不同基因型冬小麦刺激根寄生杂草列当种子萌发的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据冬小麦可以刺激列当种子发芽,作为“诱捕作物”来防除列当科杂草。研究了向日葵列当和瓜列当种子的打破休眠的方式、最佳预培养时间和观察时间。通过水培方法收集冬小麦根系分泌物,并进行了分离纯化和物质鉴定。采集不同生育期冬小麦根际土、根系和地上部,利用蒸馏水和甲醇两种浸提剂提取列当科种子发芽刺激物质刺激向日葵列当和瓜列当种子发芽,依据两种列当种子的发芽率来比较冬小麦不同器官之间刺激列当种子发芽率的高低;比较两种提取剂的效果;筛选出在不同生育时期选用能刺激列当种子发芽率高的冬小麦品种来防除列当科杂草;反映不同基因型冬小麦对其化感作用的强弱。以轮作方式种植不同基因型冬小麦,后茬种植寄主向日葵,调查向日葵列当寄生数量及测定寄主株高、胸径和生物量,反映不同基因型冬小麦能否诱捕向日葵列当,并提高寄主产量。
     本研究得到的主要结论如下:
     1.蒸馏水预培养向日葵列当和瓜列当种子可以打破其休眠。两种列当最少需要预培养3天,预培养1-2周的种子发芽率趋于稳定。
     2.乙酸乙酯萃取三次即可将根系分泌物中发芽刺激物质萃取到乙酸乙酯相中。不同浓度根系分泌物刺激向日葵列当和瓜列当种子的发芽率高低顺序为:100mg/L>10mg/L>1mg/L。在三个浓度下,冬小麦根系分泌物刺激向日葵列当和瓜列当种子的发芽率伴随着小麦基因型倍体的加倍而呈现逐步上升趋势,不同品种间达到差异显著(P<0.05)水平。利用LC-MS/MS质谱多反应监测技术分析了小麦样品中发芽刺激物质的结构,与14种已知独脚金类似物结构对比,没有发现已知的物质,小麦中能刺激列当种子发芽的物质有可能是不同于上述14种物质,其结构有待选用新方法来进一步地分离鉴定。
     3.苗期不同基因型冬小麦根际土均可直接刺激向日葵列当和瓜列当种子发芽,说明小麦在自然状态下分泌的发芽刺激物质可以有足够的浓度使受体列当种子发芽。
     拔节期不同基因型冬小麦根际土及其浸提液刺激两种列当种子的发芽率伴随着冬小麦基因型倍体的增加而增加,六倍体基因型冬小麦刺激其发芽率最高。冬小麦刺激列当种子发芽物质是在根部合成,且根系和地上部浸提液刺激向日葵列当和瓜列当种子的发芽率呈现正相关关系。
     抽穗期陕253根系刺激向日葵列当种子发芽率最高为32.4%,而瓜列当种子的发芽率在20%-30%之间;六倍体基因型陕139和陕253茎甲醇浸提液刺激瓜列当种子发芽率最高为49%和51.1%;比较冬小麦不同器官蒸馏水浸提液刺激向日葵列当种子的发芽率,叶片最高,根系与茎、麦穗相近,且根系与茎杆、叶片和麦穗之间都呈现正相关关系。表明小麦根部合成的发芽刺激物质已经向地上部运输。
     成熟期不同基因型冬小麦根际土直接刺激向日葵列当和瓜列当种子发芽率降低,而地上部发芽率出现增高的趋势,其中陕139茎杆蒸馏水浸提液刺激向日葵列当发芽率最高为28.1%,甲醇浸提液刺激其发芽率均在30%以上,陕253茎杆浸提液刺激其发芽率最高为27.7%(蒸馏水)和23.7%(甲醇);栽培一粒叶片甲醇浸提液刺激向日葵列当种子发芽率最高为45.9%,六倍体基因型冬小麦陕253叶片浸提液刺激瓜列当种子发芽率最高为24%(蒸馏水)和29%(甲醇);陕253颖壳浸提液刺激向日葵列当种子发芽率最高为26.8%(蒸馏水)和37.6%(甲醇),陕253颖壳甲醇浸提液刺激瓜列当种子的发芽率最高为33.2%。根据冬小麦植株不同部位器官浸提液刺激向日葵列当种子发芽率,根系与茎和籽粒之间呈现正相关关系。对于瓜列当种子的发芽率而言,根系与茎、叶片、籽粒和颖壳均呈现正相关关系。地上部积累着能够刺激列当种子发芽的物质,秸秆还田后这些物质的释放有可能进一步刺激列当种子发芽,但需要进一步实验验证。
     4.随着冬小麦基因型的加倍,在苗期、拔节期、抽穗期和成熟期不同部位器官浸提液(蒸馏水和甲醇)刺激向日葵列当和瓜列当种子的发芽率呈现逐步上升的趋势,冬小麦对两种列当的化感作用逐步增强。
     5.前茬种植陕253和陕139,收获后再种植向日葵,每株向日葵上向日葵列当寄生株数分别为3.2和4.6,是对照的1/6和1/4,可以显著降低向日葵列当的寄生率。后茬种植的向日葵胸径比对照要粗0.2mm,平均株高要高10cm多,向日葵被寄生后的鲜重和干重是没有被寄生的46%和37%。前茬种植冬小麦有助于后茬向日葵胸径、株高和生物量的增加,显著地减少了向日葵列当的寄生数量,间接地提高向日葵的产量。
The winter wheat can stimulate Orobanche seed germination to be as one ‘trap crop’ forcontrolling the weeds of Orobanchaceae. Based on this, we studied the method of breakingdormancy, the best pre-conditioning time and observation time of Orobanche seeds. Throughthe hydroponic method, winter wheat root exudates were collected, and then purified andidentified by LC-MS/MS. Rhizosphere soils, roots and shoots at different growth stages ofwinter wheat were collected, and these samples were extracted by distilled water or methanoland then diluted to four concentration. The extracts (distilled water and methanol) were testedto stimulate O. cumana and O. aegyptiaca seeds germination. According to the twoOrobanche seeds germination rates, the stimulation effect among different organs of winterwheat were compared and the better solvent would be identified; the winter wheat whichperformed better at different growth stages could also be screened out to control Orobancheweeds; it could also reflect the allelopathy potential of different winter wheat genotypes.Through winter wheat/sunflower rotation, the O. cumana parasitic quantity were investigatedand the diameter at breast height (DBH), plant height and biomass of sunflower were alsotested. Through these indexes, we could found if different winter wheat genotypes can be as‘trap crops’ for O. cumana and increase sunflower production.
     The main conclusions of this study are as follows:
     1. Pre-conditioning O. cumana and O. aegyptiaca seeds by distilled water could breaktheir dormancy. They should be pre-conditioned at least for3days, and the germination ratetended to be stable after pre-conditioning for1-2weeks.
     2. After extracting for three times, ethyl acetate could extract the germination stimulantfrom the root exudates into ethyl acetate phase. The root exudates at the differentconcentration stimulated O. cumana and O. aegyptiaca seed germination followed the role of100mg/L>10mg/L>1mg/L. At the three concentration, the germination rate of O. cumanaand O. aegyptiaca increased as the ploidy of wheat genotypes doubled, and there weresignificant differences (P <0.05) among the different varieties. LC-MS/MS mass spectrometrymultiple reactions monitoring technology was used to analyze the germination stimulant inwheat samples and its structure were different with the14known strigolactones. Maybe the germination stimulant in wheat was not any one of the14substances. The structure needs tobe further isolated and identified by new methods.
     3. At seedling stage, the rhizosphere soil of different winter wheat genotypes coulddirectly stimulate O. cumana and O. aegyptiaca seed germination. It was shown that thegermination stimulant secreted from winter wheat at natural state could stimulate Orobancheseed germination at certain concentration.
     At jointing stage, the rhizosphere soil and its extracts of different winter wheat genotypescould stimulate the two Orobanche seed germination. The germination rate increased as theploidy of winter wheat genotypes doubled, and the hexaploid winter wheat stimulated thehighest germination rate. The germination stimulant was synthesized in the roots of winterwheat. There were positive correlations between Orobanche seed germination induced by rootand shoot extracts of winter wheat.
     At heading stage, the roots of Shaan253stimulated the highest germination rate of O.cumana seed (32.4%), while the O. aegyptiaca seed germination rate was between20%to30%. O. aegyptiaca seed germination rate induced by the stem methanol extracts of hexaploidgenotypes of Shaan139and Shaan253were up to49%and51.1%. Among O. cumana seedgermination induced by distilled water extracts of different organs of winter wheat, the leaveswas the highest, roots, stems and ears were similar. There were positive correlations betweenthe roots and stems, leaves and ears according to the germination rate. It showed that thegermination stimulant was synthesized in the wheat root and transported to the shoot.
     At maturity stage, O. cumana and O. aegyptiaca seed germination directly induced bythe rhizosphere soil of different winter wheat genotypes decreased gradually, while thegermination rate induced by aboveground extracts increased. The stem distilled water extractsof Shaan139stimulated the highest germination of O. cumana (28.1%), and methanolextracts stimulated the germination rate more than30%. The germination rate stimulated bythe stem extracts of Shaan253were up to27.7%(distilled water) and23.7%(methanol). O.cumana seed germination rate induced by the leaf methanol extracts of T. monococcum L. wasup to45.9%. O. aegyptiaca seed germination rate induced by the leaf extracts of hexaploidwinter wheat of Shaan253were up to24%(distilled water) and29%(methanol). O. cumanaseed germination rate induced by the glume extracts of Shan253were up to26.8%(distilledwater) and37.6%(methanol), and O. aegyptiaca seed germination rate was up to33.2%induced by its methanol extracts. Among O. cumana seed germination stimulated by theextracts of different organs of the winter wheat, there were positive correlations between theroots and stems, roots and grains. According to O. aegyptiaca seed germination rate, itshowed positive correlations among the roots, stems, leaves, grains and glumes. The germination stimulant was accumulated aboveground. Maybe the stalk could further releasethese substances to stimulate Orobanche seed germination, and this requires experimentalverification in future.
     4. The extracts (distilled water and methanol) of different organs of winter wheatstimulated O. cumana and O. aegyptiaca seed germination at seedling, jointing, heading andmaturity stages, and the germination rate increased gradually as the ploidy of winter wheatgenotype doubled.
     5. Planting the winter wheat of Shaan253and Shaan139in front stubble of sunflower,the parasitic number of O. cumana were3.2and4.6on per sunflower, which was1/6and1/4compared to the control. It could significantly reduce the parasitic rate of O. cumana. TheDBH of sunflower was0.2mm more than the control. The average plant height of sunflowerwas10cm more than the control. The fresh and dry weights of parasitized sunflower wereonly46%and37%of unparasitized sunflower. So planting winter wheat in front stubble ofsunflower could significantly increase the DBH, plant height, biomass of sunflower anddecrease the parasitic number of O. cumana, and improved the yield of sunflower indirectly.
引文
程刚,杨勇刚.2006.向日葵列当防治与研究.农村科技,9:23~24
    陈英慧,袁春风,陈松.2009.小麦生育关键期对降水的需求.气象与环境科学,32:95~98
    董淑琦.2009a.冬小麦诱导小列当种子发芽的研究.[硕士学位论文].杨凌:西北农林科技大学
    董淑琦,马永清,税军峰,韦运桃.2009b.不同年代冬小麦根际土浸提液诱导小列当种子发芽的化感作用研究.中国农业大学学报,14(2):59~63
    段晓兰,吐尔洪,马瑞升,巴艳,克才才.2005.瓜列当对番茄的危害规律及防治措施.新疆农业科技,1:38
    韩庆华,马永清.1994.小麦秸秆中生化他感化合物的研究概况.生态农业研究,2(4):53~58
    何海斌,王海斌,陈祥旭,林文雄,贾小丽,方长旬,甘邱锋,倪尼娜,吴文祥.2007.化感水稻苗期不同器官水浸提液及根系分泌物对稗草的化感作用.中国生态农业学报,15(2):14~17
    金善宝.1996.中国小麦学.北京:中国农业出版社
    孔垂华,娄永根.2010.化学生态学前沿.北京:高等教育出版社
    孔垂华,徐涛,胡飞,黄寿山.2000.环境胁迫下植物的化感作用及其诱导机制.生态学报,20(5):849~854
    孔令晓,王连生,赵聚莹,栗秋生,赵密霞.2006.烟草及向日葵列当Orobanche cumana的发生及其生物防治.植物病理学报,35(5):466~469
    郎明,马永清,董淑琦,肖恩时.2011.苗期棉花对向日葵列当种子萌发诱导作用初探.生态环境学报,20(1):79~83
    李秧秧,张岁歧,邵明安.2003.小麦进化材料水分利用效率与氮利用效率间相互关系.应用生态学报,14(9):1478~1480
    林雁冰,薛泉宏,颜霞.2010.覆膜条件下小麦和玉米根系化感作用对土壤微生物的影响.西北农业学报,19(1):92~95
    刘保川,陈巨莲,倪汉祥,孙京瑞,武予清.2003.小麦种黄酮类化合物对麦长管蚜生长发育的影响.植物保护学报,30(1):8~12
    刘沛松,李军,贾志宽,郝卫平,文祯中.2012.不同草田轮作模式对土壤养分动态的影响.水土保持通报,32(3):81~85
    马亚飞,杨平,吴凤芝.2011.不同品系小麦根系分泌物对黄瓜化感作用的初步研究.中国蔬菜,10:23~27
    马永清,陈素英,钟冠昌,穆素梅.1995a.不同品种麦茬杂草生长差异性初步研究.农业现代化研究,16(1):44~47
    马永清,董淑琦,任祥祥,安雨,郎明.2012a.列当杂草及其防除措施展望.中国生物防治学报,28(1):133~138
    马永清,韩庆华.1995b.麦秸覆盖对夏玉米生长发育的影响.华北农学报,10(1):106~108
    马永清,毛仁钊,刘孟雨,刘小京,张玉铭.1993c.小麦秸秆的生化他感效应.生态学杂志,12(5):36~38
    马永清,张维,董淑琦,任祥祥,安雨,郎明.2012b.传统中草药浸提液对3种列当种子萌发的诱导作用.中国科学:生命科学,42(4):304~315
    马永清.1993a.不同降雨年型麦秸覆盖对夏玉米中矿质元素含量的影响.植物生理通讯,29(6):472~473
    马永清.1993b.麦秸覆盖夏玉米生化他感作用研究初报.走向二十一世纪.北京:中国环境科学出版社:475~480
    切尔诺布里维卡C H.1961.植物分泌物的生物学作用和间作中的种间相互关系.北京:科学出版社
    任文义,李毅,马洪锡,郭禄彬,郭宇,吴宪涛.1992.向日葵列当对向日葵主要经济性状的影响及防治方法研究.河北农业大学学报,15(3):63~66
    任祥祥,马永清,郎明,董淑琦,安雨.2012.向日葵抗列当种质资源鉴定与筛选的新方法.江苏农业科学,40(1):107~109
    宋文坚,曹栋栋,金宗来,周伟军.2005a.我国主要根寄生杂草列当的寄主、危害及防治对策.植物检疫,19(4):230~232
    宋文坚,曹栋栋,金宗来,周伟军.2005b.影响根寄生植物列当种子萌发因素的研究.种子,24(2):44~47
    王大力.1998.水稻化感作用研究综述.生态学报,18(3):326~333
    王德胜,马永清,左胜鹏,金付平,袁翠萍.2008.黄土高原旱作小麦化感表达在根际土中的时空异质性研究.中国生态农业学报,16(3):537~542
    王凤龙,王劲波,钱玉梅,钱玉梅,段启斌,史庆,张根发,戴勇.1998.烟草上列当研究现状.植保技术与推广,18(3):35~36
    王海旺,李秀文,高雨成,李恩萍,王莹.2008.向日葵列当在天津地区的发生及防治.天津农林科技,(3):25~26
    王鹏冬,杨新元,张学武,张捷,贾爱红,李作豪.2003.山西省向日葵列当初报.山西农业科学,31(2):75~77
    吴海荣,强胜.2006.检疫杂草列当(Orobanche L.).杂草科学,2:58~60
    吴会芹,董林林,王倩.2009.玉米、小麦秸秆水浸提液对蔬菜种子的化感作用.华北农学报,24:140~143
    吴蕾,马凤鸣,刘成,李业成,王婵婵,王安娜.2009.大豆与玉米、小麦、高粱根系分泌物的比较分析.大豆科学,28(6):1021~1025
    薛丽静,于海燕,乔亚民,董百春,沙洪林,李慧英,姜福成.2001.吉林省向日葵新引资源对黑斑病抗性鉴定.植物遗传资源科学,2(1):64~65
    阴知勤,周桂玲.1993.新疆高等寄生植物(二)—列当科.八一农学院学报,16(1):48~54
    于海燕,薛丽静,乔亚民,董百春,沙洪林,李慧英,姜福成.2000.吉林省向日葵新引资源对列当抗性鉴定.植物遗传资源科学,1(2):65
    袁光林,马瑞霞,刘秀芬,孙思恩.1998.化感物质对土壤脲酶活性的影响.环境科学,19(2):55~57
    张芳,慕小倩,戴明.2009.8个栽培小麦品种的化感差异及其对除草剂药效的影响.麦类作物学报,29(2):324~329
    张辉,黄鹏,柴强,任强.2010.不同供水水平下小麦根系分泌物及典型化感物质的生物学效应.甘肃农业大学学报,45(1):52~57
    张庆平.1994.养麦根分泌物对小麦全蚀病菌的抑制及根际微生物种群数量观察.内蒙古农业科技,1:8~9
    张淑香,高子勤,刘海玲.2002.连作障碍与根际微生态.应用生态学报,11(5):741~744
    张岁歧,山仑,邓西平.2002.小麦进化中水分利用效率的变化及其与根系生长的关系.科学通报,47(17):1327~1331
    张维,马永清,郝智强.2012.不同大豆(Glycine max)品种对根寄生杂草瓜列当(Orobanche aegyptiaca)种子萌发的诱导作用.大豆科学,31(6):956~960
    张晓珂,梁文举,姜勇.2006.东北地区不同小麦品种对黑麦草的化感作用.应用生态学报,17(7):1191~1195
    张义,牛庆杰,孙敏,李慧英,刘壮,于学鹏,宋宝军.2006.向日葵列当遗传研究.中国油料作物学报,28(2):125~128
    张玉铭,马永清.1994.麦秸覆盖夏玉米对其苗期生长发育的生化他感作用研究初报.生态学杂志,13(3):70~72
    张志耘.1990.中国植物志(第69卷)北京:科学出版社:97
    郑立龙,柴强.2011.间作小麦、蚕豆的产量和竞争力对供水量和化感物质的响应.中国生态农业学报,19(4):745~749
    周宗璜,张志橙,李玉.1980.吉林省发现向日葵列当初报.吉林农业大学学报,2:20
    朱广济.1990.瓜列当的“诱杀”作物初探.新疆农业科学,2:74
    左胜鹏,马永清,稻永忍,李秀维.2005a.不同基因型小麦麦茬对杂草的化感抑制作用.植物保护学报,32(002):195~200
    左胜鹏,马永清,李秀维.2005b.不同基因型小麦成熟期地上部的化感作用研究.农业环境科学学报,24(004):652~657
    Adrian A, Muhammad J, Mattia M, Mark B, Martina V, Peter B, Sandro G, Harro B, Peter B, Salim A.2012.The path from-carotene to carlactone, a Strigolactone-Like plant hormone. Science,335:1348-1351
    Akiyama K, Matsuzaki K I, Hayashi H.2005. Plant sesquiterpenes induce hyphal branching in arbuscularmycorrhizal fungi. Nature,435:824-827
    Alsaadawi I S.2001. Allelopathic influence of decomposing wheat residues in agroecosystems. Journal ofCrop Production,4(2):185-196
    Awad A A, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K.2006. Characterization ofstrigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced bymaize, millet and sorghum. Plant Growth Regulation,48(3):221-227
    Batish D R, Singh H P, Kohli R K, Dawra G P.2006. Potential of allelopathy and allelochemicals for weedmanagement. In: Singh H P, Batish D R, Kohli R K. Handbook of sustainable weed management.NewYork: Food Products Press:209-256
    Bertholdsson N O.2010. Use of multivariate statistics to separate allelopathic and competitive factorsinfluencing weed suppression ability in winter wheat. Weed Research,51:273-283
    Bertholdsson N O.2012. Allelopathy a tool to improve the weed competitive ability of wheat withherbicide-resistant black-grass (Alopecurus myosuroides Huds.). Agronomy Journal,2:284-294
    Bertin C, Yang X H, Weston L A.2003. The role of root exudates and allelochemicals in the rhizosphere.Plant and Soil,256:67-83
    Blum U, Gerig T M, Worsham A D, Holappa L D, King L D.1992. Allelopathic activity inwheat-conventional and wheat-no-till soils: Development of soil extract bioassays. Journal ofChemical Ecology,18(12):2191-2221
    Blum U, King L D, Brownie C.2002. Effect of wheat residues on dicotyledonous weed emergence in asimulate no-till system. Allelopathy Journal,9(2):159-176
    Cast K G, Mcpherson J K, Pollard A J, Krenzer E G, Waller G R.1990. Allelochemicals in soil fromno-tillage versus conventional-tillage wheat (Triticum aestivum) fields. Journal of Chemical Ecology,16(7):2277-2289
    Cheema Z A, Khaliq A.2000. Use of sorghum allelopathic properties to control weeds in irrigated wheat ina semi arid region of Punjab. Agriculture, Ecosystems&Environment,79(2):105-112
    Cook C E, Whichard L P, Turner B, Wall M E, Egley G H.1966. Germination of witchweed (Striga luteaLour.): isolation and properties of a potent stimulant. Science,154:1189-1190.
    Cook C E, Whichard L P, Wall M E, Egley G H, Coggon P, Luhan P A, McPhail A T.1972. Germinationstimulabts101. The structure of strigol-a potent seed germination stimulants for witchweed (Strigalutea Lour.). Journal of American Chemical Society,94:6198-6199
    Copaja S V, Nicol D, Wratten S D.1999. Accumulation of hydroxamic acids during wheat germination.Phytochemistry,50(1):17-24
    Copaja S V, Niemeyer H M, Wratten S D.1991. Hydroxamic acid levels in Chilean and British wheatseedlings. Annals Applied Biology,118:223-227
    Crutchfield D A, Wicks G A, Burnside O C.1985. Effect of winter wheat (Triticum aestivum) straw mulchlevel on wed control. Weed Science,34:110-114
    Ding H, Lamb R J, Ames N.2000. Inducible production of phenolic acids in wheat and antibiotic resistanceto Sitodiplosis mosellana. Journal of Chemical Ecology,26(4):969-985
    Dong Shuqi, Ma Yongqing, Wu Hanwen, Shui Junfeng, Hao Zhiqiang.2012. Stimulatory effects of wheat(Triticum aestivum L.) on seed germination of Orobanche minor Sm. Allelopathy Journal,30(2):247-258
    Dong Shuqi, Ma Yongqing, Wu Hanwen, Shui Junfeng, Ye Xiaoxin, An Yu.2013. Allelopathic stimulationon Orobanche minor germination by wheat differing in ploidy levels. Allelopathy Journal,31(2):355-366
    Echevarría-Zome o S, Pérez-de-Luque A, Jorrín J, Maldonado A M.2006. Pre-haustorial resistance tobroomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. Journal ofExperimental Botany,57(15):4189-4200
    Eizenberg H, Shtienberg D, Silberbush M, Ephrath J E.2005. A new method for in-situ monitoring of theunderground development of Orobanche cumana in sunflower (Helianthus annuus) with amini-rhizotron. Annals of Botany,96:1137-1140
    Evidente A, Cimmino A, Fernández-Aparicio M, Andolfi A, Rubiales D, Motta A.2010. Polyphenols,Including the New Peapolyphenols A-C, from Pea Root Exudates Stimulate Orobanche foetida SeedGermination. Journal of Agricultural and Food Chemistry,58,2902-2907
    Evidente A, Fernández-Aparicio M, Cimmino A, Rubiales D, Andolfi A, Motta A.2009. Peagol andpeagoldione, two new strigolactone like metabolites isolated from pea root exudates. TetrahedronLetters,50(50):6955-6958
    FAO.1998. FAO production year book. Rome, Italy: FAO:52
    Gianoli E, Niemeyer H M.1997. Characteristics of hydroxamic acid induction in wheat triggered by aphidinfestation. Journal of Chemical Ecology,23(12):2695-2705
    Givovich A, Sandstrom J, Niemeyer H M, Pettersson J.1994. Presence of a hydroxamic acid glucoside inwheat phloem sap and its consequences for performance of Rhopalosiphum padi (L.)(Homoptera:aphididae). Journal of Chemical Ecology,20(8):1923-1934
    Graham T L.1991. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and inseed and root exudates. Plant Physiology,95:594-603
    Grayer R J, Harborne J B.1994. A survey of antifungal compounds from higher plants. Phytochemistry,37:19-42
    Guenzi W D, McCalla T M.1962. Inhibition of germination and seedling development by crop residues.Soil Science Society of America Journal,26(5):456-458
    Guenzi W D, McCalla T M.1966. Phenolic acids in oat, wheat, sorghum, and corn residues and theirphytotoxicity. Agronomy Journal,58:303-304
    Hartwig U A.1990. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in rhizobiummelilot. Plant Physiology,92:116-122
    Hashimoto Y, ShuDo K.1996. Chemistry of biologically active benzonazinoids. Phytochemistry,43(3):551-559
    Hauck C, Müller S, Schildknecht H.1992. A germination stimulant for parasitic flowering plants fromSorghum bicolor, a genuine host plant. Journal of Plant Physiology,139:474-478
    Holappa L D, Blum U.1991. Effects of exogenously applied p-ferulic acid, a potential allelopathiccompound on leaf growth, water utilization and endogenous abscisic acid levels of tomato, cucumberand bean. Journal of Chemical Ecology,17:865-886
    Joel D M.2000. The long-term approach to parasitic weed control: manipulation of specific developmentalmechanisms of the parasite. Crop Protection,19:753-758
    Kato-Noguchi H.2003. Isolation and identification of an allelopathic substance in Pisum sativum.Phytochemistry,62:1141-1144
    Kimber R W L.1973. Phytotoxicity from plant residues. III. The relative effect of toxins and nitrogenimmobilization on the germination and growth of wheat. Plant Soil,38:543-555
    Kruse M, Strandberg M, Strandberg B.2000. Ecological effects of allelopathic plants. Ecological Effects ofAllelopathic Plants A Review. Silkeborg, Bogtryk: National Environmental Research Insititute:35-48
    Kumar P, Gagliardo R W, Chilton W S.1993. Soil transformation of wheat and corn metabolites MBOAand DIM2BOA into amino-phenoxazinones. Journal of Chemical Ecology,19(11):2453-2465
    Labrousse P, Arnaud M C, Serieys H, Bervillé A, Thalouarn P.2001. Several mechanisms are involved inresistance of Helianthus to Orobanche cumana Wallr. Annals of Botany,88:859-868
    Linke K H, Saxena M C.1991. Towards an integrated control of Orobanche spp. In some legume crops. In:Wegmann K, Musselman L. Progress in Orobanche Research. Tuebingen: Tubingen Eberhard KarlsUniversitat:248-256
    Linke K H, Schnell H, Saxena M C.1991. Factors affecting the seed bank of Orobanche crenata in fieldunder lentil based cropping systems in northern Syria. In: Ransom J K, Musselman J L, Worsham A D,Parker C. Proceedings5thInternational Symposium on Parasitic Weeds. Nairobi, Kenya: CIMMYT:321-327
    Lins R D, Colquhoun J B, Mallory-Smith C A.2006. Investigation of wheat as a trap crop for control ofOrobanche minor. Weed Research,46(4):313-318
    Lodhi M A, Bilal R, Malik K A.1987. Allelopathy in agroeosystems: wheat phytotoxicity and its possibleroles in crop rotation. Journal of Chemical Ecology,13:1881-1891
    López-Ráez J A, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Ruyter-Spira C, VerstappenF, Bouwmeester H.2009. Strigolactones: ecological significance and use as a target for parasitic plantcontrol. Pest Management Science,65:471-477
    Ma Yongqing, Jia jinnan, An Yu, Wang Zhong, Mao Jianchang.2013. Potential of some hybrid maize linesto induce germination of sunflower broomrape. Crop Science,53:260-270
    Ma Yongqing, Lang Ming, Dong Shuqi, Shui Junfeng, Zhao Junxing.2012. Screening of some cottonvarieties for allelopathic potential on clover broomrape germination. Agronomy Journal,104(3):569-574
    Ma Yongqing, Zhang Wei, Dong Shuqi, Ren Xiangxiang, An Yu, Lang Ming.2012. Induction of seedgermination in Orobanche spp. by extracts of traditional Chinese medicinal herbs. Science China LifeSciences,55(3):250-260
    Matusova R, van Mourik T, Bouwmeester H J.2004. Changes in the sensitivity of parasitic weed seeds togermination stimulants. Seed Science Research,14:335-344
    Molisch H.1937. Dee Einfluss einre Pflanzze aufdie Andere-Allelopathie. G. Ficher. K. Jena
    Müller S, Hauck C, Schildknecht H.1992. Germination stimulants produced by Vigna unguiculata Walp cvSaunders Upright. Journal of Plant Growth Regulation,11:77-84
    Murary A H.1996. Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbialactivity in vitro. Journal of Chemical Ecology,22(8):1493-1505
    Narwal S S, Sarmah M K, Tamak J C.1998. Allelopathic strategies for weed management in rice-wheatrotation for sustainable agriculture. In: Olofsdotter M. Workshop on allelopathy in rice. Los Banos,Philippines: International Rice Research Institute:117-131
    Narwal S S.1999. Allelopathy in weed management. In: Narwal S S. Allelopathy updates volumn2: Basicand Applied aspects. Enfield, NH: Science publishers:203-254
    Neumann G, Romheld V.2000. The release of root exudates as affected bu the plant’s physiological status.In: Pinton R., Varanini Z., Nannipieri P. The Rhizosphere Biochemistry and Organic Substances at theSoil-Plant Interface. New York: Marcel Dekker, Inc:41-93
    Niemeyer H M.1988a. Hydroxamic acids (4-hydroxy-1,4-benzox-azin-3-ones) defence chemicals in thegramineae. Phytochemistry,27(1):3349-3358
    Niemeyer H M.1988b. Hydroxamic acid content of Triticum species. Euphytica,37:289-293.
    Om H, Dhiman S D, Kumar S, Kumar H.2002. Allelopathic response of Phalaris minor to crop and weedplants in rice-wheat system. Crop Protection,21(9):699-705
    Opoku G, Vyn T G, Vorney R P.1997. Wheat straw placement effects on total phenolic compounds in soiland corn seedling growth. Canadian Journal Plant Science,77(3):301-305
    Oueslati O.2003. Allelopathy in two durum wheat (Triticum durum L.) varieries. Agriculture Ecosystemand Environment,96:161-163
    Parker C, Hitchcock A M, Ramaiah K V.1977. The germination of Striga species by crop root exudates;techniques for selecting resistant crop cultivars. In: Proceedings Asian-Pacific Weed Science Society6thConference. Jakarta: Asian-Pacific Weed Science Society:67-74
    Parker C, Riches C R.1993. Orobanche species: The Broomrapes Parasitic Weeds of the World Biologyand Control. In: Parker C, Riches C R. Parasitic weeds of the world: biology and control. Wallingford,UK: CAB International:111-164
    Parker C.1994. The present state of the Orobanche problem. In: Pieterse A H, Verkleij J A C, Borg S J.Proceeding of the third international workshop on Orobanche and related Striga research. Amsterdam,Netherlands: Royal tropical institute:17-26
    Perez F J, Oremeno-Nunez J.1991. Root exudates of wild oats: Allelopathic effect on spring wheat.Phytochemistry,30(7):2199-2202
    Perez F J, Ormeno N J.1991. Difference in hydroxamic acid content in roots and root exudation of wheat(Triticum aestivum L.) and rye (Secale cereale L.): possible role in allelopathy. Journal of ChemicalEcology,17(6):1037-1049
    Pieterse, A.H.1979. The broomrapes (Orobanchaceae): A review. Abstracts on Tropical Agriculture,5:7-35
    Putnam A R and Duke W B.1974. Biological suppression of weeds Evidence for allelopathy in accessionsof cucumber. Science,185:370-372
    Rice E L, Lin C Y and Huang C Y.1980. Effects of decaying rice straw on growth and nitrogen fixation ofblue algae. Botanical Bulletin of Academica Sinica,21:111-117
    Rice E L.1984. Allelopathy. Second edition. New York: Academic press Inc
    Rice E L.1986. Allelopathic growth stimulation, In: Putnam A R, Tang C S. The science of allelopathy.New York, USA: John Wiley&Sons Inc
    Ross K C, Colquhoun J B, Mallory-smith C A.2004. Small broomrape (Orobanche minor) germination andearly development in response to plant specises. Weed Science,52(2):260-266
    Salam M A, Morokuma M, Teruya T, Suenaga K, Kato-Noguchi H.2009. Isolation and identification of apotent allelopathic substance in Bangladesh rice. Plant Growth Regulation,58:137-140
    Sauerborn J, Buschmann H, Ghiasi K G, Kogel K H.2002. Benzothiadiazole activities resistance insunflower (Helianthus annuus) to the root parasitic weed Orobanche Cumana. Genetics andResistance,92:59-64
    Shilling D G, Liebl R A, Worsham A D.1985. Rye (Secale cereale L.) and wheat (Triticum aestivum L.)mulch: the suppression of certain broadleaved weeds and the isolation and identification ofphytotoxins, In: Putnam A R and Tang C S. The Science of Allelopathy. New York, USA: John Wiley&Sons Inc:243-271
    Singh H P, Batish D R, Kohli R K.2003. Allelopathic interactions and allelochemicals: New possibilitiesfor sustainable weed management Review. Critical Reviews in Plant Sciences,22(3):239-311
    Srniley R W, Cook I.1973. Relationship between take-off of wheat and rhizosphere pH in soils fertilizedwith ammonium vs nitrate nitrogen. Journal of Phytopothology,63:882-890
    Steinsiek J W, Oliver L R, Collins F C.1980. The effect of phytotoxic substances from wheat straw onselected weeds. In: Proceedings of the33rdAnnual Meeting of the Southern Weed Science Society. pp:233-263
    Steinsiek J W, Oliver L R, Collins F C.1982. Allelopathic potential of wheat (Triticum aestivum) straw onselected weed species. Weed Science,30:495-497
    Sukuo S, Fernández-Martínez J M, Melero-Vara J M.2001. Temperature effects on the disease reactions ofsunflower to infection by Orobanche Cumana. Plant Disease,85(5):553-556
    Tadano T, Tanaka A.1980. The effect of low phosphate concentrations in culture medium on early growthof several crop plants. Japan Journal of Soil Science Plant Nutrition,51:399-404(In Japanese)
    Takeuchi Y, Omigawa Y, Ogasawara M, Yoneyama K, Konnai M, Worsham A D.1995. Effects ofbrassinosteroids on conditioning and germination of clover broomrape (Orobanche minor) seeds.Plant Growth Regulation,16(2):153-160
    Tang C S and Yong C C.1982. Collection and identification of allelopathic compounds from theundisturbed root system of bigalta limpograss (Hemarthria altissinm). Plant Physiology,69:155-160
    Thomas W C.2005. Benefits of classical biological control for managing invasive plants. Critical Reviewsin Plant Sciences,24(2):131-150
    Thorne R L Z, Waller G R, Mcpherson J K.1990. Autotoxic effects of old and new wheat straw inconvetional-tillage and no-tillage wheat soil. Botanical bulletin of academia sinica,31:35-49
    Walker T S, Bais H P, Grotewold E.2003. Root exudation and rhizosphere biology. Plant Physiology,132:44-51
    Warembourg F R, Billes G.1979. Estimating carbon transfers in the plant rhizosphere. In: Harley J L,Russell R S. The Soil-Root Interface. London: Academic Press:183-194
    Weih M, Didon U M E, R nnberg-W stljung A C, Bj rkman C.2008. Integrated agricultural research andcrop breeding: Allelopathic weed control in cereals and long-term productivity in perennial biomasscrops. Agricultural Systems,97(3):99-107
    Weston L A.1996. Utilization of allelopathy for weed management in Agroecosystems. Agronomy Journal,88:860-866
    Wilkes M A, Marshall D R, Copeland L.1999. Hydroxamic acids in cereal roots inhibit the growth oftake-all. Soil Biology and Biochemistry,31(13):1831-836
    Wouter L.2003. Chromosome Translocations in wheat with special reference to the wheat-rye translocation1BL/1RS. In: Sheng T M. The inherence and breeding of super wheat. Beijing: Chinese AgricultureScience Publish House:13-21
    Wu F Z, Han X, Wang X Z.2006. Allelopathic effect of root exudates of cucumber cultivars on fusariumoxysporum. Allelopathy Journal,18(1):163-172
    Wu H W, Haig T, Pratley J, Lemerle D, An M.2001b. Allelochemicals in wheat (Triticum aestivum L.)production and exudation of2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Journal of ChemicalEcology,27(8):1691-1671
    Wu H W, Haig T, Pratley J, Lemerle D, An M.2002. Biochemical basis for wheat seedling allelopathy onthe suppression of annual ryegrass (Lolium rigidum). Journal of Agriculture and Food Chemistry,50(16):4567-4571
    Wu H W, Haig T, Pratley J, Lemerle D, An M.1999. Stimultaneous determination of phenolic acids and2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gaschromatography tandem mass spectrometry. Journal of Chromatography A,864:315-321
    Wu H W, Haig T, Pratley J, Lemerle D, An M.2000a. Distribution and exudation of allelochemicals inwheat (Triticum aestivum). Journal of Chemical Ecology,26(9):2141-2154
    Wu H W, Haig T, Pratley J, Lemerle D, An M.2001a. Allelochemicals in wheat (Triticum aestivum L.):Variation of phenolic acids in shoot tissues. Journal of Chemical Ecology,27(1):125-135
    Wu H W, Pratley J, Lemerle D, An M.2000b. Allelochemicals in wheat (Triticum aestivum L.): variation ofphenolic acids in root tissues. Journal of Agricultural and Food Chemistry,48(11):5321-5325
    Wu H W, Pratley J, Lemerle D, Haig T.2000c. Evaluation of seedling allelopathy in453wheat (Triticumaestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method.Australian Journal of Agricultural Research,51(7):937-944
    Xie X N, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K.2007.2′-epi-orobanchol andsolanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced bytobacco. Journal of Agricultural and Food Chemistry,55:8067-8072
    Xie X N, Yoneyama K, Kisugia T, Uchidab K, Itoc S, Akiyamac K, Hayashic H, Yokota T, Nomuraa T,Yoneyamaa K.2013. Confirming stereochemical structures of strigolactones produced by rice andtobacco. Molecular Plant,6(1):153-163
    Xie X N, Yoneyama K, Kurita J, Harada Y, Yamada Y, Takeuchi Y, Yoneyama K.2009.7-oxoorobanchylaceate and7-oxoorobanchol as germination stimulants for root parasitic plants from Flax (Linumusitatissimum). Bioscience, Biotechnology, and Biochemistry,73(6):1367-1370
    Xie X N, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K.2008. Isolation andidentification of alectrol as (+)-orobanchyl acetate, a novel germination stimulant for root parasiticplants. Phytochemistry,69:427-431
    Xie X N, Yoneyama K, Yoneyama K.2010. The strigolactone story. Annual Review of Phytopathology,48:93-117
    Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y.1998. Alectrol and orobanchol, germinationstimulants for Orobanche minor, from its host red clover. Phytochemistry,49:1967-1973
    Yoneyama K, Takeuchi Y, Sato D, Sekimoto H, Yokota T.2004. Determination and quantification ofstrigolactones. In: Joel D M. Proceedings of the8thInternational Parasitic Weed Symposium.Amsterdam, Netherlands: International Parasitic Plant Society:9
    Yoneyama K, Takeuchi Y, Yokota T.2001. Production of clover broomrape seed germination stimulantsby red clover root requires nitrate but is inhibited by phosphate and ammonium. Journal of PlantPhysiology,112(1):25-30
    Yoneyama K, Xie X N, Kim H II, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K.2012. How donitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta,235(6):1197-1207
    Yoneyama K, Xie X N, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K.2007. Nitrogendeficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta,227:125-132
    Yoneyama K, Xie X N, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, and Hayashi H.2008.Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi,from Fabaceae plants. New Phytologist,179:484-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700