直/气复合控制导弹导引头信息提取问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动能拦截器采用直接侧向力/气动力复合控制,为导引头的视线转率提取带来了新的问题。一方面,直接侧向力的冲击作用不仅会引起弹体的弹性振动,还会使弹体姿态剧烈变化,使所提取的视线转率信息中包含的弹体姿态耦合误差增加,甚至导致导引头丢失目标。另一方面,高精度的末端控制要求在直接侧向力开启前导引头能够有效测量,进而提高了导引头跟踪系统的带宽要求。为此,本文针对直接侧向力/气动力复合控制带来的测量问题,对制导信息的提取进行了以下几方面的研究:
     首先,针对弹体弹性振动问题,以欧拉自由梁模型为基础,采用振型叠加法研究了弹体的弹性形变和质点振动加速度,提出了弹性附加角速率的概念,并指出了弹性效应加剧了导引头伺服稳定系统中质量偏心干扰力矩对测量的影响。
     其次,针对弹体姿态的快速变化问题,建立了直接侧向力作用下的弹体姿态控制模型,从系统传递函数的角度研究了弹体姿态角速率的频率特性,创新性地定义了λ-能量分布范围,并给出了求解弹体姿态角速率λ-能量分布范围的方法。
     再次,针对动能拦截器对导引头系统带宽的要求,采用线性化方法分析了末制导系统的带宽,进而提出了对随动平台式导引头角跟踪回路的带宽指标。然后,对平台式导引头的跟踪特性和去耦特性进行了分析,并提出了对回路设计的要求。
     最后,结合弹体姿态干扰特性和跟踪带宽指标,采用多回路思想,设计了导引头稳定平台跟踪系统,并通过基于库伦摩擦+粘滞摩擦模型的摩擦补偿,提高了视线转率信息的提取精度。
     本文较全面地分析了直接侧向力/气动力复合控制导弹制导信息提取的特殊问题,并在此基础上进行了去耦设计,对提高制导信息提取精度和实现高精度拦截具有较强的指导意义。
Dual control of lateral jets and aerodynamic fins is used in kinetic kill vehicles, bringing new problems to line of sight rate extraction from seeker. On the one hand, thrust reaction of lateral jets will cause not only the elastic vibration of the missile body, but also significant change of missile attitude, which increases decoupling error of the extracted line of sight rate or even cause the miss of the target. On the other hand, high precision end-game control of homing guidance requires the seeker measuring effectively before lateral jets ignite, which raises the level of bandwidth of seeker’s tracking loop. Therefore, extraction of terminal guidance information is focused in this dissertation considering about the end-game measuring problem caused by dual control of lateral jets and aerodynamic fins. The main contributions are the following:
     Firstly, for the elastic vibration problem, dynamic responses and vibration acceleration of missile body are investigated with the superposition method of mode of vibration based on Euler- Bernoulli beam, and an additional angle rate caused by flexibility is also defined. According to the research, it is indicated that elastic effect increases influence of mass eccentricity disturbance torque in stabilized platform of seeker.
     Secondly, considering the significant change of missile attitude, jets control model of missile attitude is established, according to which, frequency characteristic is investigated from the perspective of system transfer function, aλ-energy frequency distribution range is defined creatively and a method of calculating it is given for missile body attitude changing rate.
     Thirdly, considering bandwidth requirement of seeker’s tracking loop, linearization method is used to analyze bandwidth of terminal guidance system by which bandwidth index of tracking loop of seeker is proposed.
     Fourthly, tracking and decoupling ability is analyzed according to the model of seeker with stabilized platform to present the requirement of control design.
     At last, tracking system of seeker with stabilized platform is designed using multi-loop method combining missile attitude disturbance characteristic and tracking bandwidth index. Friction compensation is designed based on the coulomb friction plus viscous friction model to improve the precision of line of sight extraction.
     The special problems of terminal guidance information extraction caused by dual control of lateral jets and aerodynamic fins are focused in this dissertation comprehensively. Analysis and designs are done to improve precision of terminal guidance information measuring. Schemes and conclusions proposed have instructional significance to high precision end-game interception.
引文
[1]许绪堂.定向破片杀伤VS直接动能碰撞-终极击毁-深度解析美俄反导末段拦截技术[J].国际展望. 2006(16): 58-65.
    [2]徐品高.新一代防空导弹提高制导控制精度的需求与技术途径[J].战术导弹技术. 2002(3): 1-8.
    [3] Beal T. R. Dynamic Stability of Flexible Missile under Constant and Pulsating Thrusts[J]. AIAA Journal. 1995, 3(3): 486-494.
    [4] Cochran J. E., Evans C. D. and Mccurry J. B. Effects of Transverse Bending on the Motion of Free-Flight Rockets[R]. 1978, ADA 061109.
    [5] Lindberg H. E. In-flight Dynamics of a Flexible Missile[R]. 1960, AD606013.
    [6] Khadem Siamak E. and Euler James A. Dynamic Stability of Flexible Spinning Missiles(Part III: Vibration and Stability Analysis of a Structurally Dumped Controlled Free-free Timoshenko Beam, as a Model for Flexible Missiles)[J]. AIAA Proceedings of the Atmospheric flight mechanics. 1992: 2077-2084.
    [7] Cost T. L. and Weeks G. E. Free flight rocket accuracy-effect of bending during launch phase[C]. AIAA 18th A ero space Meeting, 1980
    [8]马永义.地空导弹地面弹性振动回路实验结果分析[J].强度与环境. 1986(6): 35-39.
    [9]刘石泉.导弹横向弯曲振动特性的计算[J].宇航学报. 1989(2): 104-112.
    [10]文辛.飞行器气动弹性设计[J].战术导弹技术. 1989(3): 24-31.
    [11]王良明.柔性弹丸飞行动力学研究[J].兵工学报. 1998, 19(3): 208-213.
    [12]王良明.尾翼式柔性弹箭飞行稳定性研究[J].弹道学报. 1998, 10(4): 67-74.
    [13]王良明.大长径比弹箭在飞行时的柔性变形特性分析[J].兵工学报. 2000, 21(2): 108-111.
    [14]王良明,王中原,易文俊.大长径比弹箭飞行中的共振条件研究[J].弹道学报. 2001, 13(4): 24-45.
    [15]王良明.细长弹箭气动弹性稳定性研究[J].兵工学报. 2001, 22(1): 31-33.
    [16]臧涛成,胡焕性.细长弹箭飞行时的振动模型[J].弹箭与制导学报. 1998(3): 51, 61, 71, 81, 91.
    [17]臧涛成,胡焕性.大长径比脱壳穿甲弹飞行时的横向振动[J].兵工学报.1999, 20(3): 892, 902, 12, 112.
    [18]柴方茂.导弹控制力/气动力/弹体弹性振动耦合作用分析[D].哈尔滨:哈尔滨工业大学, 1901.
    [19]朱伯立,杨树兴,胡勇.火箭弹控制系统与弹体发生弹性耦合的条件分析[J].北京理工大学学报. 2004, 24(7): 587-591.
    [20]王永,高强,毕永建.弹性体导弹横向振动自适应参数估计[J].电光与控制. 2009, 16(1): 6-9.
    [21]毕永建,王永.弹性体导弹鲁棒控制器设计[J].电光与控制. 2008, 15(4): 27-31.
    [22]吉礼超,宋贵宝.防空导弹控制方法的研究现状及展望[J].战术导弹技术. 2009(3): 54-59.
    [23]郭建国,周军,周凤岐.直接力/气动力复合控制技术分析[J].航空兵器. 2004(5): 12-15.
    [24] Herman Ronald D. and Bulter Joseph H. Subsystems for the Extended Range Interceptor(ERINT-1)Missile[C]. LTV Aerospace and Defense Co., Missiles Div, Dallas, TX: 1992
    [25] Dash S. M., Perrell E. R. and Kenzakowski D. C., et al. Turbulent Effects on Missile Lateral Control/Divert Jet Interactions[C]. 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV: 1999: 1-12.
    [26] Srivastava B. Aerodynamic Performance of Supersonic Missile Body and Wing Tip-Mounted Lateral Jets[J]. Journal of Spacecraft and Rockets. 1998, 35(3): 278-286.
    [27] Srivastava B. CFD analysis and validation of lateral jet control of a missile[C]. AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, NV: 1996: 1-31.
    [28] Min Byung Young, Lee Jae Woo and Byun Yung Hwan. Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile[C]. 21st Applied Aerodynamics Conference, Orlando, Florida: 2003: 1-11.
    [29] Innocenti Mario and Thukrat Ajay. Simultaneous Reaction Jet and Aerodynamic Control of Missile Systems[C]. AIAA Guidance, Navigation and Control Conference, Monterey, CA: 1993: 347-354.
    [30] Doman David, Gamble Brian and Ngo Anhtuan. Quantized Control Allocation of Reaction Control Jets and Aerodynamic Control Surfaces [J]. Journal of Guidance, Control, and Dynamics. 2009, 32(1): 12-24.
    [31] Ridgely D. Brett, Lee Yung and Fanciullo Todd. Dual Aero/Propulsive Missile Contro - Optimal Control and Control Allocation[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado: 2006: 1-21.
    [32]程凤舟,万自明,陈士橹,等.防空导弹直接力与气动力复合控制系统设计[J].飞行力学. 2003(2): 49-52.
    [33]郑逸峰,姜长生.拦截导弹直接力和气动力复合控制问题研究[J].弹箭与制导学报. 2005(SB): 484-487.
    [34] He Fenghua, Ma Kemao and Yao Yu. Firing logic optimization design of lateral jets in missile attitude control systems[C]. IEEE International Conference on Control Applications, 2008: 936-941.
    [35] Xie Zenghui, Liu Zhanchen and Wang Jian, et al. Study on lateral jet ignition strategy for blend-control missile based on fuzzy neural network[C]. 7th World Congress on Intelligent Control and Automation, 2008: 2460-2463.
    [36] Yongtao Bi, Yu Yao and Kemao Ma. Blended control system design for agile missile with lateral jets and aerodynamic surfaces[C]. 2nd International Symposium on Systems and Control in Aerospace and Astronautics, 2008: 1-5.
    [37] He Fenghua, Ma Kemao and Yang Baoqing, et al. Model predictive control for a missile with blended lateral jets and aerodynamic fins[C]. 27th Chinese Control Conference, 2008: 430-434.
    [38] Yu Yao, Yongtao Bi and Yuhang Wang. Analysis of the divert ability of atmospheric interceptors controlled by lateral jet thrusters[C]. Chinese Control and Decision Conference, 2009: 2399-2403.
    [39] Wang Zheng-Jie, Long Yang-Bo and Lu Jing, et al. Modeling and combined control of aerial vehicle based on aerodynamic force and lateral thrust[C]. The 2010 International Conference on Modelling, Identification and Control (ICMIC), 2010: 106-111.
    [40]纪刚,杨军.基于气动力/直接力复合控制的空空导弹末端制导性能分析[J].弹箭与制导学报. 2004(4): 17-18.
    [41]万自明,陈定昌,殷兴良.大气层内飞行的KKV关键技术分析综述[J].系统工程与电子技术. 1999(10).
    [42]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社, 1998: 143-160.
    [43]赵宏斌.直接力/气动力复合控制的导弹姿态运动仿真方法研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [44]张斌.末端直接侧向力/气动力复合控制[D].西北工业大学, 2004.
    [45]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京市:北京理工大学出版社, 2006: 40.
    [46]毕永涛.直气复合控制导弹制导控制问题研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [47]王宝祥.信号与系统[M].哈尔滨:哈尔滨工业大学出版社, 2005: 57-73.
    [48]纪明.多环架光电稳定系统及分析[J].应用光学. 1994, 15(3): 60-64.
    [49]王广雄.自动控制系统设计[M].北京:宇航出版社, 1986: 220-233.
    [50]赵善友.防空导弹武器寻的制导控制系统设计[M].北京:宇航出版社, 1992: 132-148.
    [51]穆虹.防空导弹雷达导引头设计[M].北京:宇航出版社, 1996: 354-436.
    [52]赵超.导引头稳定系统隔离度研究[J].电光与控制. 2008, 15(7): 78-82.
    [53]朱华征,范大鹏,马东玺,等.导引头伺服系统隔离度与测试[J].光学精密工程. 2009, 17(8): 1993-1998.
    [54]张盈华,万中南.红外凝视成像导引头随动系统误差分析[J].红外与激光工程. 2006(1): 25-30.
    [55]李岩.光电稳定跟踪装置误差建模与评价问题研究[D]. 2008.
    [56]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术. 2002(11): 45-52.
    [57] Cheok Ka C., Hu Hongxing and Loh Nan K. Modeling and Identification of a Class of Servomechanism Systems With Stick-Slip Friction[J]. Journal of Dynamic Systems, Measurement, and Control. 1988, 110(3): 324-328.
    [58]邹晖,陈万春,王鹏,等.敏捷导弹气动力/侧向推力复合控制特性分析研究[J].北京航空航天大学学报. 2004(3): 192-196.
    [59]崔莹莹,夏群力,祁载康.导引头稳定平台隔离度模型研究[J].弹箭与制导学报. 2006, 26(1): 22-25.
    [60]张崇军.导引头稳定平台控制回路设计分析[J].弹箭与制导学报. 2009(5): 46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700