过程能力分析研究及其在电子和冷轧辊产品生产中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程能力分析作为统计过程控制(Statistical Process Control,SPC)的核心内容,是保证产品质量的重要工具和手段,正日益受到人们的关注和重视,尤其在六西格玛质量管理方法蔚然成风,“大质量”概念普遍兴起韵大环境下,如何对产品生产流程的能力进行分析,特别是针对生产环境中的不同情况和特征,如非正态过程、小样本条件、多工序及多特性等,提出相应的过程能力分析方法,对于有效地指导企业及其质量工作者进行质量改善,明确造成质量缺陷的原因、工序、特性等方面均具有重要的理论意义和实际价值。
     传统上进行过程能力分析要基于三个基本假设:过程处于统计控制状态;特性数据服从正态分布;观测数据样本充足且相互独立。然而,在现实中,这三个条件并不都能得到满足,如数据服从非正态分布、小批量生产条件或采样样本量较小、乃至于多工序、多特性情况的出现,均会给企业和生产者进行过程能力分析造成不便,甚至出现误解、错用的情况。为了解决这一问题,本文总结与分析了统计过程控制及其过程能力分析研究近年来的发展现状,结合企业的生产实际情况,在对山西某机械制造有限公司及浙江某电子有限公司的实地调研与案例实施的基础上,开展了过程能力分析及其指数计算的若干热点问题的研究和应用工作。该研究是985工程流程工业综合自动化科技创新平台研究项目、辽宁省科技厅计划项目和国家杰出青年科学基金项目的重要组成部分,同时也是企业技术攻关项目“冷轧辊过程数据管理系统”、“冷轧辊质量评价与改善系统”和企业管理咨询项目“达峰电子质量管理与改善顾问服务项目”中的核心内容。
     本文首先概述了统计过程控制的基础理论,包括统计过程控制的概念、控制图的分类介绍、过程能力分析的意义及其指数计算的概念与研究综述;然后,进一步分别考虑生产中会出现的实际情况,包括传统情况、非正态数据、小样本条件、多工序及多特性情况提出相应的过程能力分析与指数计算方法,结合企业实际案例应用,提供相应的解决方法和合理建议;最后另辟蹊径,指出传统的单纯依靠过程能力指数值(ProcessCapability Index,PCI)进行过程能力分析及决策的不足之处,结合实际应用,建立了基于过程能力图进行过程能力分析的改善流程图。本文的研究工作主要围绕以下五个关键问题展开。
     第三章作为关键问题1,是基于DMAIC(Define-Measure-Analysis-Improve-Control)质量改善模型的过程能力分析的相关研究和应用,也是传统的过程能力分析的流程展示。本章以某电子产品的实际生产为例,按照DMAIC流程,在综合分析和定位质量缺陷原因的基础上,对其测量系统进行评价,并在其稳定可靠的情况下,通过试验设计选择、确定、优化关键因子及其水平设置,运用SPC技术对波峰焊工序进行控制图监控,待其稳定后进行过程能力分析及其指数计算。
     此后的章节均是针对过程能力分析的特殊情况展开的相关研究和应用。
     第四章作为关键问题2,旨在进行非正态数据情况下过程能力分析的研究和应用。针对实际生产中数据不服从正态分布的情况,分析了造成数据非正态的原因及数据的非正态性对过程能力分析的影响,并对过程能力分析中多种处理非正态数据的方法进行了相关的劣势分析和简单比较,首次采用Root Transformation法将非正态的数据转换为正态数据,并将之运用于某电子产品的实际生产中,在实例中通过与Box-Cox转换法的比较,验证了该方法的合理性和有效性。
     第五章作为关键问题3,旨在进行小样本条件下过程能力分析的研究和应用。在分析样本量对指数C_p、C_(pk)点估计值及其置信区间的影响后,随机模拟产生了不同小样本容量的正态分布、t分布、卡方分布、对数正态分布数据,分别利用标准Bootstrap法、百分位数Bootstrap法、修正偏差后的百分位数Bootstrap法、t分位数Bootstrap法仿真产生这几种不同分布的四种置信区间,并通过双因子方差分析法比较了样本容量及不同方法对C_p、C_(pk)点估计值及其置信区间的影响,得到了一些有价值的结论。同时结合某电子产品的实际生产流程,以其点红胶工序中破坏性采样的红胶推力特性为研究对象,采用Bootstrap法中的PTB法进行过程能力分析,分析结果为企业提供合理的建议。
     第六章作为关键问题4,主要围绕多工序及多特性的多元过程能力分析展开。结合企业的生产实际,在考虑工序和特性的多元性的基础上,建立了多元质量控制与改进模型;针对工序的多元性,以某钢铁公司某种轧辊产品为例,利用改进的田口质量损失函来确定关键工序并进行多工序过程能力分析及其指数计算,通过案例验证了此方法的合理性和有效性;针对特性的多元性,建立了基于Luce(?)o指数进行多元特性过程能力分析的流程图,结合某电子产品的生产实际,用于计算波峰焊工序中5个过程特性的多元过程能力指数,基于计算结果为企业提供了合理的建议。
     第七章作为关键问题5,是基于过程能力图的过程能力分析的研究和应用。在明确单纯依靠指数的计算与估计进行过程能力分析的缺陷后,基于过程能力指数的临界值,使用假设检验方法来进行过程能力的分析和判断;分析了样本规格对于指数的临界值的影响,为企业进行合理采样提供依据;并对基于PCI假设检验的过程能力图的图形形式进行了推导证明,建立了基于过程能力图进行过程能力分析的改善流程图。结合某电子产品的实际生产,开展了基于多特性过程能力分析-MCPCA图的过程能力分析,通过实例验证了过程能力图像的优势。
As a core content of statistical process control (SPC), process capability analysis is an important tool and method to gurantee quality of products, and process capability analysis is raising more and more attention now, especially under the environment that "Six Sigma" and "Total Quality Management" are popularly used and become common practice. This thesis analyzes the capability of products in different situations, such as the data is non-normal distributed, the sampling size is small, even the stages and characteristics are mutiple, and it also proposes the corresponding methods of process capability analysis for above cases. The methods are helpful to enterprises for quality improving, and they are profound of theoretical and practical significance.
     Traditionally, there are three basic hypotheses in process capability analysing: the process is in control, the data is normal distributed, the data is independent and with large samples. However, they are not all satisfied in reality, such as the data is non-normal distributed, the samplings are in small sizes or the production is in small batch, even the stages and characteristics are multiple. All these situations bring inconvenience to enterprises and their operators, even cause misunderstanding and misapplication. To solve these problems, this thesis firstly analyses and summarises the recent years development of SPC and process capability analysis, then combined with the actual production situations of enterprises, some researches and application are developed which based on investigations to a mechnical company in Sanxi and an electronic company in Zhejiang. This thesis is a constituent part of "985 project scientific and technological innovation of Integrated Automation of Process Industry platform research project", "Liaoning provincial division of sicence and technology planning project" and "National Natural Science Funds for Distinguished Young Scholar project". It is also a core content of enterprises' technical studing project-"Process data management system of cold roller" and "Quality appriasing and improvming system of cold roller" in Sanxi, and enterprises' consultant and management project-"Quality management and improving consultant project of electronic company of Dafeng".
     In Chapter 2, basic theories about SPC are firstly introduced, including the concepts of SPC, the classifications of control charts, the meanings of process capability analysis and different definitions of their indices calculating, the literatures of their theroies are also overviewed in detail; and then combined with the real cases of producing, the thesis proposes methods of process capability analysis corresponding to traditional cases, non-normal data cases, small sampling size cases, and the cases of multi-stages and multi-characteristics, it also provides reasonable suggestions and solutions to enterprises based on the practical application; finally, the thesis points out the deficiency of process capability analyzing and decision making, which only based on process capability indices calculating in traditional way. Combined with the practical application, a quality improving flowchart based on process capability plots is constructed. As a whole, this thesis focuses on the following five key problems.
     As the key problem 1, chapter 3 is an application of process capbility analysis whose model is DMAIC (Define-Measure-Analysis-Improve-Control), and it is a revelation of traditional flow of process capability analysis. Taking the production of some electronic products as an example, and following the flow of DMAIC, this chapter firstlly analyzes the causes and locates the stages of quality defects, and then an analysis of measurement system is developed. Based on reliable and stable measurement system, design of experiment (DOE) is developed for choosing, determining and optimizing the critical factors and their relative settings. This chapter employs SPC to wave solering, and the control chart is used for controlling and diagnosing the stage of wave solering, the further calculation and analysis of process capability are developed after the process is in control.
     The later chapters are research and application of different and special cases of process capability analysis.
     As the key problem 2, chapter 4 focuses on the solution of non-normal data in real production. Considering the data is non-normal distributed in some actual production, this chapter firstly analyzes the causes and influences of nonnormality to process capability analysis, and then some simple comparisons and limitation analysis are made according to different methods, which are used for dealing with non-normal data. This thesis firstly adopts Root Transformation method to translate non-normal data into normal, and then makes an application of it to some electronic products. The rationality and validity of this method are vertified after comparing with Box-Cox transformation method.
     As the key problem 3, chapter 5 focuses on process capability analysis with small samples. After analyzing the influences of sampling size to the point estimations and confidence intervals of C_p and C_(pk), a serious of random data that is namely normal distributed, student t distributed, chi-square distributed and lognormal distributed are simulated with different sample sizes. Based on these simulated data and four Bootstrap methods, i.e. Standard Bootstrap (SB), Percentile Bootstrap (PB), Biased-corrected Percentile Bootstrap (BCPB), Percentile-t Bootstrap (PTB), the confidence intervals of C_p and C_(pk) are simulated and computed, and then some comparisons and analysis of different Bootstrap methods and sample sizes are made through two factors analysis of variance (ANOVA) method. Some valuable conclusions are made at last. Combined with the production of some electronic products, the thrust power of red agglutinant with devastatingly sampling and small samples is taken as the characteristic to be studied, and the PTB method is used for process capability analysis. Analyzing the results, some valuable suggestions are provided to enterprises.
     As the key problem 4, chapter 6 focuses on the analysis of mutivariable process capability, including the analysis of multi-stages and multi-characteristics. Combined with the actual production of enterprises, and considering the plurality of stages and characteristics, this chapter constructs a model of multivariable quality controlling and improving. In view of the plurality of stages, this chapter takes the production of cold roller as an example, and a simple improvement in Taguchi quality loss function is made to locate the key stages and analyze the process capability of multi-stages. The rationality and validity of this method are vertified through an application in cold roller production. In view of the plurality of characteristic, a flowchart of multi-characteristics process capability analysis is constructed, it is based on the Luceno index. Combined with the actual production of some electronic products, the method and the idea of the model is used for calculating the process capability indices (PCIs) of 5 process characteristics in wave soldering stage. Some suggestions and advicies are provided to enterprise according to the results.
     As the key problem 5, chapter 7 focuses on the process capability plots and their application. Considering the defects of process capability analyzing only with process capability indices, the hypothesis testing is used for process capability analyzing and decision making based on the critical values of PCIs. An analysis of the influence of sample scale to crtical values of PCIs is made, it is helpful to enterprises for reasonal sampling. The graph forms of process capability plots are proved, and the quality improving flowchart based on process capability plots is constructed. Combined with the actual production of some electronic products, the analysis of process capability based on multi-characteristics process capability analysis (MCPCA) chart is developed. The superiority of process capability plots is finally proved by a practical application.
引文
1.Juran J.M.Planning for Quality[M],New York:Juran Institute,Wilton,CT NY:Free Press,1986.
    2.Dahlgaard J.J.,Kristen K.,Kanji G.K.Advance in Total Quality Management[M],London:Chapman&Hall,1994.
    3.Pan J.N.,Kolarik W.J.Quality tree:a systematic problem-solving model using total qualtiy management tools and techniques[J],Quality Engineering,1992,5(1):1-20.
    4.廖永平,韩福荣.工业企业质量管理[M].北京:北京工业大学出版社,1999.
    5.Shewhart W.A.Economic control of quality of manufactured product[M],Milwaukee:ASQC Quality Press,1980.
    6.Rodriguez R.N.Recent developments in process capability analysis[J],Journal of Quality Technology,1992,24(4):176-187.
    7.朱兰.质量控制手册[M],上海:上海科学技术文献出版社,1987.
    8.Peter J.P.Reliability:a review of psychometric basics and recent marketing practices[J],Journal of Marketing Research,1979,16(1):6-17.
    9.杨剑锋.面向连续质量改进的过程能力分析与评价研究[D],西安:西北工业大学,2006.
    10.Hubele N,F.Discussions-Process capability indices:A review,1992-2000.[J],Journal of Quality Technology,2002,34(1):20-22.
    11.何桢,马林.六西格玛管理[M],北京:中国人民大学出版社,2004.
    12.肖建华,李仁良,万举勇.版ISO/DIS9000族国际标准草案理解与实施[Z],北京:中国标准出版社,2000.
    13.Cynthia H.B.,Lin D.From SPC to DOE:A case study at Meco Inc[J],Quality Engineering,1997,9(3):489-502.
    14.Deming W.E.Out of the Crisis[M],Cambridge:The MIT press,Center for Advanced Engineering Study,2000.
    15.Montgomery D.C.Introduction to Statistical Quality Contro[M],New York:John Wiley&Sons,1996.
    16.Page E.S.Cumulative sum charts[J],Technometrics,1961,3(1):1-9.
    17.Page E.S.Controlling the standard deviation by CUSUM and warning lines[J],Technometrics,1963,5(3):307-315.
    18.Crosier R.B.A new two-sided cumulative sum quality control scheme[J],Technometrics,1986,28(3):187-194.
    19.Ryan T.P.,Ryan A.Statistical Methods for Quality Improvement[M],New York:John Wiley&Sons,1989.
    20.Gan F.F.Design of optimal exponential CUSUM control charts[J],Journal of Quality Technology,1994,26(2):109-124.
    21.Lucas J.M.The design and use of V-mask control schemes[J],Journal of Quality Technology,1976,8(1):1-12.
    22.Wadsworth H.M.,Stephens K.S.,Godfrey A.B.Modern Methods for Quality Control and Improvement [M],New York:John Wiley&Sons,2001.
    23.Roberts S.W.Control chart tests based on geometric moving averages[J],Technometrics,1959,1(2): 239-250.
    24.Crowder S.V.A simple method for studying run-length distributions of exponentially weighted moving average charts[J],Technometrics,1987,29(4):401-407.
    25.Lucas J.M.,Saccucci M.S.Exponentially weighted moving average control schemes:properties and enhancements[J],Technometrics,1990,32(1):1-12.
    26.张黎.过程检测与调整的理论和方法研究[D],西安:西北工业大学,2006.
    27.Hotelling.Multivariate Quality Control Illustrated by Air Testing of Sample Bombsights[M],New York:Selected techniques of statistical analysis,1947.
    28.钟伦燕,刘红.SPC的典型制图的应用范围[J],电子质量,2001,9:145-149.
    29.马义中.统计过程控制研究领域及趋势概述[J],郑州航空工业管理学院学报:管理科学版,2001,19(1):1-8.
    30.司马锡生.多变量统计过程控制诊断技术的进步[J],南京化工大学学报,2000,22(6):2-4.
    31.Alt F.B.Multivariate Quality,Control:State of the Art[M],New York:ASQC:technivcal conference transactions,1985.
    32.刘艳永,孙静.多元协方差控制图[J],北京航空航天大学学报,1999,25(1):85-87.
    33.Nagarsenker B.N.,Pillai K.C.S.Distribution of the likelihood ratio criterion for testing a hypothesis specifying a covariance matrix[J],Biometrika,1973,60(2):359-364.
    34.王成斌,孟玉琦.均值向量与协差阵联合控制的处理方法[J],北方交通大学学报,1994,18(4):542-546.
    35.Chao M.T.,Cheng S.W.Semi-circle control chart for variables date[J],Quality Engineering,1994.
    36.毛宏.一种新的多元联合质量控制技术[J],上海第二工业大学学报,1995,12(2):46-54.
    37.王兆军.关于动态质量控制图的设计理论[J],应用概率统计,2002,18(3):316-333.
    38.Woodall.W.H Ncube M.M.Mutivariate cusum quality control pocesdures[J],Technometrics,1985,27(3):285-292.
    39.Hawkins D.M.Multivariate quality control based on regression-adjusted variables[J],Technometrics,1991,33(1):61-75.
    40.Lowry C.A.,Woodall W.H.,Champ C.W.,Rigdon S.E.A multivariate exponentially weighted moving average control chart[J],Technometrics,1992,34(1):46-53.
    41.Mason R.L.,Champ C.W.,Tracy N.D.,Wierda S.J.,Young J.C.Assessment of multivariate process control techniques[J],Journal of Quality Technology,1997,29(2):140-143.
    42.Kourti T.,Mac J.F.,Gregor.Multivariate SPC methods for process and product monitoring[J],Journal of Quality Technology,1996,28(4):409-428.
    43.Mastrangelo C.M.,Runger G.C.,Montgomery D.C.Statistical process monitoring with principal components[J],Quality and Reliability Engineering International,1996,12(3):203-210.
    44.张公绪.两种质量诊断理论及其应用[M],北京:科学出版社,2001.
    45.Kane V.E.Process capability indices[J],Journal of Quality Technology,1986,18(1):41-52.
    46.Hsiang T.C.,Taguchi G.A tutorial on quality control and assurance--the Taguchi methods[C],Joint Meetings of the American Statistical Association,1985,Las Vegas,Nevada,188.
    47.Pearn W.L.,Kotz S.,Johnson N.L.Distributional and inferential properties of process capability indices[J],Journal of Quality Technology,1992,24(4):216-231.
    48.Vannman K.A unified approach to capability indices[J],Statistica Sinica,1995,5(2):805-820.
    49.王宝军,信海红,姚玉玲.过程能力指数与过程实绩指数的比较研究[J],商场现代化,2006,26:35.
    50.Boyles R.A.The Taguchi capability index[J],Journal of Quality Technology,1991,23(1):17-26.
    51.Choi B.C.,Owen D.B.A study of a new process capability index.[J],Communications in Statistics-Theory and Methods,1990,19(4):1231-1245.
    52.Zhang N.F.,Stenback G.A.,Wardrop D.M.Interval estimation of process capability index Cpk[J],Comunications in Statistics-Theory and Methods,1990,19(12):4455-4470.
    53.Boyles R.A.Process capability with asymmetric tolerances[J],Communications in statistics-Simulation and Computation,1994,23(3):615-643.
    54.Kushler R.H.,Hurley P.Confidence bounds for capability indices[J],Journal of Quality Technology,1992,24(4):188-195.
    55.Spiring F.A.Process capability:A total quality management tool[J],Total Quality Management,1995,6:121-133.
    56.Kotz S.,Lovelance C.Introduction to Process Capability Indices[M],London:Arnold,1998.
    57.Parlar M.,Wesolowsky G.O.Capaility indices and specification limits in centering and assembly manufacture[J],Quality Engineering,1999,31(2):317-325.
    58.Chen H.F.Asymptotic analysis of a class of process capability indices[J],Statistics,1997,30(2):149-162.
    59.Chen H.F.,Peam W.L.The asymptotic distribution of the estimated process capability index Cpk[J],Communications in Statistics-Theory and Methods,1997,26:2489-2497.
    60.Va|¨nnman K.,Hubele N.F.Distributional properties of estimated capability indices based on subsamples[J],Quality and Reliability Engineering International,2003,19(2):111-128.
    61.马义中,李言俊.多元质量特性过程能力的一种评价方法[J],系统工程,2002,20(1):77-81.
    62.蒋家东,冯允成,商广娟.多元过程能力指数计算方法的比较研究[J],航空标准化与质量,2006,3:16-20.
    63.Kotz S.,Johnson N.L.Process Capability Indices[M],London:Chapman & Hall,1993.
    64.Taam W.,Subbaiah P.,Liddy,J.W.A note on multivariate capability indices[J],Journal of Applied Statistics,1993,20(3):339-351.
    65.Wang F.K.,Chen J.C.Capability index using principal components analysis[J],Quality Engineering,1998,11(1):21-27.
    66.Anderson T.W.An Introduction to Multivariate Statistical Analysis.[M],New York:John Wiley & Sons,2003.
    67.吴海英.生产过程评价指标的统计分析[D],郑州:郑州大学,2005.
    68.蒋家东,冯允成,商广娟.多元过程能力指数计算方法的比较研究(续前)[J],航空标准化与质量,2006,4:14-17.
    69.Mason R.L.,Tracy N.D.,Young J.C.Decomposition of T~2 for multivariate control chart interpretation[J],Journal of Quality Technology,1995,27(2):99-108.
    70.马义中.多元质量特性的过程能力指数[J],工业工程,2001,4(4):22-24.
    71.陈涛.基于因子分析的多元工序能力指数[J],机床与液压,2003,1:284-286.
    72.马义中,赵逢禹.多元质量特性的稳健设计及其实现[J],系统工程与电子技术,2005,27(9):1580-1582.
    73.王素立,马义中.多元质量控制技术及MPAC软件实现[J],计算机工程与应用,2005,41(9):186-188.
    74.Franklin E.A.,Wasseman G.S.A note on the conservative nature of the tables of lower confidence limits for Cpk with a suggested correction[J],Communications in Statistics:Simulation and Communication,1992,21(4):1165-1169.
    75.Nelson L.S.Some notes on Variation[J],Journal of Quality Teclanology,1999,31(4):459-462.
    76.魏世振,韩玉启,郭建华.基于差异系数的多元过程能力指数[J],运筹与管理,2003,12(1):83-86.
    77.朱慧明,韩玉启,吴正刚.基于随机参数的贝叶斯过程能力指数评价模型[J],湖南大学学报:自然科学版,2004,31(6):105-109.
    78.朱慧明,韩玉启.多元质量特性的贝叶斯过程能力指数[J],哈尔滨工业大学学报,2005,37(4):498-500.
    79.Shiau J.J.H.,Chiang C.T.,Hung H.N.A Bayesian procedure for process capability assessment[J],Quality and Reliability Engineering International,1999,15(5):369-378.
    80.杨剑锋等.基于不同质量损失函数的过程能力指数比较[J],工业工程与管理,2006,11(3):37-41.
    81.常广庶,杨剑锋.几种典型过程能力指数的比较[J],制造技术与机床,2006,10:92-96.
    82.赵丽萍,王明东.经济性多元质量控制诊断模型的研究与应用[J],组合机床与自动化加工技术,2005(1):1-3.
    83.白宝光,张世英.基于经济性设计的过程能力指数优化[J],内蒙古工业大学学报:自然科学版,2003,22(3):237-240.
    84.魏世振,韩玉启.过程能力指数在质量损失研究中的应用[J],管理工程学报,2002,16(4):64-66.
    85.Spiring F.An alternative to Taguchi's loss function[C],ASQC Quality Congress Transactions Wisconsin,1991,660-665.
    86.Efron B.,Tibshirani R.Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J],Statistical science,1986,1(1):54-75.
    87.田志友,田澎,王浣尘.基于Bootstrap抽样的多元过程能力指数估计[J],管理工程学报,2006,20(2):74-77.
    88.何桢,李国春.工序质量分析与控制中的多变异分析方法[J],系统工程理论与实践,2000,20(5):42-45.
    89.孔祥芬,何桢,宗志宇.基于多变异分析方法检验常用的过程能力指数[J],组合机床与自动化加工技术,2006(4):15-17.
    90.Luceno A.A process capability index with reliable confidence intervals[J],Communications in statistics-Simulation and Computation,1996,25(1):235-245.
    91.Wang F.K.Quality evaluation of a manufactured product with multiple characteristics[J],Quality and Reliability Engineering International,2006,22(2):225-236.
    92.Shinde R.L.,Khadse K.G.A review and comparison of some multivariate process capability indices based on fraction conforming interpretation[J],Statistical Methods,2005,7:95-115.
    93.Wang F.K,Hubele N.F.,Lawrence F.P.,Miskulin J.D.,Shahriari H.Comparison of three multivariate process capability indices[J],Journal of Quality Technology,2000,32(3):263-275.
    94.Gunter B.H.The use and abuse of Cpk,Part 1[J],Quality Progress,1989,22(1):72-73.
    95.Gunter B.H.The use and abuse of Cpk,Part 3[J],Quality Progress,1989,22(3):77-85.
    96.Gunther B.The use and abuse of Cpk,part 2[J],Quality Progress,1989,22(2):108-109.
    97.Gunther B.The use and abuse of Cpk,part 4[J],Quality Progress,1989,22(7):86-87.
    98.Schneider H.,Pruett J.,Lagrange C.Uses of process capability indices in the supplier certification process[J],Quality Engineering,1995,8(2):225-235.
    99.Johnson N.L.,Kotz S.,Pearn W.L.Flexible process capability indices[J],Pakistan Journal of Statistics,1994,10(1):23-31.
    100.Wright P.A.A process capability index sensitive to skewness[J],Journal of Statistical Computation and Simulation,1995,52(3):195-203.
    101.Bai D.S.,Choi I.S.X and R control charts for skewed populations[J],Journal of Quality Technology,1995,27(2):120-131.
    102.Wu H.H.,Swain J.J.,Farrington P.A.,Messimer S.L.A weighted variance capability index for general non-normal processes[J],Quality and Reliability Engineering International,1999,15(5):397-402.
    103.Box G.,Cox D.R.An analysis of transformations[J],Journal of the Royal Statistical Society.Series B (Methodological),1964,26(2):211-252.
    104.Hosseinifard S.Z,Abbasi B.,Ahmad S.,Abdollahian M.A transformation technique to estimate the process capability index for non-normal processes[J],The International Journal of Advanced Manufacturing Technology,2009,40(5):512-517.
    105.Clements J.A.Process capability calculations for non-normal distributions[J],Quality Progress,1989,22(9):95-100.
    106.孔祥芬.非正态过程能力分析与控制方法研究[D],天津:天津大学,2007.
    107.Farnum N.R.Using Johnson curves to describe non-normal process data[J],Quality Engineering,1996,9(2):329-336.
    108.Johnson N.L.Systems of frequency curves generated by methods of translation[J],Biometrika,1949,36(1):149-176.
    109.Chou Y.M.,Polansky A.M.,Mason R.L.Transforming non-normal data to normality in statistical process control[J],Journal of Quality Technology,1998,30(2):133-141.
    110.Polansky A.M.,Chou Y.M.,Mason R.L.An algorithm for fitting Johnson transformations to non-normal data[J],Journal of Quality Technology,1999,31(4):345-350.
    111.Rodriguez R.N.Discussion-Process capability indices--A review,1992-2000[J],Journal of Quality Technology,2002,34(1):28-31.
    112.Tang L.C.,Than S.E.Computing process capability indices for non-normal data:a review and comparative study[J],Quality and Reliability Engineering International,1999,15(5):339-353.
    113.Ding J.M.A method of estimating the process capability index from the first four moments of non-normal data[J],Quality and Reliability Engineering International,2004,20(8):787-805.
    114.Franklin L.A.,Wasserman G.S.Bootstrap lower confidence limits for capability indices[J],Journal of Quality Technology,1992,24(4):196-209.
    115.Han J.H.,Cho J.J.,Leem C.S.Bootstrap cnfidence limits for wright's C[J],Communications in Statistics-Theory and Methods,2000,29(3):485-505.
    116.Tong L.I,,Chen J.P.Lower confidence limits of process capability indices for non-normal process distributions[J],International Journal of Quality and Reliability Management,1998,15(8):907-919.
    117.孔祥芬,何桢,车建国.SPC中非正态过程稳定性的检验研究[J],组合机床与自动化加工技术,2008,5:16-19.
    118.Castagliola C.P.Control chart for skewed populations using a scaled weighted variance method[J],International Journal of Reliability,Quality and Safety Engineering,2000,7(3):237-252.
    119.Efron B.Bootstrap methods:another look at the Jackknife[J],Annals of Statistics,1979,7(1):1-26.
    120.王晶.基于Bootstrap方法的多品种小批量生产的质量控制研究[D],天津:天津大学,2006.
    121.王胜先,孙静.单值数据的过程能力指数与过程性能指数比较[J],清华大学学报:自然科学版,2006,46(12):2049-2052.
    122.Kalyanasundaram M.,Balamurali S.Bootstrap lower confidence limits for the process capability indices Cp,Cpk and Cpm[J],International Journal of Quality & Reliability Management,2002,19(2):1088 - 1097.
    123.Wang D.S.,Koo T.Y.,Chou C.Y.On the bootstrap confidence intervals of the capability index Cpk for multiple process streams[J],Engineering Computations,2007,24(5):473-485.
    124.Balamurali S.Bootstrap confidence limits for short-run capability indices[J],Quality Engineering,2003,15(4):643-648.
    125.Choi K.C.,Nam K.H.,Park D.H.Estimation of capability index based on bootstrap method[J],Microelectronics Reliability,1996,36(9):1141-1153.
    126.Chou C.Y.,Lin Y.C.,Chang C.L.,Chen C.H.On the bootstrap confidence intervals of the process incapability index Cpp[J],Reliability Engineering and System Safety,2006,91(4):452-459.
    127.Zadeh L.A.Fuzzy sets[J],Information and control,1965,8(3):338-353.
    128.Guo R.K.,Zhao R.Q.,Cheng C.Y.Quality control charts for random fuzzy manufacturing environments[J],Journal of Quality,2008,15(2):101-116.
    129.Cheng C.B.Fuzzy process control:construction of control charts with fuzzy numbers[J],Fuzzy sets and systems,2005,154(2):287-303.
    130.Thoutou S.M.,Guo R.,Cheng C.Y.,Dunne T.The average run length of Shewhart style control chart under normal fuzzy random environments with trapezoidal membership function[C],Proceedings of the 2007IEEE IEEM,2007,1394-1398.
    131.Zanchettin C.Design of Experiments in Neuro-Fuzzy Systems[C],Proceedings of the Fifth International Conference on Hybrid Intelligent Systems,2005,218-226.
    132.Yongting C.Fuzzy quality and analysis on fuzzy probability[J],Fuzzy Sets and Systems,1996,83(2):283-290.
    133.Lee H.T.Cpk index estimation using fuzzy numbers[J],European Journal of Operational Research,2001,129(3):683-688.
    134.Hong D,H.A note on Cpk index estimation using fuzzy numbers[J],European Journal of Operational Research,2004,158(2):529-532.
    135.Parchami A.,Mashinchi M.,Maleki H.R.Fuzzy confidence interval for fuzzy process capability index[J],Journal of Intelligent and Fuzzy Systems,2006,17(3):287-295.
    136.Parchami A.,Mashinchi M.Fuzzy estimation for process capability indices[J],Information Sciences,2007,177(6):1452-1462.
    137.Buckley J.J.Fuzzy statistics:regression and prediction[J],Soft Computing-A Fusion of Foundations,Methodologies and Applications,2005,9(10):769-775.
    138.Buckley J.J.Fuzzy statistics:hypothesis testing[J],Soft Computing-A Fusion of Foundations,Methodologies and Applications,2005,9(7):512-518.
    139.Buckley J.J.,Eslami E.Uncertain probabilities Ⅱ:the continuous case[J],Soft Computing-A Fusion of Foundations,Methodologies and Applications,2004,8(3):193-199.
    140.Chen K.S.,Chen T.W.Multi-process capability plot and fuzzy inference evaluation[J],International Journal of Production Economics,2008,111(1):70-79.
    141.Hsu B.M.,Shu M.H.Fuzzy inference to assess manufacturing process capability with imprecise data[J],European Journal of Operational Research,2008,186(2):652-670.
    142.田学民,曹玉苹.统计过程控制的研究现状及展望[J],中国石油大学学报:自然科学版,2008,32(5):175-180.
    143.Liang J.,Qian J.X.Multivariate statistical process monitoring and control:recent developments and applications to chemical industry[J],China Journal of Chemical Engineering,2003,11(2):191-203.
    144.Kourti T.Abnormal situation detection and projection methods-industrial applications[J],Chemometrics and Intelligent Laboratory Systems,2005,76(2):215-220.
    145.王荣.六西格玛管理方法及实施研究[D],吉林:吉林大学,2005.
    146.鲜飞.波峰焊接工艺技术的研究[J],印制电路信息,2006,3:55-58.
    147.Mandel J.Repeatability and reproducibility[J],Journal of Quality Technology,1972,4(2):74-85.
    148.孙洪日,林国辉.波峰焊常见问题及解决对策[J],电子工艺技术,1999,20(5):185-186.
    149.周志近.波峰焊工艺及常见问题分析[J],现代显示,2009,16(2):61-63.
    150.张冰冰等.无VOC助焊剂的无铅波峰焊工艺探讨[J],电子元件与材料,2007,26(8):1-4.
    151.尹学博.印制板(PCB)波峰焊接的工艺研究及应用[J],继电器,1997,25(2):58-62.
    152.生志荣.过程能力分析与过程能力指数的有关研究[D],上海:华东师范大学,2007.
    153.田志友,田澎,王浣尘.非正态过程能力指数研究中的几个问题[J],工业工程,2005,8(1):29-32.
    154.薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[J],北京:清华大学出版社,2004.
    155.Liu P.H.,Chen F.L.Process capability analysis of non-normal process data using the Burr Ⅻdistribution[J],The International Journal of Advanced Manufacturing Technology,2006,27(9):975-984.
    156.Niaki S.T.A.,Abbasi B.Skewness reduction approach in multi-attribute process monitoring[J],Communications in Statistics-Theory and Methods,2007,36(12):2313-2325.
    157.Bissell D.Statistical Methods for SPC and TQM[M],London:Chapman & Hall,1994.
    158.卓德保.非正态分布条件下工序能力的度量[J],世界标准化与质量管理,1997,9(8):14-17.
    159.Pearn W.L.,Chen K.S.Estimating process capability indices for non-normal Pearsonian populations[J],Quality and Reliability Engineering International,1995,11(5):386-388.
    160.Pearn W.L.,Kotz S.Application of Clements' method for calculating second and third generation process capability indices for non-normal Pearsonian populations[J],Quality Engineering,1994,7(1):139-145.
    161.Castagliola P.Evaluation of non-normal process capability indices using Burr's distributions[J],Quality Engineering,1996,8(4):587-593.
    162.Mukherjee S.P.,Singh N.K.Sampling properties of an estimator of a new process capability index for Weibull distributed quality characteristics[J],Quality Engineering,1997,10(2):291-294.
    163.Padgett W.J.,Sengupta A.Performance of process capability indices for Weibull and Lognormal distributions or autoregressive processes[J],International Journal of Reliability Quality and Safety Engineering,1996,3(2):217-230.
    164.Somerville S.E.,Montgomery D.C.Process capability indices and non-normal distributions[J],Quality Engineering,1996,9(2):305-316.
    165.Sarkar A,,Pal S.Estimation of process capability index for concentricity[J],Quality Engineering,1997,9(4):665-671.
    166.Sundaraiyer V.H.Estimation of a process capability index for inverse gaussian distribution[J],Communications in statistics-Theory and methods,1996,25(10):2381-2393.
    167.Polansky A.M.An algorithm for computing a smooth nonparametric process capability estimate[J],Journal of Quality Technology,2000,32(3):284-289.
    168.Polansky A.M.A smooth nonparametric approach to process capability[J],Quality and Reliability Engineering International,1998,14(1):43-48.
    169.Zimmer W.J.,Burr I.W.Variables sampling plans based on non-normal populations[J],Industrial Quality Control,1963,20(1):18-26.
    170.Sernio B.,Marco L.,Luca M.Application of non-normal process capabilityindices to semiconductor quality control[J],IEEE Transactions on Semiconductor Manufacturing,1998,11(2):296-303.
    171.Burr I.W.Cumulative frequency distribution[J],Annals of Mathematical Statistics,1942,13:215-232.
    172.王岩,隋思涟,王爱青.数理统计与MATLAB工程数据分析[M],北京:清华大学出版社,2006.
    173.何桢,齐二石,张生虎.工序能力分析与评价中的几个问题[J],工业工程,2000,3(2):25-27.
    174.Zimmer L.S.,Hubele N.F.,Zimmer W.J.Confidence intervals and sample size determination for Cpm[J],Quality and Reliability Engineering International,2001,17(1).
    175.Rao C.R.Linear Statistical Inference and its Applications,2nd eidition[M],New York:John Wiley&Sons,1973.
    176.Booth J.G.,Sarkar S.Monte Carlo Approximation of Bootstrap Variances.[J],The American Statistician,1998,52(4).
    177.余锦华,石北源,杨维权.概率论与数理统计[M],广州:中山大学出版社,2000.
    178.洪子材.浅谈BGA的SMT工艺技术[J],电子信息:印刷电路与贴装,2000(3):51-54.
    179.冯俊谊.印刷红胶工艺浅析[J],中国电子商情,2006,5:49-51.
    180.戴敏.多工序制造过程质量分析方法与信息集成技术研究[D],南京:东南大学,2006.
    181.Johnson T.The relationship of C pm to squared error loss[J],Journal of Quality Technology,1992,24(4):211-215.
    182.Wang F.K.,Hubele N.F.Quality evaluation using geometric distance approach[J],International Journal of Reliability,Quality and Safety Engineering,1999,6(2):139-153.
    183.褚健,容冈.流程工业综合自动化技术[M],北京:机械工业出版社,2004.
    184.孙静,张公绪.两种Cp的诊断理论[J],中国质量,2000,4.
    185.Foster E.J.,Barton R,R.,Gautam N.,Truss L.T.,Tew J.D.The process-oriented multivariate capability index[J],International Journal of Production Research,2005,43(10):2135-2148.
    186.Masina W.Handbook of Quality Management[M],Mu|¨nchen:Wien Hanser,1994.
    187.Gabel S.H.Process performance chart[C],ASQC Quality Congress,1990,San Francisco,CA,683-688.
    188.Cheng S.W.Practical implementation of the process capability indices[J],Quality Engineering,1994,7(2):239-259.
    189.Pearn W.L.,Chen K.S.A practical implementation of the process capability index Cpk[J],Quality Engineering,1997,9(4):721-738.
    190.Va|¨nnman K.Interpreting process capability using graphic method[R],Division of quality technology and statistics,Lulea university of technology,1997.
    191.Deleryd M.,Va|¨nnman K.Process capability plots-a quality improvement tool[J],Quality and Reliability Engineering International,1999,15(3):213-227.
    192.Pearn W.L.,Chen K.S.Making decisions in assessing process capability index Cpk[J],Quality and Reliability Engineering International,1999,15(4):321-326.
    193.Chen K.S.,Pearn W.L.,Lin P.C.Capability measures for processes with multiple characteristics[J],Quality and Reliability Engineering International,2003,19(2):101-110.
    194.Va|¨nnman K.The circular safety region:A useful graphical tool in capability analysis[J],Quality and Reliability Engineering International,2005,21(5):529-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700