowering Plant of Lepidium latifolium L[J].Journal of Essential Oil Research, 2006. (18): 106-107.
    [30]Frosch PJ,Johansen JD, White IR,editors. Fragrances: Beneficial and dverse Effects. Berlin, Heidelberg, New Y ork: Springer-Verlag, 1998.
    [31]王祥荣.面向21世纪城市绿化发展的思路与对策—以上海为例[J].城市环境与城市生态,1999,12(1):60-63.
    [32]戚继忠,由士江,王洪俊,齐清弘.园林植物清除细菌能力的研究[J].城市环境与城市生,2000,13(4):36-38.
    [33]张庆费,庞名瑜,姜义华,胡岗.上海市主要绿化树种的抑菌物质和芳香成分分析[J].植物资源与环境学报,2000,9(2):62-64.
    [34]郑华.北京市绿色嗅觉环境质量评价研究[D].博士论文京:北京林业大学图书馆,2002.
    [35]高岩.北京市绿化树木挥发性有机物释放动态及其对人体健康的影响[D].博士论文京:北京林业大学图书馆,2005.
    [36]高锦明.植物化学[M].北京:科学出版社,2003,19-30.
    [37]白明霞,祝长龙.丁香芳香气味物质的收集与测定[J].哈尔滨市园林研究所,1997,15(1):53.
    [38]胡闻莉,刘文英.一种新型固相萃取技术-固相微萃取[J].药学进展,1999,23(5):257-260.
    [39]KikuoTakeda.Sampling and analytical methods for airborne Organic compounds [J]. Environ mental Technology, 1999, 30(8):334-341.
    [40]孙启祥,彭镇华,张齐生.自然状态下杉木木材挥发物成分及其对人体身心健康的影响[J].安徽农业大学学报,2004(2):38-42.
    [41] Finch, S .Assessing host plant finding by insects. In: lnsect Plant Interaction (JR Miller and TA Miller Eds.) Springer Verlag, New York lnc, 1982, 23-63.
    [42] Smith CM, Khan ZR, Caballero P. Techniques and methods to evaluate the chemical bases of insect resistance in the riceplant. In: Rice Insects: Management strategies, 1991, pp.235-247.
    [43]郭阿君.4种园林树木挥发性有机物释放动态及其抑菌作用的研究[D].博士论文:东北林业大学图书馆,2007.8-11.
    [44]许鹏翔,贾卫民,毕良武,刘介童,韶下芬.芳香植物精油气相色谱分析进展[J].分析科学学报,2004,20(3):312-316.
    [45]阎凤鸣.化学生态学[M].北京,科学出版社,2003, 174-175.
    [46]李庆军,Lee F. KLINGER.中国不同气候带植被挥发性有机化合物通量与生态系统演替的相关性[J].植物学报,2001, 43(10):1065- 1071.
    [47] Bossioli E., Tombrou M.,Pilinis C. Adapting the speciation of the VOCs emiss- ion inventory in the greater Athens area[J].Water, Air, and Soil Pollution: Focus, 2002,(2): 141-153.
    [48]周青.次生代谢的种群生态作用及在农业实践中的应用[J].农业现代化研究,1996, 17(2):100- 104.
    [49]方绮军,傅购,程世清.植物之间生化它感作用的研究及其应用[J].云南农业大学学报,1999, 14(2):206- 210.
    [50]Muller CH. Inhibitory terpenses volatilized form Salvia shrubs [J].Bill Torrey Bot Club, 1965,92:38.
    [51]白雪芳,张宝探.植物化学生态学中的克生作用在草业上的表现[J].草业科学,1995. 12(1):70-71.
    [52]Klinger L ,Greenberg J,Guenther A. Patterns in volatile organic compound emissions along a savant na-rainforest gradient in central Africa[J] .J Geophys Res,1998,103:1443-1454.
    [53]Klinger LF, Zimmerman PR, Greenberg JP. Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland [J]. J Geophys Res, 1994, 99:1469-1494.
    [54]Langenheim JH. Higher plant terpenoids: a phytocentric overview of their ecological Roles [J]. J Chem Eco, 1994, 20(6):1223-1280.
    [55]Martin PH, Guenther A.Insights into the dynamics of forest succession and non-methane hydrocarbon trace gas emissions [J]. J Biogeog,1995, 22:493-499.
    [56]Monson R, Lerdau M, Sharkey T. Biological aspects of constructing biological hydrocarbon emission inventories [J].Atmospheric Environment, 1995, 29:2989-3002.
    [57]Nascimento S C,Chiappeta A,Lima R M O C. Antimicrobial and cytotoxic activities in plants from Pernambuco[J]. Brazil. Fitoterapia, 1990, 61:353-355.
    [58]Santos P R V,Oliveira A C X,Tomassini T C B. Controle microbiogicode produtos fitoter- apicos[J]. Rev Farm Bioquim, 1995,31,35-38.
    [59]李学红.果胶酶解液抑菌性能的研究[J].食品工业科技,2002,24(1): 51- 53.
    [60]刘晓蓉.大蒜、生姜、桔皮提取液复配抑菌防腐作用的研究[J].广州食品工科技,2002, 19(1): 26-29.
    [61]毛根年.大蒜抗霉菌作用的研究[J].畜牧兽医杂志,1994,(4):32-36.
    [62]Santos Filho D,Sarti SJ,Bastos JK. Atividade antibacteriana deextratos Vegetais [J]. Rev. Cien. Farm. 1990, 12:39-46.
    [63]贾建波.生姜和荸荠皮提取物抗菌作用研究[J].广州食品工业科技,2000,15(1):41- 44.
    [64]Cruz FG,Roque NF,Giesbrecht AM. Antibiotic activity of diterpenes from Mikania triangularis [J]. Fitoterapia, 1996, 67:189-190.
    [65]Dwyer J,Nowak D,Watson G. Future directions for urban forestry research in the United States [J].Journal of Arboriculture, 2002, 28(5):231-236.
    [66]Ikram M, Inamul H.Screening of medicinal plants for antimicrobial activeties [J]. Fitoterapia, 1984,55:62- 64.
    [67]Lemos T L G, Monte F J Q,Matos F J A. Chemical composition and antimicrobial activity of essencial oils from Brazilian plants [J].Fitoterapia, 1992, 63:266-268.
    [68] Martinez M.J,Betancourt J,Alonso-Gonzalez N. Screening of some Cuban medicinal plants for antimicrobial activity [J].Ethnopharmacol, 1996, 52:171-174.
    [69]蒋继志.天然植物成分对几种植物病原真菌的抑制作用[J].河北大学学报,1998,19(2): 184-188.
    [70]庄惠如.福建福州25种藏类植物抑菌活性筛选研究[J].亚热带植物通讯,2000,29(1):5-8.
    [71]花晓梅.树木杀菌作用研究初报[J].林业科学,1980,16(3): 236-240.
    [72]谢慧玲,李树人,阎志平,詹瑞华.植物杀菌作用及其应用研究[J].河南农业大学学报,1997, 31(4):397- 402.
    [73]黄健屏,吴楚才.与城区比较的森林区微生物类群在空气中的分布状况[J].林业科学,2002, 38(2):173-176.
    [74]夏忠弟,陈淑珍,邬国军,肖扬名.植物幼苗生物场对人体免疫功能的影响[J].中国现代医学杂志,1999, 9(7):18-19.
    [75]方治国,欧阳志云,胡利锋,王效科,林学强.北京市夏季空气微生物种群结构和生态分布[J].生态学报,2005 25(1): 83-88.
    [76]方治国,欧阳志云,胡利锋,王效科,苗鸿.城市生态系统空气微生物群落研究进展[J].生态学报,2004, 24(2): 315-322.
    [77]吴楚才,吴章文.生态旅游产生背景及开发方向研究[J].中南林学院学报,2001(2):38-42.
    [78]吴楚才,郑群明,钟林生.森林游憩区空气负离子水平的研究[J].林业科学,2001(5):75-81.
    [79]马杏绵.华北珍珠梅杀菌作用的研究[J].环境科学,1985,6(2):33-35.
    [80]褚汉阳.园林树木杀菌作用的研究[M].西北林学院学报,1995,10(4):64-67.
    [81]张庆费.城市生态绿化的概念和建设原则初探[J].中国园林,2001(4):34-36.
    [82]Kim MH, Chung WT, Kim YK, Lee JH, Lee HY, Hwang B, Park YS, Hwang SJ, Kim JH.The effect of the oil of Agastache rugosa O. Kuntze and three of its components on human cancer cell lines[J]. Journal of Essential Oil Research, 2001, 13(3): 214-218.
    [83]Cassella S, Cassella JP, Smith I. Synergetic antifungal activity of tea tree(Melaleuca alternifolia) and lavender (Lavandula Journal of Aromathe angustifolia) essential oils against dermatophyte infection[J]. International, 2002, 12(1): 2-15.
    [84]洪蓉,金幼菊.日本芳香生理心理学研究进展[J].世界林业研究,2001,14(3): 61-66.
    [85] Viljoen A, Vuuren S, van Ernst E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy[J]. Journal of Ethnopharmacology, 2003, 88 (2/3): 137-143.
    [86]Delaquis PJ, Stanich K, Girard B.Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils[J]. International Journal of Food Microbio- logy, 2002, 74(1/2): 101-109.
    [87]Kartnig T, Still F, Reinthaler F. Antimicrobial activity of the essential oil of young pine shoots (Picea abies L.) [J]. Journal of Ethno-Pharmacology, 1991, 35 (2): 155-157.
    [88]汪妲·謝勒著.温佑君譯.芳香療法精神寶典[M].薹北縣:世茂出版社1996.
    [89]Buchbauer G. Methods in aromatherapy research. Perf. Flav. 1996, 21:31-36.
    [90]李吉跃,罗红艳,刘增.北京市大气污染状况及抗污染树种的选择[M].北京:中国林业出版社,1999. 249-251.
    [91]鬼塚五十一.森林浴健康法—都会人よ、森そ步け、森そ步け[M].束京:德門書店,1984/
    [92]高橘良孝.自然浴ゥォ一ク健康法[M].束京:缄文堂新光社,1988.
    [93]日本林業技術協会编.森林の一OO不思漾[M] .束京:束京書籍株式会社,1988.
    [94]林羲貢著.自然療法と森林浴「M] .束京:日本ブツクマネジメン株式会社,1990.
    [95]山中燁子.森ゃ木そ楽しむために一海外の试みに一[J].北方林業,1993,45(11):281-284.
    [96]谷田貝光克.フィトンチツドの效用(1)一快適!森林浴の秘密そ探ゐ一[J].ゥツディェィジ(Woody Age木材の研究と普及),1994,42 (492): 1A-7A.
    [97]進士五十八.多自然居住時代の農山村一「森林浴」から「風景浴」へ一[J].山林,2000. 1396 (9): 2-8.
    [98]神山惠三著.森の不思議[M].束京:岩波書店,1983.
    [99]神山惠三.フィトンチツドの科学[M] .見::森林浴のすすめ.束京:講談社,1984: 12-19.
    [100]植田理彦×阿岸祐幸.森林浴の医学的效果そさぐゐ[M].見森林浴のすすめ.束京:講談社,1984: 49-54.
    [101]Kavouras IG, Mihalopoulos N, Stephanou EG.. Formation of atmospheric particles from organic acids produced by forests[J]. Nature, 1998, 395: 683-686.
    [102]李绍文.生态生物化学「M].北京:北京大学出版社,2001:45-69.
    [103]李绍文.生物的化学通讯[J].生物学杂志,2002, 19(5): 1-4.
    [104]Vuorinen T, Nerg AM, Holopainen JK. Ozone exposure triggers the emission of herbivore- nduced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut, 2004, 131(2): 305-311.
    [105]Pophof B,Stangeq Abrell L.Volatile organic compounds as signals in a plant-herbivore system:electro- physiological responses in olfactory sensilla of the moth Cactoblastis cactorum. Chem Senses, 2005, 30(1):51-68.
    [106]孔垂华,胡飞.植物化感作用及其应用[M].北京:中国农业出版社,2001.
    [107]孔垂华,徐涛,胡飞,黄寿山.环境胁迫下植物化感作用及其诱导机制[J].生态学报,2000,20(5): 849-854.
    [108]Cheong JJ, Choi YD. Methyl jasmonate as a vital substance in plants [J].Trends Genet, 2003, 19(7):409-413.
    [109]Dudareva N, Pichersky E, and Gershenzon J. Biochemistry of Plant Volatiles[J]. Plant Physiology, 2004, 135: 1893-1902.
    [110]Singsass EL,Lewinsohn E and Croteau R.Isoprene increases thermotolerance of isoprene emitting species [J]. Plant Physiol, 1997, 115:1414-1420.
    [111]Penuelas J, Llusia J. Linking photorespiration, monoterpenes and thermotoerance in Quercus [J]. New Phytol, 2002, 155:227-237.
    [112]Loreto F,Pinelli P,Manes F,Kollist H. Impact of ozone on monotetpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves[J]. Physiol, 2004, 24(4):361-367.
    [113]Arimura G ,Ozawa R,Shomoda T, Nishioka T, Boland W, Takabayashi J. Herbivory–induced volatiles elicit defense genes in lima bean eaves [J]. Nature, 2000, 406:5 12-515.
    [114]Arimura G, Ozawa R, and Kugimiya S, and Takabayashi J, Bohlmann J.Herbivore-induced defense response in a model legume: Two-spotted spider mites, Tetranychus urticae, induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus [J]. Plant Physiol, 2004, 135: 1976-1983.
    [115]Harro JB,Francel WA,Maarten AP. Spider mite-induced (3S)-(E)-nerolidol syntheses activity in cucumber and lima bean. The first dedicated step in acycliC11-homoterpene biosynthesis[J]. Plant Physiol,1999,121:173-174.
    [116]Paul W,James H.Plant Volatiles as a Defense against Insect Herbivores[J].Plant Physiol, I999, 121(10):325-332.
    [117]Tumlinson JH, Lait CG.. Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores[J]. Arch Insect Biochem Phvsiol, 2005, 58(21): 54-68.
    [118]Atkinson R.Atmospheric chemistry of VOCs and NOX [J].Atmos Environ, 2000, (34): 2061-2101.
    [119]Guenther A.The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystem[J]. Chemosphere,2002, 49: 837-841.
    [120]Baldwin,LT. Patterns and consequences of henzyl acetone floral emissions from Nicotianaattenuata plants[J]. Journal of Chemical Ecology,1997,23:2327-2343.
    [121]白建辉,王庚辰,任丽新,Baker B,Zimmerman P,梁宝生.内蒙古草原挥发性有机物排放通量的研究[J].环境科学,2003 , 24(6): 16-24.
    [122]Tigerstedt PMA. Inheritance and Genetic Variation of Monoterpenes in Scots Pine(Pinus sylvestris L.)In: Biochemical Genetics of Forest Trees. Ed. Dag Rudin:Umea,Sweden, 1978:29-39.
    [123]Harborne JB. Environmental and Genetic Variability. In Plant Chemosystemaics. Academic Press, 1984: 216219, 228-231.
    [124]Kolosova N.Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants[J]. Plant Cell, 2001,13: 2333-2347.
    [125]Tsitsimpikou C, Petrakis PV, Ortiz A, Harvala C, Roussis V. Volatile needle terpenoids of six Pinus species[J]. Journal of Essential Oil Research, 2001. 13(3): 174-178.
    [126]Adams.RP. And Hagerman.A. Diural variation in the terpenoids of Jun Perus Scopulorum(C upre- ssaceae).Amer.J.Bot 1977,64:278-285.
    [127]郑华,金幼菊,周金星,李文彬.活体珍珠梅挥发物释放的季节性及其对人体脑波影响的初探[J].林业科学研究, 2003, 16(3): 328-334.
    [128]金幼菊,柳维波,吴京科,沈应柏.油松针叶精油萜烯组成的研究[J].烯含量与季节、叶龄及朝向的关系[J].北京林业大学学报,1995,17(4): 50-55.
    [129]陈家华,林祖铭,金声,邢其毅,陈华君.动态法研究啤酒花头香成分变化[J].北京大学学报(自), 1991,27 (4) :406-413.
    [130]Idzojtic M,Borzan Z. Essential oil composition in needles of trispecies hybrid Pinus sylvestris L.x(P.densiflora Siebold et Zucc.XP.nigra J.F.Arnold) and its comparison with parentalspecies. [Croatian] Znanost u potrajnom gospodarenju hrvatskim sumama: znastvena knjiga. Sumarski Institut, Forest Research Institute, Jastrebarsko, Croatia, 2001:61-68.
    [131]Yatagai M, Hong Yong .Chemical composition of the essential oil of Pinus massoniana lamb[J].Journal of essential oil research (USA), 1997, 9(4): 485487.
    [132]Tsitsimpikou C,Petrakis PV,Ortiz A,Harvala C,Roussis V .Volatile needle terpenoids of six Pinus species[J]. Journal of Essential Oil Research, 2001,13(3):174178.
    [133]孙荣高.兰州大气微生物污染评价及防治对策研究[J].新疆环境保护,1997,19(3):35-37.
    [134]Garrett M, Rayment M, Hooper M. Indoor air borne fungal spores, house dampness and associations with environmental factors and respiratory health in children [J].Clinical and Experimental Allergy, 1998, 28:459-467.
    [135]Hargreaves M, Parappukkaran S, Morawska L. A pilot investigation into association between indoor airborne fungal and nonbiological Particle concentration in residential houses in Brisbane,Australia. The Science of the Total Environment, 2003,312:89-101.
    [136]周单红.园林对空气微生物的影响[D].硕士论文:浙江林学院图书馆,2009.17-43.
    [137]王宪楷.天然药物化学[M].北京:人民卫生出版社, 1988, 391-460.
    [138]李霞.萜类化合物对植物的化感作用[J].通化示范学院学报. 2006, 27 (2) : 80-81.
    [139]陈卓全,王勇进,魏孝,陆宏芳,文军,彭少麟,刘军.植物挥发性气体与人类的健康安全[J].生态环境,2004,13(3):385-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700