雷达隐身目标电磁散射计算与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐身与反隐身对抗是现代电子战的一个重要方面。雷达目标的电磁散射特性研究是设计开发隐身武器装备与反隐身雷达系统的基础。针对冲激雷达在反隐身领域的可能应用,以及基于自研的冲激雷达实验系统发射的脉冲信号特征,文章首先从理论预估和暗室测量两个方面研究了隐身目标的低频宽带电磁散射特性和时域电磁散射特性,然后在外场用冲激雷达试验样机进行了隐身目标的探测实验。
     理论预估包括电磁散射计算方法研究和雷达隐身目标电磁散射计算两部分内容。在电磁散射计算方法中,选用时域有限差分法(FDTD)及其并行算法作为主要的预估方法。在电磁计算方法研究中,首先介绍了FDTD的基本原理和一些关键技术,研究了基于面元模型的FDTD网格生成技术和基于FDTD网格模型的涂敷层网格生成技术。然后研究了可节省时间的交替方向隐式—时域有限差分(ADI-FDTD)。接着进一步研究了适合计算非磁化等离子体的基于分段线性电流密度递归卷积(PLJERC)的ADI-FDTD,适合计算磁化等离子体的电流密度卷积—时域有限差分(JEC-FDTD)。最后结合编程实践,给出了基于消息传递接口(MPI)的并行FDTD的一些关键技术,指出了JEC-FDTD与一般并行FDTD的不同:并行JEC-FDTD增加电流密度的迭代和相邻子域相应的电流密度数据和电场数据的交换。
     在雷达隐身技术中,论文研究了外形隐身,雷达吸波材料(RAM)隐身和新兴的等离子体隐身技术。探讨了它们的原理,实现隐身的方法。然后用FDTD计算了分别采用这些隐身技术的目标的电磁散射特性,得到了一些有价值的结论。
     在暗室测量方面,介绍了两套基于紧缩场暗室的频域和时域测量系统。然后利用频域和时域测量系统,测量了典型隐身目标的电磁散射特性,并与计算结果进行了对比分析。计算和测量结果都表明,隐身目标在低频区的隐身效果较差。
     在外场探测方面,介绍了冲激雷达系统的特点和自研的冲激雷达实验系统的构成,并利用该系统成功的进行了近距离和中远距离探测隐身目标的实验。这证实冲激雷达具有反隐身的潜力。
The counterwork between stealth and anti-stealth is an important field in modern electronic war. Study of radar target's electromagnetic scattering characteristics is the foundation to design stealth weapons and anti-stealth radar systems. In this dissertation, based on the potential of impulse radars to detect stealth targets, and the pulse signal's character of an impulse radar test system designed by ourselves, firstly stealth targets' wideband electromagnetic scattering characteristics in low frequency and electromagnetic scattering characteristics in time-domain are studied by using both theory prediction and chamber measurement, finally several outdoor experiments to detect stealth targets are performed by using the impulse radar experiment system.
     Theory prediction includes study on electromagnetic computing methods and electromagnetic scattering computation of radar stealth targets. Among lots of methods to predict electromagnetic scattering characteristics, the finite-difference time-domain (FDTD) method and its parallel mode are chosen as the primary method. In the part of study on electromagnetic computing methods, firstly basic principles of the FDTD and some key techniques are introduced. And the FDTD meshing technique based on facet models and the technique of producing coated grids based on the FDTD grids are put forward. Then, the alternating direction implicit finite difference time domain (ADI-FDTD) method is studied. The ADI-FDTD method is extended to dispersive media—isotropic plasma based on the PLJERC(Piecewise Linear JE Recursive Convolution) method. And the JEC-FDTD method for the magnetized plasma is studied. Then, according to author's own programming practice, some key techniques of the parallel FDTD method based on MPI (Message Passing Interface) are provided. The difference between the parallel JEC-FDTD and the parallel FDTD has been pointed out. The parallel JEC-FDTD method increases current density iteration, and increases some current density datum and electric field datum exchange in the interface.
     Among the lots of radar stealth technique, shape-stealth, radar absorbing material (RAM) and developing plasma-stealth have been analyzed. Their principles and the stealthy methods have been researched. Then the electromagnetic scattering characteristics of stealth targets have been gotten by the FDTD method, and the valuable conclusions have been deduced.
     In the indoor measurement aspect, the systems of frequency domain and time domain are introduced. The electromagnetic scattering characteristics of the representative targets are measured by the systems. And the calculated results and the measured results are analyzed. The results indicate: stealthy abilities of stealth targets are weak in low frequency.
     In the outdoor detection aspect, the characteristics of the impulse radar system have been introduced. And our structure for the impulse radar experiment system has been provided. Then the experiments of detecting stealth targets in the short-range and in the long-range have been successfully performed. These show that the impulse radar has anti-stealth potential.
引文
[1](美)琼斯著,洪旗等译.隐身技术——黑色魔力的艺术.北京:航空工业出版社,1991.
    [2](英)理查森著,魏志祥等译.现代隐身飞机.北京:科学出版社,1991.
    [3](美)克拉特著,阮颍铮译.雷达散射截面——预估,测量和缩减.北京:电子工业出版社,1988.
    [4]阮颖铮编著.雷达散射截面与隐身技术.北京:国防工业出版社,1998.
    [5]夏新仁.隐身技术发展现状与趋势.中国航天,2002,(1):40-44.
    [6]黄培康.隐身威胁与雷达反隐身.雷达四抗技术研讨会论文集,1991.
    [7]刘志文,柯有安.雷达反隐身的若干问题与技术途径.现代雷达,1992,14(3):1-9.
    [8]倪养华,薛麒麟.隐身目标的频率特性分析及其频域对抗技术探讨.上海交通大学科技交流室,1987.
    [9]周文瑜,张长爱.天波超视距雷达反隐身技术.反隐身技术文集,1990,102-108.
    [10]赵尚弘,杨晓铁,谢小平.宽带冲击雷达与反隐形技术.空军工程大学学报(自然科学版),2000,1(2):82-85.
    [11]何建国,陆仲良,刘克成.超宽带雷达反隐身机理研究.国防科技大学学报,1997,19(1):70-76.
    [12]W.B.Scott,L.Calif.UWB radar have potential to dectect stealth aircraft.Aviation Week & Space Technology,1989,(4):38-41.
    [13]D.Moraitis and S.Auaud.Effect of radar frequency on the detection of shaped (low RCS) targets.IEEE International Radar Conference,1985.
    [14]H.F.Harmutl.On the effects of absorbing materials on electromagnetic waves with large relative band width.IEEE Trans.EMC,1983.
    [15]庄钊文,袁乃昌,刘少斌,莫锦军.等离子体隐身技术.北京:科学出版社,2005.
    [16]C.C.Lu and W.C.Chew,"A fast algorithm for solving hybrid integral equation",Proc.IEE-H,Vol.140.No.6,pp.455-460.Dec.1993.
    [17]R.L.wagner and W.C.Chew,"A ray-propagation fast mutipole algorithm",Microwave and Opt.Tech.Lett,July 1994,7(10):435-438
    [18]V.Jandhyala,B.shanker,E.Michielssen and W.C.Chew,"A combined steepest descent-fast mutipole algorithm for the analysis of three-dimensinal scattering by rough surface",1997,Inter.IEEE Antennas and Propagation symposium,2308-2311
    [19]C.C.Lu and W.C.Chew,"A multilevel algorithm for solving boundary-value scattering",Micro.Opt.Tech.Lett,July 1994.7(10):466-470
    [20]N.Lu and J.M.Jin,"Application of FMM to finite element-boundary integral solution of problems",IEEE Trans.Atenna.Propagat,Vol.44,No.6,pp.781-786,1996
    [21]J.Song,et al," Fast Illinois solver code(FISC)",IEEE Antennas Propag.Magazine,June 1998 40(3):27-34
    [22]聂在平,胡俊,姚海英,王浩刚.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报,1999,27(6):104-109.
    [23]王浩刚,聂在平,王军.对三维多层快速多极子方法中不变项计算的优化,电子学报,2000,28(9):105-107.
    [24]E.L.Murphy,Reduction of electromagnetic back scatter from a plasma clad conducting body[J].Journal of Applied Physics,1965,6.
    [25]Yong Gao,Jiaming Shi,Jiachun Wang,The calculation of back scattering radar cross section of plasma spheres[J].25thInternational Conference on Infrared and Millimeter Waves,2000,9.
    [26]JiaMing Shi,YongShun Ling,et al.,Scattering cross section of an inhomogeneous plasma cylinder.International Journal of Infrared and Millimeter Waves.Vol 16,No.11,1995.
    [27]王高峰,焦淑卿.电磁波与椭球等离子体的相互作用,武汉大学空间物理系,1985,11.
    [28]A.Helaly,E.A.Soliman,et al.Electromagnetic wave scattering by nonuniform plasma sphere.Can.J.Phys.75;919-932,1997.
    [29]D.E.Hinkel-Lipsker,et al.Concersion of electrostatic and electromagnetic waves in a plasma at the peak of a parabolic density profile.University of California of Los Angeles Department of Physics.1990.11.
    [30]刘明海,胡希伟,等.电磁波在大气层人造等离子体中的衰减特性,物理学报,51(6),2002.
    [31]Wang Ge,Cao Jin-Xiang,Song Fa-Lun.Optimal density profile of the plasma layer shielded by a conducting surface for the absorption of electromagnetic waves,Chin.Phys.Lett.20(10):1785,2003.
    [32]王舸,陈银华,等.电磁波在非均匀等离子体中的吸收.核聚变与等离子体物理,21(3):160,2001.
    [33]孙爱萍,童洪辉,等.磁化碰撞等离子体对雷达波的共振吸收.核聚变与等离子体物理,21(4):224,2001.
    [34]B.J.Hu,S.L.Lai.SMM analysis of reflection absorption and transmission from nonuniform magnetized plasma slab.IEEE Trans.On Plasma Science,27(4):1131-1135,1999.
    [35]刘少斌,莫锦军,袁乃昌.电磁波在不均匀磁化等离子体中的吸收.电子学报,31(3):372-376,2003.
    [36]Vidmar,R.J.,On the use of atmospheric pressure plasma as electromagnetic reflectors and absorbers[J].IEEE Trans.On Plasma.Sci.,1990,18(4):733-741.
    [37]K.G.Budden.The Propagation of Radio Waves.Cambridge.UK:Cambridge Univ.Press,1985.
    [38]M.Laroussi,J.R.Roth.Numerical calculation of the reflection,absorption,and transmission of microwaves by a nonuniform plasma slab[J].IEEE Trans.On Plasma.Sci.,1993,21(4):366-372.
    [39]W.W.Destler,J.E.Degrange,Experimental studies of high-power microwave reflection,transmission,and absorption from a plasma covered plane conducting boundary.J.Appl.Phys.69(9),1 May 1991.
    [40]A.B.Petrin.Transmission of Microwaves Through Magnetoactive Plasma[J].IEEE Trans.On Plasma Sci.,2001,29(3):471-478.
    [41]A.B.Petrin.On the Transmission of Microwaves Through Plasma Layer[J].IEEE Trans.On Plasma Sci.,2000,28(3):1000-1008.
    [42]A.B.Petrin.Nonlinear Interaction of Microwave and Plane Magnetoactive Plasma Layer[J].IEEE Trans.On Plasma Sci.,1998,26(2):150-158.
    [43]刘少斌,莫锦军,袁乃昌,不均匀磁等离子体的隐身机理—圆极化电磁波的碰撞吸收.电波科学学报,2002,17(3):258-263.
    [44]唐德礼,孙爱萍,邱孝明.均匀磁化等离子体与雷达波相互作用的数值分析.物理学报,2002,51(8),1724-1728.
    [45]黄兴中,吕善伟有等离子体层的导体圆柱空间散射特性的分析.北京航空航天大学,1998,24(3),260-262.
    [46]王宝发,康宗明,姜立军.复杂飞行器目标电磁散射特性及仿真研究.反隐身技术文集,1990,161-167.
    [47]薛明华,何国瑜.散射目标谐振区散射特性分析.北京航空航天大学学报, 1997,23(4):507-511.
    [48]宁焕生,钮保强,王宝发.低雷达散射目标的RCS分析与求解.航空学报,1998,19(7):78-80.
    [49]李清亮,焦培南,葛德彪.具有隐身结构飞机短波散射截面.电波科学学报,1999,14(1):31-35.
    [50]林桂森,向家武,陆海,周平.多平面角锥形隐身飞机模型的单双站RCS 特性.反隐身技术文集,1990,151-160.
    [51]陆柱蕙.F.117A飞机外形隐身性能的研究.系统工程与电子技术,1990,(6):31-38.
    [52]何国瑜,王振荣.隐身飞机雷达目标特性初探.现代雷达,1992,14(3):10-16
    [53]郦能敬.隐身飞机的雷达可探测性.现代雷达,1992,14(3):17-23.
    [54]张云飞,马东立,武哲,张考.两种隐身飞机模型的雷达散射特性测试与分析.北京航空航天大学学报,2003,29(2):147-150.
    [55]莫锦军.隐身目标低频宽带电磁散射特性研究:学位论文.长沙:国防科技大学,2004.
    [56]徐利军.复杂目标等离子体涂层的散射特性算法研究:学位论文.长沙:国防科技大学,2006.
    [57]王长清,祝西里著.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994.
    [58]高本庆著.时域有限差分法.北京:国防工业出版社,1995.
    [59]葛德彪,闫玉波著.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [60]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media.IEEE Trans.AP,1966,14(3):302-307
    [61]A.Taflove,K.R.Umashankar.Review of FDTD numerical modeling of electromagnetic wave scattering and radar cross section.Proc.IEEE,1989,66(5):682-699.
    [62]K.L.Shlager and J.B.Schneider.A selective survey of the finite-difference time-domain literature.IEEE Trans.AP,1995,37(4):39-56.
    [63]K.S.Kunz and R.J.Luebbers.Finite difference time domain method for electromagnetics.Boca Raton,FL:CRC Press,1993.
    [64]A.Taflove ed.Computational electrodynamics:the finite-difference time-domain method.Boston,MA:Artech House,1995.
    [65]A.Taflove ed.Computational electrodynamics:the finite-difference time-domain method(2 ed.).Boston,MA:Artech Home,2000
    [66]D.M.Sullivan.Electromagnetic simulation using the FDTD Method.New York:IEEE Press,2000.
    [67]T.Namild.A new FDTD algorithm based on alternating direction implicit method.IEEE Trans.MTT,1999,47(10):2003-2007.
    [68]T.Namili.3D ADI-FDTD method-unconditionally stable time domain algorithm for solving full vector maxwell's equations.IEEE Trans.MTT,2000,48(10):1743-1748.
    [69]F.Zheng,Z.Chen and J.Zhang.Toward the development of three-dimensional unconditionally stable finite difference time domain method.IEEE Trans.MTT,2000,48(9):1550-1558.
    [70]G.D.Kondylis et al.A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell's equations.IEEE Trans.MTT,2001,49(7):1310-1319.
    [71]J.L.Young,D.Gaitonde,et al.Toward the construction of a fourth-order difference scheme for transient EM wave simulation:Staggered grid approach.IEEE Trans.AP,1997,45(11):1573-1580.
    [72]S.V.Georgakopouls,R.A.Renaut,et al.A hybrid fourth-order utilizing a second-order FDTD subgrid.IEEE Microwave and Wireless Components Letters,2001,11(11):462-464.
    [73]T.Hirono,W.Lui and Y.Yoshikuni.A three-dimensional fourth-order finite-difference time-domain scheme using asymplectic integrator propagator.IEEE Trans.MTT,2001,49(9):1640-1647.
    [74]R.Holland,V.P.Cable and L.C.Wilson.Finite-volume time-domain technique (FVTD) for EM Scattering.IEEE Trans.AP,1991,33(4):281-294.
    [75]K.S.Yee,J.S.Chen.The finite-difference time-domain(FDTD) and finite-volume time-domain(FVTD) methods in solving Maxwell's equations.IEEE Trans.MTT,1997,45(3):354-363.
    [76]M.Yang,Y.Chen,R.Mittra.Hybrid finite-difference/finite-volume time-domain analysis on microwave integrated circuits with curved PEC surfaces using a non-uniform rectangular grid.IEEE Trans.MTT,2000,48(6):969-975.
    [77]Z.Chen,J.Xu.The generalized TLM-based FDTD—Summary of recent progress.IEEE Microwave and Guided Wave Letters,1997,7(11):12-14.
    [78]J.F.Lee,et al.A finite-element time-domain approach for solving Maxwell's equations.IEEE Microwave and Guided Wave Letters,1993,4(1):1680-1683.
    [79]S.M.Rao,T.K.Sarker.Numerical solution of time domain integral equations for arbitrarily shaped conductor/dielectric composite bodies.IEEE Trans.AP,2002,50(4):1831-1837.
    [80]Q.H.Liu.The pseudospectral time-domain(PSTD) method:A new algorithm for solution of Maxwell's equations.Proc.IEEE Antennas and Propag.Soc.Int.Symp.,1997,(1):122-125.
    [81]M.Krumpholz,L.P.B.Katehi.MRTD:New time-domain schemes based on multiresolution analysis.IEEE Trans.MTT,1996,44(4):555-571.
    [82]徐利军,袁乃昌.高阶ADI-FDTD算法的数值色散分析.电子与信息学报,2005,10:1662-1665.
    [83]Sun G and Trueman C W.Analysis and Numerical Experiments on the Numerical Dispersion of Two-Dimensional ADI-FDTD.IEEE Antennas and Wireless Propagation Lett.,2003,2(7):78-81.
    [84]W.C.Chew and W.H.Weedon,A 3d perfectly matched medium from modified Maxwells equations with stretched coordinates,Microwave Opt.Techno.Lett.,1994,7(13):599-604.
    [85]Q.H.Liu,An FDTD algorithm with perfectly matched layer for conductive media,Microwave Opt.Techno.Lett.,1997,14(2):134-137.
    [86]G.Liu and S.D.Gedney,Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method,IEEE Microwave Guided Wave Lett.,2000,7(10):261-263.
    [87]S.D.Gedney."The perfectly matched layer absorbing medium," in Advances in Computational Electrodynamics:The Finite Difference Time Domain,A.Taflove,Ed.Boston,MA:Artech House,1998.
    [88]K.S.Yee,Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,IEEE Trans.Antennas Propagat.,vol.14,pp.302-307,1966.
    [89]J.P.Berenger.A perfectly matched layer for the absorption of electromagnetic waves.J.of Computational Physics,1994,Vol.114,185-200.
    [90]J.P.Berenger.Perfectly matched layer for the FDTD solution of wave-structure problems.IEEE Trans.AP,1996,44(1):110-117.
    [91]J.P.Berenger.Three-dimensional perfectly matched layer for the absorption of electromagnetic waves.J.of Computational Physics,1996,Vol.127,363-378
    [92]Gedney S D.An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices.IEEE Trans.Antennas Propagat.,1995,44(12):1630-1639.
    [93]Gedey S D.An Anisotropic PML absorbing media for the FDTD simulation for field in lossy and dispersive media.Electromagnetics,July-Aug.1996,16(4):435-449.
    [94]Mur G.Absorbing boundary conditions for the finite-difference approximation of time-domain electromagnetic field equations.IEEE Trans.Electromagn.Compat.,1981,EMC 23(4):377-382.
    [95]黎淑兰.基于无耗和有耗介质基底的串扰理论研究和分析:学位论文.北京:北京邮电大学,2005.
    [96]Dennis M.Sullivan.An unsplit step 3-D PML for use with the FDTD method.IEEE Microwave and Guided Wave letters,1997,7(7):184-186.
    [97]K.S.Yee,D.Ingham and K.Shlager.Time-domain extrapolation to the far field based on FDTD calculations.IEEE Trans.AP,1991,39(3):410-423.
    [98]R.J.Lubbers,et el.A finite-difference time-domain near zone to far zone transformation.IEEE Trans.AP,1991,39(4):429-433.
    [99]K.L.Shlager and G.S.Smith.Near-field to far-field transform for use with the FDTD Method and its application to pulsed antenna problems.Electronics Letters,1994,30(6):1262-1264.
    [100]K.L.Shlager and G.S.Smith.Comparison of two FDTD near-field to far-field transforms applied to pulsed antenna problems.Electronics Letters,1995,31(12):936-938.
    [101]T.Martin.An improved near- to far-zone transformation for the finite-difference time-domain method.IEEE Trans.AP,1998,46(9):1263-1271.
    [102]O.M.Ramahi.Near- and far-field calculations in FDTD simulations using kirchhoff surface integral representation.IEEE Trans.AP,1997,45(5):753-759.
    [103]张光甫等.基于基尔霍夫积分的近远场变换的改进.电波科学学报,2000,15(3):339-342.
    [104]J.F.Lee and R.D.Edlinger.Automatic mesh generation using a modified Delaunay tessellation.IEEE Antennas and Propagation Magazine,1997,39(1):34-45.
    [105]Y.Srisukh,J.Nehrbass,F.L.Teixeira,F.F.Lee,and R.Lee.An approach for automatic grid generation in three-dimensional FDTD simulations of complex geometries.IEEE Antennas and Propagation Magazine,2002,44(4):75-80.
    [106]W.Sun and C.A.Balanis.Three-dimensional automatic FDTD mesh generauon on a PC.IEEE AP-S,1993:30-33.
    [107]Wenhua Yu and R.Mittra.A conformal FDTD software package for modeling of antennas and microstrip circuit components.IEEE Antenna and Propagation Magazine,2000,42(5):28-39.
    [108]Wenhua Yu and R.Mittra.Development of a graphical user interface for the conformal finite-difference-time-domain(CFDTD) software package.IEEE Antennas and Propagation Magazine,2003,45(1):58-74.
    [109]都志辉.高性能并行编程技术—MPI并行程序设计.北京:清华大学出版社,2001.
    [110]余文华,苏涛,Raj Mittra,刘永峻.并行时域有限差分.北京:中国传媒大学出版社,2005.
    [111]张玉,李斌,梁昌洪.PC集群系统中MPI并行FDTD性能研究.电子学报,2005,33(9):1694-1697.
    [112]R.J.Luebbers,F.Hunsberger,K.S.Kunz,R.Standler,and M.Schneier,A frequency-dependent finite-difference time-domain formulation for dispersive material,IEEE Trans.Electromagn.Compat.,1990,32:222-227.
    [113]R.J.Luebbers,F.Hunsberger,K.S.Kunz,A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma,IEEE Trans.Antennas Propagat.,1991,39:29-34.
    [114]F.Hunsberger,R.Luebbers,and K.Kunz,Finite-difference time-domain analysis of gyrotropic media—Ⅰ:Magnetized plasma,IEEE Trans.Antennas Propagat.,1992,40:1489-1495.
    [115]R.Luebbers,F.Hunsberger,FDTD for N th-order dispersive media,IEEE Trans.Antennas Propagat.,1992,40:1297-1301.
    [116]R.Siushansian,and J.LoVetri,A comparison of numerical techniques for modeling electromagnetic dispersive media,IEEE Microwave Guided Wave Lett.,1995,5:426-428.
    [117]T.Kashiwa,N.Y.Yoshida,and I.Fukai,Transient analysis of a magnetized plasma in three-dimensional space,IEEE Trans.Antennas Propagat.,1988,36::1096-1105.
    [118]L.J.Nickisch,and P.M.Franke,Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere,IEEE Antennas Propagat.Mag.,1992,34,:33-39.
    [119]O.P.Gandhi,B.Q.Gao,and T.Y.Chen,A frequency-dependent finite-difference time-domain for general dispersive media,IEEE Trans.Microwave Theory Technol.,1993,41:658-664.
    [120]D.M.Sullivan,Frequency-dependent FDTD methods using Z transforms,IEEE Trans.Antennas Propagat.,1992,40:1223-1230.
    [121]Q.Chen,M.Katsurai,and P.H.Aoyagi,An FDTD formulation for dispersive media using a current density,IEEE Trans.Antennas Propagat.,1998,46:1739-1745.
    [122]J.L.Young,A full finite difference time domain implementation for radio wave propagation in a plasma,Radio Sci.,1994,29(6):1513-1522
    [123]J.L.Young,Propagation in linear dispersive media:Finite difference time-domain methodologies,IEEE Trans.Antennas Propagat.,1995,43:422-426.
    [1]
    [124]J.L.Young,A higher order FDTD method for EM propagation in collisionless cold plasma,IEEE Trans.Antennas Propagat.,1996,44:283-1289,
    [125]D.F.Kelley,and R.J.Luebbers,Piecewise linear recursive convolution for dispersive media using FDTD,IEEE Trans.Antennas Propagat.,1996,44:792-797.
    [126]莫锦军,刘少斌,袁乃昌.非均匀等离子体覆盖目标隐身研究,电波科学学报,2002,17(1):69-73.
    [127]莫锦军,刘少斌,袁乃昌.等离子体覆盖导体柱宽带散射特性分析.微波学报,2003,19(1):20-24.
    [128]Shaobin Liu,Naichang Yuan and Jinjun Mo,A novel FDTD formulation for dispersive media.IEEE Microwave and Wireless Components Letters,2003.13(5):187-189.
    [129]S.A.Cummer,An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,IEEE Trans.Antennas Propagat.,1997,45(3):392-400.
    [130]Lijun Xu and Naichang Yuan.PLJERC-ADI-FDTD method for isotropic plasma.IEEE Microwave and Wireless Compon.Lett.,2005,15(4):277-279.
    [131]董长军,胡凌云,管有勋.聚焦隐身战机.北京:蓝天出版社,2005.
    [132]张考,马东立.军用飞机生存力与隐身设计.北京:国防工业出版社,2002.
    [133]R.A.Ross.Radar cross section of rectangular flat plates as a function of aspect angle.IEEE Trans.AP,1966,14(3):329-335.
    [134]G.T.Ruck,ed.Radar cross section handbook.Plenum Press,1970.
    [135]L.Peters.End-fire echo area of long,thin bodies.TRE Trans.AP,1958,6(1):138-139.
    [136]E.F.Collin.Field theory of guided waves.New York:McGraw Hill,1960.
    [137]K.M.Chen,Minimization of end-fire radar echo of a long thin body by impedance loading.IEEE Trans.AP,1966,14(3):319-323.
    [138]林炽森,倪维立.电磁混合介质履盖对行波散射的抑制.应用科学学报,1995,13(2):163-167.
    [139]蒋欣,王宝发.翼形齿状边缘电磁散射特性研究.全国天线理论、电磁散射与逆散射学术会议论文集,1999,76-80.
    [140]E.F.Knott.Traveling wave lobe location.IEEE Trans.AP,1990,38(11):1859-1861.
    [141]Curre N C.Radar reflectivity measurement:techniques and applications.Boston:Artech House,1989.
    [142]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [143]D J Gregoire,J Santoru and R W Schumacher.Electromagnetic-wave propagation in unmagnetized plasma.AD-A250710.1992.
    [144]J R Roth.Interaction of Electromagnetic Fields with Magnetized Plasma.AD-A285496.1996,204-209.
    [145]凌永顺.等离子体隐身及其用于飞机的可能性.空军工程大学学报(自然科学版),2000,1(2):1-3.
    [146]杨华,时家明,凌永顺.电磁波在磁化等离子体上的反射特性研究[J].电波科学学报,2001,16(2):196-199.
    [147]杨涓,何洪庆,毛根旺,唐金兰.应用于飞行器的等离子体隐身分析.现代防御技术,2002,30(3):40-45
    [148]John Phillip Rayner,Andrian Philip Whichello,Andrew Desmond Cheetham.Physical Characteristics of Plasma Antennas.IEEE Transactions on plasma science,2004,32(1):269-280.
    [149]Kang,Weng Lock,Rader Mark,Alexeff Igor.Conceptual study of stealth plasma antenna.IEEE International Conference on Plasma Science Proceedings of the 1996 IEEE International Conference on Plasma Science,Jun 3~5 1996,Boston,MA,USA,261.
    [150]Alexeff,Igor,Kang Weng Lock,Rader Mark,Douglass Clay,Kintner Delmar,Ogot Rolando,Norris Elwood.Plasma stealth antenna for the U.S.Navy.IEEE International Conference on Plasma Science Proceedings of the 1998 IEEE International Conference on Plasma Science,Jun 1998.
    [151]林昌禄,聂在平.天线工程手册.北京:电子工业出版社,2002.1143-1187.
    [152]周永祖.非均匀介质中的场与波.北京:电子工业出版社,1992.37-48.
    [153]H.G.布克.冷等离子体波.北京:科学出版社,1985.8-31.
    [154]B J Hu,G Wei and S L Lai.SMM analysis of reflection,absorption and transmission from nonuniform magnetized plasma slab.IEEE Trans on Plasma Sci,1999,27(4):1131-1135.
    [155]庄钊文,袁乃昌.雷达散射截面测量—紧凑场理论与技术.长沙:国防科技大学出版社,2000.
    [156]Michael A.Morgan,Brent W.MC Daniel,Transient Eleetroagnetic Scattering:Data Acquisition and Signal Processing,IEEE Trans on Instrumentation and Measurement,1988,37(2):263-267.
    [157]Michael A.Morgan,Ultra-Wideband Impulse Scattering Measurements,IEEE Trans on Antennas and Propagation,1994,42(6):840-846
    [158]张光甫.瞬态天线及其在超宽带雷达中的应用:学位论文.长沙:国防科学技术大学,2004.
    [159]隐身与反隐身技术和武器系统.中国国防科技信息中心研究报告,2001.
    [160]Taylor J D.Ultra-Wideband Radar Technology[M].London,CRC Press,2001.
    [161]Heyman E,Mandelbaum B,Shiloh J.Ultra-Wideband Short-Pulse Electromagneties 4.Boston,Kluwer Academic / Plenum Publishers,1999.
    [162]孙宗祥.等离子体减阻技术的研究进展.力学进展,2003,33(1):87-94.
    [163]http://bbs.armystar.com/bbs/viewthread.php?tid=71505&extra=page%3D2.
    [164]J.A.Strtton.Electromagnetic Theory.New York:MeCrraw-Hill,1941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700