城市道路环境机动车污染物排放扩散及其对行人影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着城市机动化进程的不断发展,城市交通拥堵状况日益加剧,由此带来的机动车尾气排放污染问题,严重的困扰着城市居民的工作和生活,恶化着城市生态环境,严重危害着人们的健康,环境污染问题已成为世界各国现代城市交通发展中面临的首要问题。步行是城市居民的主要出行方式之一,城市道路环境是行人步行的重要场所,由于城市道路环境两侧建筑密集,机动车流量较大,因此该区域污染扩散条件较差,污染源排放集中,使得城市道路环境空气污染比区域性空气污染更为严重,步行于其中的出行者没有任何遮蔽完全暴露于空气污染物中,而具有较大的健康风险。
     本研究以城市道路环境空气中3种影响人体健康的主要污染物(NO_x、CO、O_3)为研究对象,分析了城市道路环境污染物暴露特征以及行人步行速度相关影响因素;通过车载尾气测试系统得到机动车排放实测数据,分析评价了不同机动车污染物排放模型的模拟精度;在全面采集交通、污染物、气象等各类数据的基础上,开展了城市道路环境污染物扩散模拟研究;在整合数据采集系统与各类模型的基础上,构建了城市道路环境行人污染物暴露模拟平台。
     本文的主要研究内容和结论包括:
     (1)本研究比较分析了3种典型机动车尾气排放模型(MOBILE模型、IVE模型、CMEM模型)的原理、车型分类、适用范围等因素,通过车载尾气采集分析系统进行车辆行驶工况、尾气排放、油耗数据的采集,比较分析了3种模型的模拟结果。此外,本研究分别选取机动车在冷启动(Cold Start)、热启动(HotStart)与热稳定(Stabilized)3种状态下的运行工况片段,输入到CMEM模型中,分析比较了不同工况条件下的CMEM模型的模拟精度。研究结果表明,与宏观排放模型MOBILE模型、IVE模型相比,微观排放模型CMEM模型在准确获取机动车行驶工况数据的前提下,模拟精度较高。
     (2)本研究通过分析实测得到机动车尾气中NO_x(NO_2+NO)的构成比例,并利用空气污染物检测数据构建了城市道路环境NO_x与NO_2关系模型,从而改进了污染物扩散模型CALINE4,使其可以应用于城市道路环境NO_x浓度的模拟计算。通过对NO_x与CO两种污染物浓度模拟结果与实测结果的比较发现,环境风速小于3.0m/s时,模拟结果较为准确;当风速大于4.0m/s时,模拟值比实测值偏低。
     (3)本研究分析了O_3浓度与太阳辐射、NO_x浓度、温度、机动车流量、风速的相关性,分析结果表明,城市道路微观环境下O_3浓度与风速呈正相关特性,其原因在于风速的升高加大了污染物的扰动与混合程度,促进了O_3的生成反应。本文分别选取不同位置O_3浓度的相关影响因素,构建了可用于计算路侧检测点与背景检测点O_3浓度的多元回归模型。模拟结果与实测结果比较发现,路侧检测点模型计算值平均相对误差为7.71%,背景检测点模型计算值平均相对误差为4.08%。
     (4)本文构建了城市道路环境行人污染物暴露模拟平台,实现了对于城市道路环境下不同信号控制条件、不同走行线路行人的空气污染物暴露情况的模拟分析。模拟平台由基础数据采集模块、交通仿真模块(VISSIM)、机动车排放模块(CMEM)、污染物扩散浓度计算模块(CALINE4、回归模型)和行人污染物暴露计算模块5部分组成。针对各模块不同的车型分类方法,建立了各模块之间的车型映射关系。
     (5)应用城市道路环境行人污染物暴露模拟平台,分析了测试交叉口采取固定信号与感应信号两种信号控制方法的交通运行状况、污染物浓度分布状况、行人暴露量与行人污染物吸入剂量的变化情况。仿真结果表明,采用感应信号控制方法,交叉口机动车运行状况得到明显改善,主要污染物浓度显著降低,行人暴露量与污染物吸入剂量明显减少。以CO为例,感应信号控制条件下,行人污染物暴露量均值下降26.2%,通过该交叉口行人的平均CO吸入剂量减少3.1ml。
Accompany with development of urban motorization, the aggravation of traffic congestion in urban area brings negative effects on environment and human health. Environment pollution has become the most important problem faced by the large cities all over the world. Walking is one of the most important modes in travel, and urban street area is the important environment for pedestrian walking. Because of the large number buildings and vehicles in urban street environment, the vehicle exhaust pollutants are easy to accumulating and hard to dispersing, therefore the pollutant concentration in urban streets environment is higher than other areas. Pedestrians which walk and expose in air pollutants directly are the group who faces the most serious health risk.
     The thesis selected three important air pollutants (Nitrogen oxide, Carbon monoxide and Ozone) which had negative effects on human health, analyzed the definition and characteristics of pedestrian pollutants exposure and the influence factors of pedestrian walking speed, measured and collected the vehicle exhaust data by using on-board emissions measurement system, evaluated the precision of the different kind of vehicle exhaust models. Through collecting the traffic data, air pollution data and meteorologic data, analyzed the pollutant dispersion in urban area, built a platform which could simulate the pedestrian exposure condition in urban street area. The results of this thesis are as the following:
     (1) The thesis analyzed and compared the principle, vehicle type classification and application scope of three typical vehicle emission models (MOBILE, IVE and CMEM), collected the vehicle driving cycle data, exhaust emission data and fuel consumption data, compared the simulation results by different models with measured data. The thesis selected three kind of driving cycle fragment data (Cold Start, Hot Start and Stabilized) and input to CMEM model. The result showed that the microscopic emission model CMEM simulation precision was better than other macroscopic emission models.
     (2) The thesis improved the CALINE4 model by measuring the composition of the NO_X (NO_2+NO)in vehicle exhaust and the regression model of the NO_X and NO_2 relationship in urban street environment. The improved CALINE4 model can be used to simulation the concentration of CO and NO_X in urban street environment. Comparison between measured and simulated results showed that in the condition of the windspeed lower than 3.0m/s, the simulated results closed to the measured result. If the windspeed higher than 4.0m/s, the simulated results were lower than the measured results.
     (3) The thesis analyzed the correlation between the O_3 concentration and solar radiation, NO_X concentration, environment temperature, number of vehicle, wind speed. The correlation analysis results showed that there was a positive relation between O_3 concentration and windspeed. Accompany with the increasing of windspeed, the air pollutants mixing degree increases and the O3 formation reaction was accelerating. The multiple linear regression models for calculating O3 concentration in roadside and background were built. The comparison between measured and simulated results showed that the relative error of the roadside model was 7.71 %, and the background model was 4.08%.
     (4) The thesis built a simulation platform for the pedestrian air pollutants exposure research which could simulate the exposure by different signal control methods and different walking routes. The simulation platform comprised by five different function modules: Basic data collection module, Vehicle emission module (CMEM), Pollutants dispersion module (CALINE4 and Multiple linear regression models) and Pedestrian exposure calculation module. According to the different vehicle type classification definition in functions modules, the vehicle type mapping relation between different modules was built.
     (5) The thesis analyzed the traffic operation status, concentration of the pollutants, pedestrian exposure and pollutant inhaled dose in fixed timing signal and actuated signal by using the simulation platform. The simulation results showed that traffic operation status and concentration of the pollutants improved significantly, the value of pollutant exposure and dose decreased in condition of actuated signal. For example, the concentration of the CO decreased about 26.2%, the average value of the pedestrian CO dose decreased about 3.1ml.
引文
[1] Adams H. S., Nieuwenhuijsen M. J., Colvile R. N. Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmospheric Environment, 2001,35(1-3):4557-4566.
    [2] Alm S., Mukala K., Tiittanen P., Jantunen M.J. Personal carbon monoxide exposures of pre school children in Helsinki, Finland comparison to ambient air concentrations [J]. Atmospheric Environment, 2001,35(36):6259-6266.
    [3] An F., Barth M.J., Scora G, and Younglove T. Catalyst cold-start characterization and modeling[C]. The 6~(th) CRC On-Road Vehicle Emission Workshop. San Diego, USA, 1996.
    [4] Baker C. J.. Flow and dispersion in ground vehicle wakes [J]. Journal of Fluids and Structures, 2001,15(7):1031-1060.
    [5] Benson, P.E. CALINE4: A dispersion model for predicting air pollutant concentrations near roadways[R]. Report No.FHWA/CA/TL-84-15. State of California, Department of Transportation, 1989.
    [6] Benson, P. A review of the development and application of the CALINE3 and4 models [J]. Atmospheric Environment, 1992,26(3):379-390.
    [7] Carruthers D. J., Edmunds H. A., Lester A. E., McHugh C. A., SinglesR. J. Use and validation of ADMS-Urban in contrasting urban and industrial locations[C]. Proceeding of 5th International Conference on Harmonisation within Dispersion Modelling for Regulatory Purposes, 1998:360-367.
    [8] Chan A.T. Commuter exposure and indoor-outdoor relationships of carbon oxides in buses in Hong Kong [J].Atmospheric Environment, 2003, 37(27):3809-3815.
    [9] Chan S. H., Hoang D. L. Heat transfer and chemical reactions in exhaust system of a cold-start engine [J]. International Journal of Heat and Mass Transfer, 1999,42(22): 4165-4183.
    [10] Chen H.B., Namdeo A., Bell M. Classification of road traffic and roadside pollution concentrations for assessment of personal exposure [J]. Environmental Modelling and Software, 2008,23(3):282-287
    [11] Cleveland, W.S., Graedel, T.E., Kleiner, B., Warner, K.L. Sunday and workday variations in photochemical air pollutants in New Jersey and New York [J]. Science, 1974,186 (4168): 1037-1038.
    [12] Cloke J., Buckle G, Emmerson P., Paulley N. Additional traffic information to improve local emission estimates, TRL Report 509[R]. Transport Research Laboratory, Berkshire, 2001.
    [13] Coffin, A., Morrall J. Walking speeds of elderly pedestrians at crosswalks [J]. Transportation Research Record, 1995,1487:63-67.
    [14] Cooper C.D., Arbrandt M. Mobile source emission inventories-monthly or annual average inputs to MOBILE6?[J].Journal of the Air&Waste Management Association,2004,54(8):1006-1010.
    [15]Cresswell,C.,Griffiths J.D.,Hunt J.G.Site evaluation of a Pelican crossing simulation model [J].Traffic Engineering and Control,1978,19:546-549.
    [16]Crutzen,P.J.Photochemical reaction initiated by and influencing ozone in unpolluted tropospheric air[M].1974,Tellus:44-55.
    [17]Davis N.,Lents J.,Osses M.Development and application of an International Vehicle Emissions Model[C].Transportation Research Board 81~(st)Annual Meeting,2005,Washington,DC,USA.
    [18]Deepak,P.,Balkrishna,S.,Manohar L.S.,Akikazu K.,Akira K.,Yoshio I.Ground level ozone concentrations and its association with NO_x and meteorological parameters in Kathmandu valley,Nepal[J].Atmospheric Environment,2006,40(40):8081-8087.
    [19]DEFRA(Department for Environment Food and Rural Affairs).The air quality strategy for England,Scotland,Wales and Northern Ireland:A Consultation Document on Options for Further Improvements in Air Quality[R],2006.
    [20]Department of Health,UK.Quantification of the effect of air pollution on health in the United Kingdom[R].London,1998.
    [21]Derwent R.G.,Jenkin M.E.,Saunders S.M.,Pilling M.J.,Simmonds P.G.,Passant N.R.,Dollard G.J.,Dumitrean P.,Kent A.Photochemical ozone formation in North West Europe and its control[J].Atmospheric Environment,2003,37(14):1983-1991.
    [22]DETR(Department of the Environment,Transport and the Regions).The air quality strategy for England,Scotland,Wales and Northern Ireland[R],2000.
    [23]Diem J.E.,Comrie A.C.Predictive mapping of air pollution involving sparse spatial observations[J].Environment Pollution,2002,119(1):99-117.
    [24]DiPietro,C.M.,King L.E.Pedestrian gap-acceptance[J],Highway Research Record,1970,308:80-91.
    [25]Due(?)as,C.,Fernández,M.C.,Ca(?)ete,S.,Carretero,J.,Liger,E.Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean coast[J].Science of the Total Environment,2002,299(1-3):97-113.
    [26]Elkamel A.,Abdul-Wahab S.,Bouhamra W.,Alper E.Measurement and prediction of ozone levels around a heavily industrialized area:a neural network approach[J].Advances in Environmental Research,2001,5(1):47-59.
    [27]Elminir,H.K.Dependence of urban air pollutants on meteorology[J].Science of the Total Environment,2005,350(1-3),225-237.
    [28]Environmental Protection Agency.Description and history of the MOBILE highway vehicle emission factor Model[R].2004.http://epa.gov/otaq/models/mobhist.txt
    [29]Environmental Protection Agency.User's guide to MOBILE6.1 and MOBILE6.2:mobile source emission factor model[M].U.S.,2002.
    [30] Fitzpatrick, K., Brewer M. A., Turner S. Another look at pedestrian walking speed [C] The 85~(th) Annual Meeting of the Transportation Research Board, 2006, Washington, DC, USA.
    [31] Fruin, J. J. Designing for pedestrians: a level of service concept [J]. Highway Research Record, 1971,355:1-15.
    [32] Fruin, J. J. Pedestrian planning and design [M]. Elevator World, USA, 1987.
    [33] Gates, T. J., Noyce D. A., Bill A. R., Van Ee N. Recommended walking speeds for pedestrian clearance timing based on pedestrian characteristics[C]. The 85~(th) Annual Meeting of the Transportation Research Board, 2006, Washington, DC,USA.
    [34] Greaves S., Issarayangyun T., Liu Q. Exploring variability in pedestrian exposure to fine particulates (PM_(2.5)) along a busy road[J] .Atmospheric Environment, 2008,42(8): 1665-1676.
    [35] Gregg J.W., Jones C.G., Dawson T.E.. Urbanization effects on tree growth in the vicinity of New York City [J]. Nature, 2003,424(6945):183-187.
    [36] Griffiths, J. D., Hunt J. G., Marlow M. Delays at pedestrian crossings: 1. Site observations and the interpretation of data [J]. Traffic Engineering and Control, 1984,25(6):365-371.
    [37] Guerrier J. H., Jolibois S. C. The safety of elderly pedestrians at five urban intersections in Miami[C]. Proceedings of the Human Factors and Ergonomics Society 42~(nd) Annual Meeting, 1998, Chicago, USA.
    [38] Gulliver J., Briggs D. J. Personal exposure to particulate air pollution in transport microenvironments [J].Atmospheric Environment, 2004,38 (1):1-8.
    [39] Guo J. Y., Mao B.H., Liu M.J., Gao L. P. Study on actuated signal controlled system in isolated intersection [C]. Chinese Control and Decision Conference, 2008, 2261-2265,Yantai, China.
    [40] Heinz S., Van Dop H. Buoyant plume rise described by a Lagrangian turbulence model [J]. Atmospheric Environment, 1999, 33(1):2031-2043.
    [41] Hoel, L. A. Pedestrian travel rates in central business districts [J], Traffic Engineering, 1968, 38(4): 10-13.
    [42] Ishaque M. M.. Policies for pedestrian access: Multi-modal trade-off analysis using micro-simulation techniques [D]. Imperial College London PhD dissertation, 2006.
    [43] ITE (Institute of Transportation Engineers).Traffic Engineering Handbook.2~(nd) Edition [M]. Englewood Heights, NJ, USA, 1982.
    [44] Kaster P., Plate E.J. Wind-tunnel study of concentration fields in street canyons [J]. Atmospheric Environment, 1999, 33(2):3973-3979.
    [45] Kenty K. L., Poor N. D., Kronmiller K. G., McClenny W, King C, Atkeson T., Campbell S. W. Application of CALINE4 to roadside NO/NO_2 transformations [J]. Atmospheric Environment, 2007,41(20): 4270-4280.
    [46] Kim D.H., Mridul G., Dinesh G. On the prediction of concentration variations in a dispersing heavy-duty truck exhaust plum using k - ε turbulent closure [J]. Atmospheric Environment, 2001,35(31):5267-5275.
    [47] Knoblauch R. L., Pietrucha M. T., Nitzburg M. Field studies of pedestrian walking speed and start-up time [J]. Transportation Research Record, 1996,1538: 27-38.
    [48] Kousa A., Kukkonen J., Karppinen A., Aarnio P., Koskentalo T. A model for evaluation the population exposure to ambient air pollution in an urban area [J].Atmospheric Environment, 2002,36(13):2109-2119.
    [49] Lam, W. H. KL, Morrall J.F., Ho H. Pedestrian flow characteristics in Hong Kong [J] Transportation Research Record, 1995,1487: 56-62.
    [50] Lebret E. Models of human exposure based on environmental monitoring [J].Science of the total environment, 1995,168(2):179-185.
    [51] Lee, J., Abdulhai B., Shalaby A., Chung E. Real-time optimization for adaptive traffic signal control using genetic algorithms [J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2005,9(3): 111-122.
    [52] Leighton, P.A. Photochemistry of Air Pollution [M]. Academic Press, New York, 1961.
    [53] Levitin J., Harkonen J., Kukkonen J., Nikmo J. Evaluation of the CALINE4 and CAR-FMI models against measurements near a major road [J].Atmospheric Environment, 2005,39(25): 4439-4452.
    [54] Lioy, P. J. Assessing total human exposure to contaminants [J]. Environmental Science and Technology, 1990,24(7):938-945.
    [55] Mage D.T. Concepts of hum an exposure for assessment for airborne particulate matter [J].Environmental International, 1985, 11(1):407-412.
    [56] Mazzeo N. A., Venegasa L. E., Chorenc H. Analysis of NO, NO_2, O_3 and NO_x concentrations measured at a green area of Buenos Aires City during wintertime [J]. Atmospheric Environment, 2005, 39(17):3055-3068.
    [57] McConnell R., Berhane K., Yao L., Lurmann F.W., Avol E., Peters J. M. Predicting residential ozone deficits from nearby traffic [Jj.Science of the Total Environment, 2006, 363 (1-3):166-174.
    [58] McHugh C. A., Carruthers D. J., Edmunds H. A. ADMS-Urban: an Air Quality Management System for Traffic, Domestic and Industrial Pollution [J]. International Journal of Environment and Pollution, 1997,8(3/6):437-440.
    [59] Mishra V. K., Padmanabhamutry B. Performance evaluation of CALINE3, CAL3QHC and PART5 in predicting lead concentration in the atmosphere over Delhi [J]. Atmospheric Environment, 2003, 37(22): 3077-3089.
    [60] Monn C. Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate mater, nitrogen dioxide and ozone [J].Atmospheric Environment, 2001,35(1):1-32,34.
    [61] Moore, R. L. Pedestrian choice and judgment [J]. The Journal of the Operational Research Society, 1953,4(1):3-10.
    [62] Nevers N. D. Air Pollution Control Engineering [M]. McGraw-Hill Companies, Inc., New York, 2000:571-573.
    [63] Nicas M. Using mathematical models to estimate exposure to workplace air contaminants [J]. Chemical Health and Safety, 2003,10(1): 14-21.
    [64] NRC, National Research Council. Human exposure assessment for airborne pollutants: Advances and applications [M]. Committee on Advances in Assessing Human Exposure to Airborne Pollutants, Committee on Geosciences, Environment, and Resources, NRC. Washington, DC: National Academy Press, 1990.
    [65] Older S. J. Movement of pedestrians on footways in shopping streets [J], Traffic Engineering and Control, 1968,10(4):160-163.
    [66] O'Flaherty C. A., Parkinson M. H. Movement in a city centre footway [J]. Traffic Engineering and Control, 1972,13(2): 434-438.
    [67] Pokharel S. S., Bishop G. A., Stedman D. H. An on-road motor vehicle emissions inventory for Denver: an efficient alternative to modeling [J]. Atmospheric Environment, 2002,36 (33):5177-5184
    [68] Polus A., Schofer J. L., Ushpiz A. Pedestrian flow and level of service [J], Journal of Transportation Engineering, 1983,109 (1):46-56.
    [69] PTV, Planung Transport Verkehr. VISSIM user manual, Version 3.70[M]. PTV Corporation, 2003.
    [70] Qin Y., Tonnesen G. S., Wang Z. One hour and eight hour average ozone in California south coast Air Basin: trends in peak values and sensitivity to precursors [J]. Atmospheric Environment, 2004, 38(14):2197-2207.
    [71] Rakha H., Ahn K., and Trani A. Comparison of MOBILE5a, MOBILE6, VT-MICRO, and CMEM models for estimating hot-stabilized light-duty gasoline vehicle emissions [J]. Canadian Journal of Civil Engineering, 2003, 30(6): 1010-1021.
    [72] Robins A. G., Carruthers D. J., McHugh C. A. The ADMS building Effects module [J]. International Journal of Environment and Pollution, 1997, 8(3/6):708-717.
    [73] Robinson N. F., Pierson W. R., Gertler A. W., Sagebiel J. C. Comparison of MOBILE4.1 and MOBILE5 predictions with measurements of vehicle emission factors in Fort McHenry and Tuscarora mountain tunnels [J]. Atmospheric Environment, 1996,30(12): 2257-2267
    [74] Sakamoto M., Yoshimura A., Kosaka H., Hiraki T. Study on weekend - weekday differences in ambient oxidant concentrations in Hyogo prefecture [J]. Journal of Japan Society of Atmospheric Environment, 2005,40(5):201-208.
    [75] Sarkar A. K., Janardhan K. S. V. S. Pedestrian flow characteristics at an intermodal transfer terminal in Calcutta [J]. World Transport Policy and Practice, 2001, 7(1):32-38.
    [76] Satsangi G.S., Lakhani A., Kulshrestha P. R., Taneja A. Seasonal and diurnal variation of surface ozone and a preliminary analysis of exceedance of its critical levels at a semi-arid site in India [J]. Journal of Atmospheric Chemistry, 2004,47(3):271-286.
    [77] Sousa S.I.V., Martins F.G, Alvim-Ferraz M.C.M., Pereira M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations[J].Environmental Modelling and Software,2007,22(1):97-103.
    [78]Tanaboriboon Y.,Guyano J.A.Analysis of pedestrian movements in Bangkok[J],Transportation Research Record,1991,1294,52-56.
    [79]Tanaboriboon Y.,Hwa S.S.,Chor H.C.Pedestrian characteristics Study in Singapore[J],Journal of Transportation Engineering,1986,112(3):229-235.
    [80]Tu J.,Xia Z.G.,Wang H.S.,Li W.Q.Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China[J].Atmospheric Research,2007,85(3-4):310-337.
    [81]UK Emissions Inventory Team.UK emissions of air pollutants 1970 to 2006[R].2008.
    [82]University of California at Riverside.Comprehensive modal emissions model(CMEM),version 3.01 User's Guide[M].U.S.,2006.
    [83]University of California at Riverside.IVE model users manual(version 2.0)[M].2008,http://www.issrc.org/ive/.
    [84]University of Leeds,University of Bradford.Quantification of Population Exposure Benefits of Reducing Roadside and Urban Background Pollution Concentrations[R].2005.
    [85]USEPA.Exposure factors handbook[R].1997,Washington,DC.
    [86]USEPA.Guidelines for exposure assessment[R].1992,Washington,DC.
    [87]US-NAS.Human exposure assessment for airborne pollutants,advantages and opportunities [M].Washington:National Academy Press,1991:198-239.
    [88]Virkler,M.,Elayadath S.Pedestrian speed-flow-density relationships[J],Transportation Research Record,1994,1438:51-58.
    [89]Virkler,M.Pedestrian compliance effects on signal delay[J],Transportation Research Record,1998,1636:88-91.
    [90]Watson A.Y.,Bates R.R.,Kennedy D.Air Pollution,the automobile,and public health [M].National Academy Press,Washington,D.C.,1988:207-238.
    [91]WHO,Principles for the assessment of risks to human health from exposure to chemicals[R].Geneva,2000.
    [92]WHO,World Health Organization.Guidelines for air quality[M].2000,Geneva.
    [93]Willis A.,Gjersoe N.,Havard C.,Kerridge J.,Kukla R.Human movement behaviour in urban spaces:implications for the design and modeling of effective pedestrian environments[J],Environment and Planning B,2004,31(6):805-828.
    [94]Wilson,D.G.,Grayson G.B.Age-related differences in the road crossing behaviour of adult pedestrians[R].TRRL Report LR 933,Transport Research Laboratory,Berkshire,1980.
    [95]Yeo S.K.,He Y.Commuter characteristics in mass rapid transit stations in Singapore[J].Fire Safety Journal,2009,44(2):183-191.
    [96]安俊岭.北京近交通主干线地区的臭氧生成效率[J].环境科学学报,2006,26(4):652-657
    [97]白志鹏,贾纯荣,王宗爽,朱坦.人体对室内外空气污染物的暴露量与潜在剂量的关系[J].环境与健康杂志,2002,19(6):425-428.
    [98]北京交通发展研究中心,北京交通大学.北京市第三次居民出行调查数据处理与分析报告[R].2007.
    [99]北京市汽车研究所,清华大学环境工程系,广州市环境监测中心站,中国环境科学研究院.中国典型城市机动车污染排放现状评估[R],1997.
    [100]陈红梅,陈崇成,汪小钦.应用CALINE4模式模拟机动车排气污染的时空分布-以厦门市主干道路为例[J].福州大学学报(自然科学版),2004,32(2):257-260.
    [101]陈扶岜,吴中.基于VISSIM的交叉口感应信号控制仿真研究[J].中国科技论文在线,2007,4.
    [102]陈琨,于雷.用于交通控制策略评估的微观交通尾气模拟与实例分析[J].交通运输系统工程与信息,2007,7(1):93-100.
    [103]冯树民,吴阅辛.信号交叉口行人过街速度分析[J].哈尔滨工业大学学报,2004,36(1):76-78.
    [104]傅立新,郝吉明,何东全,贺克斌.北京市机动车污染物排放特征[J].环境科学,2000,21(3):71-73.
    [105]傅立新,贺克斌,何东全,唐仲洲,郝吉明.MOBILE汽车源排放因子计算模式研究[J].环境科学学报,1997,17(4):474-479.
    [106]广州市交通规划研究所.2005年广州市居民出行调查总报告[R].2006.
    [107]郭淑霞,于雷,宋国华.重型柴油车实测排放因子和MOBILE6预测值的对比分析[J].安全与环境工程,2007,14(2):17-21
    [108]国务院发展研究中心产业经济研究部,清华大学环境科学与工程系,中国汽车技术研究中心,中国环境科学研究院.中国机动车排放污染与控制[R].2001.
    [109]郝吉明,吴烨,傅立新,何东全,贺克斌.中国城市机动车排放污染控制规划体系研究[J].应用气象学报,2002,(Z1):196-204.
    [110]何春玉,王歧东.运用CMEM模型计算北京市机动车排放因子[J].环境科学研究,2006,19(1):109-112.
    [111]洪正芳.典型街道环境空气质量分析[J].中国环境监测,2006,22(4):77-79.
    [112]黄成,陈长虹,戴璞,李莉,黄海英,程真,贾记红.轻型柴油车实际道路瞬时排放模拟研究[J].环境科学,2008,29(10):2975-2982.
    [113]黄虹,李顺诚,曹军骥,邹长伟,陈新庚.空气污染暴露评价研究进展[J].环境污染与防治,2005b,27(2):118-122.
    [114]黄虹.广州市住宅室内外大气PM_(2.5)的化学组成特征、来源及暴露评价[D].中山大学硕士学位论文,2005a.
    [115]霍红,贺克斌,王歧东.机动车污染排放模型研究综述[J].环境污染与防治.2006,
    28(7):526-530.
    
    [116]江田汉.北京市地面臭氧浓度的非线性动力学预报模型研究[D].北京大学博士学位论文,2005.
    [117]姜允迪,王式功,祁斌.兰州城区臭氧浓度时空变化特征及其与气象条件的关系[J].兰州大学学报(自然科学版),2000,36(5):118-125.
    [118]金柏青,城市出租车选型与城市大气环境容量关系的研究[D].内蒙古大学硕士学位论文,2006.
    [119]景超.行人过街交通特性研究[D].吉林大学博士学位论文,2007.
    [120]竟峰,张旭.利用WE模型进行公交车尾气排放分析[J].环境科学与技术,2006,29(9):46-48.
    [121]兰涛.CALINE4模型在西安市主干道机动车CO污染扩散计算中的应用研究[D].西安建筑科技大学硕士学位论文,2006.
    [122]李东东,刘厚凤,杜瑞雪.应用CALINE4模式估算机动车排放污染物的浓度.以济南市主干道为例[J].资源开发与市场,2009,25(1):53-54,70.
    [123]李锦菊,沈亦钦.中美两国环境空气质量标准比较[J].环境监测管理与技术,2003,15(6):24-26.
    [124]李念平,付峥嵘.气溶胶颗粒物人体暴露量评估方法研究进展[J].湖南工业大学学报,2007,21(4):17-21.
    [125]李庆丰,王兆安,杨建国.混杂交通微观仿真原型系统的验证[J].系统仿真学报,2005,17(3):545-547.
    [126]李伟,傅立新,郝吉明,马红,李锁强,胡伟.中国道路机动车10种污染物的排放量[J].城市环境与城市生态,2003,16(2):36-38.
    [127]李修刚,杨晓光,王炜,邓学钧.用于城市交通规划的机动车污染物排放因子[J].交通运输工程学报,2001,1(4):87-91.
    [128]凌英,付娟,宁智.街道峡谷内机动车排气污染物的扩散规律[J]北京交通大学学报,2006,30(4):89-93,97.
    [129]刘小明,王飞跃.基于Agent的单路口控制的研究[J].系统仿真学报,2006,16(4),49-53.
    [130]刘志强,梅德纯,张晓娜.镇江市机动车污染物扩散模拟分析[J].江苏大学学报(自然科学版),2005,26(6):480-483.
    [131]马丽萍,宁平,张爱敏,冯权莉,王学谦.汽车尾气排气系统冷启动热量传递数值模拟[J].化学工程,2006,34(3):64-67.
    [132]马因韬,刘启汉,雷国强,李潭峰,染胜基.机动车排放模型的应用及其适用性比较[J].北京大学学报(自然科学版),2008,4(2):308-316.
    [133]毛保华,杨肇夏,陈海波.道路交通仿真技术与系统研究[J].北方交通大学学报,2002,26(5):37-46.
    [134]孟紫强.环境毒理学[M].北京,中国环境科学出版社,2000.
    [135]宁智,张振顺,付娟,资新运,张春润.怠速时汽车污染物在排气尾流中扩散特性的数值分析[J].环境科学,2006,27(3):425-450.
    [136]裴玉龙,冯树民.城市行人过街速度研究[J].公路交通科技,2006,23(9):104-107.
    [137]乔卓,张安琪.沈阳市机动车尾气的污染影响和控制对策[J].环境保护科学,2003,4(29):8-9.
    [138]任小平.基于MOBILE6.2模型的西安市机动车综合排放因子研究[D].西安建筑科技大学硕士学位论文.2006.
    [139]邵春福,李娟,赵熠,董春娇.行人交通的视频检测方法综述[J].交通运输系统工程与信息,2008,8(4):23-29
    [140]史建港.大型活动行人交通特性研究[D].北京工业大学博士学位论文,2007.
    [141]舒毅.城市多路口高峰时段车辆快速消散感应控制策略研究[D].河海大学硕士学位论文,2007.
    [142]孙智勇.信号交叉口人行横道的行人交通特性研究[D].北京工业大学硕士学位论文,2004.
    [143]陶俊,谢文彰,杨多兴,王雪梅.利用ADMS-Urban模型测算顺德区SO_2环境容量[J].2007,22(1):28-31.
    [144]万李,吴晓东,陈华鹏,翁端.活性炭纤维在机动车尾气净化中的研究与应用展望[J].环境污染治理技术与设备,2005,6(8):6-9.
    [145]万涛,于雷,裴文文,宋国华.捷达车实测排放因子和MOBILE6预测值的对比分析[J].交通环保,2005,26(2):11-14.
    [146]王虎,李孟良,乔维高.一种汽车源排放模型.IVE模型简介[J].中国环境监测,2007,23(5):78-81
    [147]王虎,赵清,孙鸿.从车辆排放特性曲线研究IVI模型对我国城市车辆的适应性[J].河南科技大学学报:自然科学版,2007,28(1):34-37,45.
    [148]王嘉松,陈达良,黄震,张镇顺,宁治.实际大气条件下汽车尾气扩散的模拟与观测[J].上海交通大学学报,2005,39(11):1891-1894.
    [149]王京伟.可持续发展城市交通之大气环境影响研究[D].长安大学硕士学位论文,2005.
    [150]王瑞斌,王明霞,安华.我国环境空气质量标准与国外相应标准的比较[J].环境科学研究,1997,11(6):35-39.
    [151]王炜,项乔君,常玉林,李铁柱,李修刚.城市交通系统能源消耗与环境影响分析方法[M].北京:科学出版社,2002:293-319.
    [152]王文,于雷,刘娟,宋国华.中巴车实测排放因子和MOBILE6预测值的对比分析[J].交通环保,2005,26,(3):40-43.
    [153]王玉鹏.多路口感应信号控制优化设计及其仿真[D].河海大学硕士学位论文,2007.
    [154]王远成,李永安,张懿,陈明九.典型城市街道内汽车排放污染物扩散规律的模拟研究[J].空气动力学学报,2006,24(3):350-355.
    [155]魏复盛,Chapman R.S..空气污染对呼吸健康影响研究[M].北京,中国环境科学出版社,2001:1-12.
    [156]吴大磊,林怡青,彭美春,蒋文明,王贤烽.利用MOBILE 6.2模型预测LPG出租车排放因子[J].环境监测管理与技术,2009,1:46-50.
    [157]吴鹏章,张晓山,牟玉静.室内外空气污染暴露评价[J].上海环境科学,2003,22(8):573-579.
    [158]肖杨,毛显强,马根慧,李卓.基于ADMS和线性规划的区域大气环境容量测算[J].环境科学研究,2008,21(3):13-16.
    [159]徐成伟,吴超仲,初秀民,巩晶,张璨.基于CMEM模型的武汉市轻型机动车平均排放因子研究[J].交通与计算机,2008,26(4):185-188.
    [160]许建昌.车辆道路实际排放特征研究及应用[D].武汉理工大学硕士学位论文,2006.
    [161]徐伟嘉,刘永红,余志.ADMS-Urban在机动车尾气扩散上的应用研究[J].科技管理研究2004,6:87-89.
    [162]杨多兴.ADMS-Urban大气扩散模型理论[J].环境影响评价动态,2005,4(6):15-17.
    [163]杨晓光.城市道路交通设计指南[M].北京:人民交通出版社,2003.
    [164]姚志良,贺克斌,王岐东,霍红,刘欢,何春玉,James Lents.IVE机动车排放模型应用研究[J].环境科学,2006,27(10):1928-1932.
    [165]叶身斌,王岐东,贺新.天津在路机动车活动水平调查研究[J].北京工商大学学报(自然科学版),2007,25(2):28-31.
    [166]尹翠琴,金腊华.CALINE4模式在广州市街东高速公路机动车尾气污染预测评价中的应用[J].暨南大学学报(自然科学版),2008,29(3):276-280.
    [167]尹宏宾,徐建闽.道路交通控制技术[M].广州:华南理工大学出版社,2000.
    [168]殷永泉,李昌梅,马桂霞,崔兆杰.城市臭氧浓度分布特征[J].环境科学,2004,25(6):16-20.
    [169]尤学一,李莉,刘伟.城市街道内污染物扩散的数值模拟[J].天津大学学报,2007,40(9):1077-1080.
    [170]张建磊.上海市近地层臭氧浓度时间序列混沌预报模式研究[D],华东师范大学硕士学位论文,2007.
    [171]张雄,李孟良,乔维高.汽车排放污染物测试的发展方向—车载排放测试[J].北京汽车,2006,6:34-39.
    [172]张政,毛保华,刘明君,陈金川,郭继孚.北京老年人出行行为特征分析[J].交通运输系统工程与信息,2007,7(6):11-20.
    [173]赵利容.广州市城区街道毒害空气污染物暴露特征及其来源分析[D].中国科学院广州地球化学研究所博士学位论文,2005.
    [174]赵利容,王新明,封少龙,盛国英,傅家谟.广州市冬季城区街道行人VOCs,PM_(10)和CO暴露水平[J].环境科学研究,2003,5(16):18-20,36.
    [175]赵立蔚,丁广德,熊宪英,崔杰,刘伟,刘彩霞,房玉梅,汪楠.天津市机动车污染评估方法[J].城市环境与城市生态,2002,15(6):48-50.
    [176]赵文娟.城市道路交通的大气承载力研究[D].西南交通大学硕士学位论文,2007.
    [177]郑长江.行人过街信号与交叉口信号联动控制方法研究[D].东南大学博士学位论文,2006.
    [178]周江兴.北京市几种主要污染物浓度与气象要素的相关分析[J].应用气象学报,2005,16(增刊):123-127.
    [179]中华人民共和国环境空气质量标准[S],GB 3095-1996.
    [180]訾琨,涂先库,黄永青,杨仁法.城市交通与机动车排放控制[J].城市环境与城市生态,2005,18(3):11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700