不同化感效应小麦根系分泌物对黄瓜生长及土壤生态环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是设施栽培的主要蔬菜种类,栽培面积约占蔬菜设施栽培面积的60%。由于市场需求和有限耕地的矛盾,以及栽培习惯和经济利益的驱动,使连作现象普遍,连作障碍严重。有研究表明,黄瓜与小麦轮套作有利于改善黄瓜土壤微生态环境,提高黄瓜产量及品质。
     本试验通过研究不同品种(系)小麦根系分泌物对黄瓜的化感效应,筛选出两个对黄瓜有显著化感差异的小麦品种(系),探索其对黄瓜生长及土壤生态环境的影响,试图阐明黄瓜-小麦种植体系中小麦根系分泌物的化感效应及其土壤生态学效应,为合理栽培制度的建立和推广提供理论依据。研究主要结果如下:
     1、供试的40个小麦品种(系)根系分泌物对黄瓜的化感效应存在差异, 70.25 %的小麦品种(系)根系分泌物对黄瓜的综合化感效应为促进作用,龙辐04-0348对黄瓜的化感促进效应最强,龙辐17化感抑制效应最强。
     2、不同化感效应小麦根系分泌物均促进了黄瓜幼苗地下部干重,并显著促进了幼苗株高。化感促进效应小麦根系分泌物对黄瓜幼苗的株高、茎粗、地下部干重均表现出促进作用;化感抑制效应小麦根系分泌物对黄瓜幼苗的株高、茎粗、地上部干重均表现出前期抑制,后期促进的趋势。定植后,黄瓜病害、产量无显著变化。
     3、不同化感效应小麦根系分泌物表现出先提高后降低了黄瓜幼苗土壤pH值,先降低后提高了黄瓜幼苗土壤EC值的趋势。化感促进效应小麦根系分泌物表现出提高黄瓜幼苗土壤碱解氮、速效磷、速效钾含量的趋势;化感抑制效应小麦根系分泌物表现出先降低后提高黄瓜幼苗土壤碱解氮、速效磷含量,先提高后降低速效钾含量的趋势。不同化感效应小麦根系分泌均表现出先提高后降低无苗土壤碱解氮、速效磷、速效钾含量的趋势。土壤有机质变化规律不明显。
     4、不同化感效应小麦根系分泌物均表现出提高黄瓜幼苗土壤和无苗土壤的脲酶活性,先降低后提高过氧化氢酶活性的趋势。化感促进效应小麦根系分泌物表现出先提高后降低黄瓜幼苗土壤和无苗土壤中性磷酸酶活性的趋势;化感抑制效应小根系分泌物表现出先降低后提高黄瓜幼苗土壤中性磷酸酶活性,先提高后降低无苗土壤中性磷酸酶活性的趋势。不同化感效应小麦根系分泌物前期对黄瓜幼苗土壤和无苗土壤的脱氢酶活性有显著抑制作用,后期有逐渐提高的趋势。
     5、不同化感效应小麦根系分泌物均降低了黄瓜幼苗土壤和无苗土壤的真菌数量。化感促进效应小麦根系分泌物降低了黄瓜幼苗土壤放线菌数量,表现出先降低后提高黄瓜幼苗土壤细菌数量的趋势;提高了无苗土壤细菌数量,表现出先提高后降低无苗土壤放线菌数量的趋势。化感抑制效应小麦根系分泌物提高了黄瓜幼苗土壤细菌数量,表现出先提高后降低黄瓜幼苗土壤和无苗土壤放线菌数量的趋势。化感促进效应小麦根系分泌物对土壤微生物生物量碳氮影响规律不明显,化感抑制效应小麦根系分泌物提高了黄瓜幼苗土壤和无苗土壤微生物生物量碳氮。不同化感效应小麦根系分泌物均表现出先降低后提高黄瓜幼苗土壤真菌DGGE图谱条带数和多样性指数,提高无苗土壤真菌DGGE图谱条带数和多样性指数的趋势。
     6、套种不同化感效应的小麦,提高了黄瓜土壤碱解氮、速效磷、速效钾、有机质含量及pH值,降低了EC值;提高了土壤脲酶、中性磷酸酶及脱氢酶活性;提高了土壤细菌数量及微生物生物量碳氮。套种化感促进效应小麦,降低了黄瓜土壤真菌数量,提高了放线菌数量、过氧化氢酶活性以及真菌DGGE图谱条带数和多样性指数,黄瓜增产2.9%;套种化感抑制效应小麦提高了黄瓜真菌、放线菌数量,降低了过氧化氢酶活性以及真菌DGGE图谱条带数和多样性指数,黄瓜增产25.5%。
As one of the most popular greenhouse plants, cucumber accounts for 60% of facility cultivated area. Not only because of the contradiction between the increasing market demand and limited arable land, but also driving by cultivation habits and economic benefits, soil sickness of cucumber is common, which leads to the severe continuous cropping obstacle. The new study suggests that the rotation and intercropping of the cucumber and wheat help to improve the soil environment of cucumber and enhance the quality and quantity of cucumber.
     This experiment attempts to analysis the allelopathy effect of different cultivars of wheat root exudates on cucumber, screen out two different cultivars of wheat which made great allelopathy effect on the growth of cucumber, explore the influence of wheat root exudates on the growth of cucumber and the soil environment. Through explaining the allelopathy effect of wheat root exudates on cucumber and soil environment, the author tries to provide theory basis for the establishing and popularizing of the rational cultivation system. Main results of this paper were as flowing:
     1. According to the synthesize effect value of allelopathy index on cucumber which collected from 40 wheat cultivars, 70.25 % of root exudates of wheat cultivars play a positive role in synthesized allelopathy effects of cucumber seedlings. In the 40 wheat cultivars, Longfu 04-0348(L11) had the most significant stimulatory effect, and Longfu 17 had the most significant inhibitory effect.
     2. The Wheat root exudates which play an active allelopathy show excellent acceleration effect on stem length stem diameter, belowground dry weight of cucumber seedlings. The Wheat root exudates which play inhibitory effect show that during the early stage exudates restrained the growth of stem length, stem diameter, aboveground dry weight of cucumber seedlings, while during the late stage exudates accelerated these index.The main disease and economic yield of cucumber were not obvious changed.
     3. The Wheat root exudates increase the soil PH value of cucumber seedlings first and then decrease, while decrease the soil EC value of cucumber seedlings first and then increase. The Wheat root exudates which play an active allelopathy increase the content of available Nitrogen, Phosphorus and Potassium in cucumber seedlings soil. The Wheat root exudates which play inhibitory effect decrease the content of available available Nitrogen, Phosphorus first and then increase, but increase the content of Potassium first and then decrease. Wheat root exudates decrease the content of available Nitrogen, Phosphorus and Potassium in cucumber non-seedlings soil first and then increase. The change of soil organic matter is not obvious.
     4. The wheat root exudates increased cucumber urease activity in cucumber seedlings and non-seedlings soil, however decreased catalase activity first and then increased. The Wheat root exudates which play an active allelopathy increased neutral phosphatase activity in cucumber seedling and non-seedling soil and then decreased. The Wheat root exudates which play inhibitory effect decreased neutral phosphatase activity in cucumber seedling oil first and then increase. At the same time, it increased neutral phosphatase activity in cucumber non-seedling soil and then decreased. The Wheat root exudates exhibited the significant inhibition on soil dehydrogenase activity in early stage and gradually increased in late stage.
     5. The Wheat root exudates reduced fungi quantity in cucumber seedlings and non-seedlings soil. The Wheat root exudates which play an active allelopathy effect decreased the number of bacteria in cucumber seedlings soil and then increased, meanwhile, decreased the number of actinomycetes. It increased the number of bacteria in cucumber non-seedlings soil, at the same time increased the number of actinomycetes first and then decreased. It had an unconspicuous effect on biomass of C, N in soil microorganism. The Wheat root exudates which play inhibitory effect increased the number of bacteria in cucumber seedlings soil, increased the number of actinomycetes and then decreased. It increased microorganism biomass of C, N in seedling and non-seedlings soil. Almost all the Wheat root exudates decreased DGGE profile bands and diversity index in cucumber seedlings soil at the beginning and then decreased. Besides, exudates increased DGGE profile bands and diversity index in cucumber non-seedlings soil.
     6. With wheat intercropping treatments, alkali-hydrolyzable nitrogen, available phosphorus, available K, organic matter, pH value increased and decreased EC value. The activity of urease, neutral phosphatase and dehydrogenase was strengthened. The number of bacteria and microorganism biomass of C, N in soil were grown. By interplanting wheat which play an active allelopathy effect, the number of fungi in cucumber soil was decreased, the number of actinomycetes, catalase activity, DGGE band numbers and diversity indices of the soil bacteria were increased. Meanwhile, Cucumber production rose by 2.9%. By interplanting wheat which plays inhibitory effect, the number of fungi and actinomycetes was increased, but the DGGE band numbers and diversity indices were decreased. As a result, Cucumber production rose by 25.5%.
引文
白清云. 1997.土壤微生物群落结构的化学评价方法[J].农业环境保护, 16(6): 252-256.
    鲍士旦. 2005.土壤农化分析(第三版) [M].中国农业出版社,北京.
    蔡燕飞,廖宗文. 2003.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报, (3): 349-353.
    常二华,杨建昌. 2006.根系分泌物及其在植物生长中的作用[J].耕作与栽培, 5 (13): 13-16.
    陈冬梅,陈祥旭,孙红艳,林瑞余,林文雄. 2008.麦类作物化感作用种质资源筛选与评价[J].福建农林大学学报(自然科学版), 37(1): 13-17.
    陈英,柴强. 2005.小麦的根系分泌物及典型分泌物间甲酚的化感作用研究[J].兰州大学学报(自然科学版), 41 (2): 26-29.
    褚贵新,沈其荣,李奕林等. 2004.用15N叶片标记法研究旱作水稻与花生间作系统中氮素的双向转移[J].生态学报, 24(2): 278-284.
    段春梅,薛泉宏,赵娟,呼世斌,陈秦,王玲娜,申光辉,薛磊. 2010.放线菌剂对黄瓜幼苗生长及叶片PPO活性的影响[J].西北农业学报, 19(9): 48-54.
    方程冉,贺永华,沈东升. 2008.甲磺隆胁迫下小麦根际氧化还原酶的活性响应[J].科技通报, 24(5): 649-652.
    高子勤,张淑香. 1998.连作障碍与根际微生态研究-根系分泌物及其生态效应[J].应用生态学报, 9(5): 549-554.
    宫曼丽,任南琪,邢德峰. 2004. DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报, 44(6): 845-848.
    辜运富,张小平,涂仕华. 2008.变性梯度凝胶电泳(DGGE)技术在土壤微生物多样性研究中的应用[J]. 40 (3): 344-350.
    关荫松. 1987.土壤酶及其研究法[M].北京:农业出版社
    韩庆华,马永清. 1994.小麦秸秆中生化他感化合物的研究概况[J].生态农业研究, 2(4): 53-58.
    郝永娟,魏军,刘春艳,王勇,王万立. 2009.生物土壤添加剂减轻黄瓜连作障碍的微生物效应[J].华北农学报, 24(4): 231-234.
    和丽忠,陈锦玉,董宝生,李世萍. 2001.国内植物化感作用研究概况[J].云南农业科技, (l): 37-41.
    和文祥,朱茗莪. 1997.陕西土壤酶活性与土壤肥力关系分析[J].土壤学报,34(4): 392-398.
    贺丽娜,梁银丽,熊亚梅,周茂娟,高静,韦泽秀. 2009.不同前茬对设施黄瓜产量和品质及土壤酶活性的影响[J].中国生态农业学报, 17(1): 24-28.
    胡开辉,罗国庆,汪世华,林旋,林文雄. 2006.化感水稻根际微生物类群及酶活性变化. [J].应用生态学报, 17 (6): 1060-1064.
    胡晓捷. 2004.阿特拉津和乙草胺对土壤酶的影响[D].浙江大学硕士学位论文.
    焦晓丹,吴凤芝. 2004.土壤微生物多样性研究方法的进展[J].土壤通报, 35(6):789-792.
    解文科,王小青,李斌,林锦波,郭丽丽,孔斌. 2005.植物根系分泌物研究综述. (5): 63-67.
    孔垂华,胡飞. 2001.植物化感(相生相克)作用及其应用[M].北京:中国农业出版社.
    孔维栋,朱永官,傅伯杰,陈保冬,童依平. 2004.农业土壤微生物基因与群落多样性研究进展[J].生态学报, 24(12): 2894-2900.
    赖斯. 1988.天然化学物质与有害生物防治[M].北京:科技出版社, 19-28.
    雷娟利. 2006.蔬菜土壤生态系统微生物分子生态学研究[D].浙江大学博士学位论文.
    李阜棣. 1996.土壤微生物学[M].中国农业出版社,北京.
    李洪连,徐敬友. 2001.农业植物病理学实验实习指导.中国农业出版社. 150~151
    李隆,李晓林,张福锁. 2000.小麦-大豆间作中小麦对大豆磷吸收的促进作用[J].生态学报, 20(4): 629-633.
    李秋红,吴凤芝,景芳毅. 2010.套作对黄瓜根际土壤细菌群落结构的多样性影响[J]. 土壤通报, 41(1): 47-52.
    李善林,由振国,梁渡湘等. 1991.小麦化感物质的提取、分离及其对白茅的杀除效果[J].植物保护学报, 24(1): 81-84.
    李晓磊,李井会,宋述尧. 2006.秸秆有机肥改善设施黄瓜连做土壤微生物区系[J].长春大学学报, 16(6): 119-122.
    李勇,黄小芳,丁万隆. 2008.根系分泌物及其对植物根际土壤微生态环境的影响.华北农学报, 23 (增刊): 182-186.
    李振高,李良谟,潘映华,吴胜春. 1995.小麦苗期根系分泌的对根际反硝化细菌的影响[J].土壤学报, 32(4): 408-413.
    李振高,潘映华,李良谟. 1993.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报, 30(1): 128.
    梁文举,张晓柯,姜勇,孔垂华. 2005.根分泌的化感物质及其对土壤生物产生的影响. 地球科学进展. 20 (3): 331-337.
    梁银丽,陈志杰,徐福利,严勇敢,杜社妮,张成娥. 2003.日光温室不同连作年限对黄瓜生理特性的影响[J].西北植物学报, (23): 1398-1401.
    梁银丽,陈志杰. 2004.设施蔬菜土壤连作障碍原因和预防措施[J].西北园艺, (7): 4-5.
    刘静,吴凤芝,吕涛. 2008.设施条件下不同轮套作对黄瓜产量及品质的影响[J].北方园艺, (12): 44-46.
    陆文龙,王敬国,曹一平等. 1998.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报, 35 (4): 493-501.
    陆文龙,曹一平,张福锁.低分子量有机酸对不同磷酸盐的活化作用[J].华北农学报,2001,16(1):99.
    吕卫光,余廷园,诸海涛,沈其荣,张春兰. 2006.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业报, 14 (2): 119-121.
    吕卫光,张春兰,袁飞,彭宇. 2002.化感物质抑制黄瓜连作生长的作用机理[J].中国农业科学, 35 (1): 106-109.
    吕卫光,张春兰,袁飞,彭宇. 2002.嫁接减轻设施黄瓜连作障碍机制初探[J].华北农学报, 15 (增刊): 153-156.
    吕卫光,张春兰,袁飞,彭宇. 2002.有机肥减轻连作黄瓜自毒作用的机制[J].上海农业学报, 18(2): 52-56.
    马恒亮,占新华,张晓斌,周立祥. 2009.小麦/苜蓿套作对菲污染土壤酶活性的影响[J].环境科学, 30 (12): 3684-3690.
    马万里. 2004.土壤微生物多样性研究的新方法.土壤学报., 41 (1): 103-107.
    马悦欣, Holmstrm C, Webb J, et al. 2003.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用[J].生态学报, 23(8): 1561-1569.
    马云华,魏氓,王秀峰. 2004.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报, 15(6): 1005-1008.
    孟亚丽,王立国,周治国,陈兵林,王瑛,张立桢,卞海云,张思平. 2005.麦棉两熟复合根系群体对棉花根际土壤酶活性和土壤养分的影响[J].中国农业科学, 38(5): 904-910.
    潘凯,姚友. 2008.不同黄瓜品种根系分泌物对根际土壤微生物及土壤养分的影响[J]. 北方园艺, (8): 18-20.
    沈宏,曹志洪,徐本生. 1999.玉米生长期间土壤微生物量与土壤酶活变化及其相关性研究[J].应用生态学报, 10(4): 471-474.
    沈慧敏,郭鸿儒,黄高宝. 2005.不同植物对小麦、黄瓜和萝卜幼苗化感作用潜力的初步评价[J].应用生态学报, 16(4): 740- 743.
    孙世中,郭云周,官会林,洪丽芳,杨泮川. 2010.不同管理模式下香石竹设施栽培土壤盐渍化特征及其诱导病害[J].土壤, 42 (6): 972-977.
    王海燕,蒋展鹏. 2002.化感作用及其在环境保护中的应用[J].环境污染治理技术与设备, 3(6): 86-89.
    王勐骋,杨永华,姚健. 2000.利用RAPD分子标记研究农用化学品污染土壤微生物群落的分子多样性[J].南京大学学报(自然科学), 36: 518-522.
    王玉彦,吴凤芝,周新刚. 2009.不同间作模式对设施黄瓜生长及土壤环境的影响[J].中国蔬菜, (16): 8-13.
    卫新菊. 2005.小麦化感作用及其应用[J].小麦研究, 26(2): 25-29.
    吴凤芝,刘德,栾非时. 1999.大棚土壤连作年限对黄瓜产量和品质的影响[J].东北农业大学学报, 30(3): 245-248.
    吴凤芝,刘德,王东凯.1998.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜, (4): 5-9.
    吴凤芝,王澍,杨阳. 2008.轮套作对黄瓜根际土壤细菌种群的影响.应用生态学报, [J]. 19(12): 2717-2722.
    吴凤芝,王学征,潘凯. 2008.小麦和大豆茬口对黄瓜土壤微生物生态特征的影响[J]. 应用生态学报, 19(4): 794-798.
    吴凤芝,王学征. 2007.黄瓜与小麦和大豆轮作对土壤微生物群落物种多样性的影响[J]. 园艺学报, 34(6): 1543-1546.
    吴凤芝,赵凤艳,谷思玉. 2002.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究, 18 (l): 20-22.
    吴凤芝,周新刚. 2009.不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J]. 土壤学报, 46(5): 899-906.
    吴凤芝. 1996.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究[J].东北农业大学学报, 27 (3): 255-258.
    吴焕涛,魏珉,杨凤娟,王秀峰. 2008.轮作和休茬对日光温室黄瓜连作土壤的改良效果[J].山东农业科学, (5): 59-63.
    吴金水,林启美,黄巧云,肖和艾. 2006.土壤微生物生物量测定方法及其应用[M].气象出版社,北京.
    吴艳飞,张雪艳,李元,魏文杰,高丽红. 2008.轮作对黄瓜连作土壤环境和产量的影响[J].园艺学报, 35(3): 357-362.
    肖焱波,李隆,张福锁. 2005.小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J]. 中国农业科学, 38(5): 965-973.
    徐淑霞,张世敏,尤晓颜,贾新成,吴坤. 2008.黄孢原毛平革菌对黄瓜连作土壤酚酸物质的降解[J].应用生态学报, 19 (11): 2480-2484.
    薛继承,毕德义,李家金等. 1994.保护地栽培蔬菜生理障碍的土壤因子与对策[J].土壤肥料, (1): 4-9.
    杨凤娟,吴焕涛,魏珉,王秀峰,史庆华. 2009.轮作与休闲对日光温室黄瓜连作土壤微生物和酶活性的影响[J].应用生态学报, 20(12): 2983-2988.
    杨建霞. 2005.日光温室黄瓜连作障碍研究及防治对策[J].甘肃农业, (11): 209.
    杨英华. 2008. PGPR活菌制剂防治大棚黄瓜连作障碍的研究[J].长江蔬菜, (8): 66-68.
    姚健,杨永华,沈晓蓉等. 2000.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报, 20: 1021-1027.
    叶素芬. 2004.黄瓜根系自毒物质对其根系病害的助长作用及其缓解机制研究[D].浙江大学硕士学位论文.
    俞慎,何振立,陈国潮等. 2003.不同树龄茶树根层土壤化学特征及其对微生物区系和数量的影响[J].土壤学报, 40(3): 433-439.
    袁龙刚,张军林,张朝阳等. 2006.连作对辣椒根际土壤微生物区系影响的初步研究.陕西农业科学. (2): 49-50.
    张春兰,吕卫光,袁飞,朱林. 1999.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J]. 中国农学通报, 15(6): 67-69.
    张晓珂,梁文举,姜勇. 2006.东北地区不同小麦品种对黑麦草的化感作用[J].应用生态学报, 17(7): 1191-1195.
    张晓柯,姜勇,梁文举,孔垂华. 2004.小麦化感作用研究进展[J].应用生态学报, 15(10): 1969-1972.
    张雪艳,高丽红,李元,田永强. 2007.栽培模式对黄瓜连作温室土壤酶活性及相关养分的分析[J].内蒙古农业大学学报, 28(3): 113-117.
    赵福庚,何龙飞,罗庆云. 2004.植物逆境生理生态学[M].北京:化学工业出版社, 41-45.
    赵小亮,刘新虎,贺江舟,万传星,龚明福,张利莉. 2009.棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响[J].西北植物学报, 29(7): 1426 - 1431.
    郑军辉,叶素芬,喻景权. 2004.蔬菜作物连作障碍产生原因及生物防治[J].中国蔬菜, (3): 56-58.
    周德庆. 2006.微生物学实验教程(第二版) [M].北京:高等教育出版社
    周礼恺. 1988.土壤酶学[M].北京:科技出版社.
    周晓芬,杨军芳. 2004.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果[J]. 河北农业科学, 8(4): 89-92.
    张晓珂,梁文举,姜勇. 2006.东北地区不同小麦品种对黑麦草的化感作用[J].应用生态学报, 17(7): 1191-1195.
    庄岩,吴凤芝,杨阳,尚庆茂. 2009.轮套作对黄瓜土壤微生物多样性及产量的影响[J].中国农业科学, 42(1): 204-209.
    左胜鹏,马永清,李秀维. 2005.不同基因型小麦成熟期地上部的化感作用研究[J].农业环境科学学报, 24(4): 652-657.
    左胜鹏,马永清. 2006.基于系统工程原理的作物化感潜力评价及其应用初探[J].中国农业科学, 39(3): 530-537.
    左元梅,陈清,张福锁. 2004a.利用14 C示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制[J].生态学报, 18(1): 43-46.
    左元梅,刘永秀,张福锁. 2004b.玉米/花生混作改善花生铁营养对花生根瘤碳氮代谢及固氮的影响[J].生态学报, 24(11): 2584-2590.
    Amann R I, Ludwig W, Schleifer K H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Review, 59 (1):143-169.
    Anderson J P E, Domsch K H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils [J].Soil BiolBiochem, 10: 215-221.
    Bergstrom D W, Monreal C M, Millette J A, et al. 1998. Spatial dependence of soil enzyme activities along a slope [J].Soil Science Society of America, 62(5):1302-1308.
    Blum U, Gerig T M, Worsham A D, et al. 1992. Allelopathic activity in wheat-conventional and wheat-no-till soil: development of soil extracts bioassays. Journal of Chemical Ecology, 18(12): 2191-2204.
    Brock T D. 1987. The study of microorganisms in situ: progress and problems [J]. Symposium Society of Genetic Microbiology, 41:1-17.
    Bruckner A, Kandeler E, Kampichler C. 1999. Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a lemperate coniferous forest [J]. Geoderma, 93: 207-223.
    Buyer J S and Kaufman D D. 1997. Microbial diversity in the rhizosphere of corn grown under conventional and low-input systems [J]. Applied Soil Ecology, 5: 21-27.
    Casamayor E O, Schafer H, Baneras L. 2000. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis [J]. Applied and Environmental Microbiology, 66 (2): 499-508.
    Chen Y L, Guo Y Q, Han S J, et al. 2002. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil [J]. Journal of Forestry Research, 13(2): 115-118.
    Cho J C and Kim S J. 2000. Computer-assisted PCR-single-strand-conformation polymerphis- m analysis for assessing shift in soil bacterial community structure during bioremediational treatments [J]. World Journal of Microbiology&Biotechnology, 16: 231-235.
    Cole J R, Chai B, Marsh T L, Fanis R J, et a1. 2003. The Ribosomal Database Project (RDP-II): previewing a new auto aligner that allows regular updates and the new prokaryotic taxonomy [J]. Nucleic Acids Res, 3l (1): 442-443.
    Copaja S V, Niemeyer H M, Wratten S D. 1991. Hydroxamic acid levels in Chilean and British wheat seedlings [J]. Ann Applied Biology, 118: 223-227.
    Copaja S V, Niemeyer H M, Wratten S D. 1991. Hydroxamic acid levels in Chilean and British wheat seedings [J]. Ann Appl Biol, 118: 223-227.
    Czarnota M A, Rimando A M, Weston L A. 2003. Evaluation of root exudates of seven sorghum accessions. Journal of Chemical Ecology, 29: 2073-2083.
    Daniel H. 2005. Encyclopedia of Soils in the Environment [M]. Oxford: Academic Press: 448-45
    Dilday R H, Lin J, Yang W. 1994. Identification of allelopathy in the USDA-ARS rice germplasm collection [J]. Australia Journal of Experimental Agriculture, 34: 907-910.
    Dudai N, Larkov O, Putievsky E, et al. 2000. Biotransformation of constituents of essential oils by germinating wheat seed. Phytochemistry, 55: 375-382.
    Fischer S G, Lerman L S. 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis [J].Cell, 16: 191-200.
    Frank S, Chistoph C T. 1998. A new approach to utilize PCR-single-strand-conformation polymerphism for 16srRNA gene-based microbial community analysis [J]. Applied and Environmental Microbiology, 64 (12): 4870-4876.
    Friebe A, Vilich V, Hennig L, et al. 1998. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis vartritici, G.graminis var, graminis, G.graminisvar,avenae and Fusarium culmorum [J]. Appl Environ Microbiol, 64(7): 2386-2391.
    Fujii Y, Akihiro Frurbyashi, Syuntaro Hiradate. 2004. Rhizosphere soil method: a new bioassay to evaluate allelopathy in the field. Proceedings and selected papers of the fourth world congress on allelopathy. 490-492.
    Fujii Y, Shibuya and Yasuda T. 1990. Method for screening allelopathic activities by using the logistic function (Richard’function) fitted to lettuce seed germination and growth curves [J]. Weed Resarch, Japanese, 35: 353-361.
    Garland J L, Mills A L. 1991. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community-level sole-carbon-source utilization [J]. Appli Environ Microbiol, 57: 2351-2359.
    George T S, Gregory P J, Wood M. 2002. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize [J]. Soil Biology & Biochemistry, 34: 1487-1494.
    Grayston S J, Vaughan D, Jones D. 1996. Rhizosphere carbon flow in trees, in comparison with annual plants the importance of root exudation and its impact on microbial activity and availability [J]. Applied Soil Ecology, 5: 29-56.
    Guenzi W D, McCalla T M. 1966. Phenolic acids in oat, wheat, sorghum, and corn residues and their phytotoxicity [J]. Agronomy Journal, 58: 303-304.
    Hashimoto Y, ShuDo K. 1996. Chernlstry of biologically active benzonazinoids. Phytochem- istry, 43(3): 551-559.
    Head I M, Saunders J R, Pickup R W. 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms [J]. Microbial Ecology, 35: 11-21.
    Hickman M V. 2002. Long-term tillage and crop rotation effects on soil chemical and mineral properties. Journal of Plant Nutrition, 25: 1457-1470.
    Janzen H H. 1990. Deposition of nitrogen into the rhizosphere by wheat roots [J]. Soil Biol. Biochem, (22): 1155-1160.
    Jenhinson D S. 1976. The effects of biocidal treatments on metabolism in soil: IV. The decomposition of fumigated organisms in soil [J].Soil Biol Biochem, 8: 203-208.
    Johansson J F, Paul L R, Finlay R D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture [J]. FEMS Microbiology Ecology, 48: 1-13.
    Kennydy A C, Smith K L. 1995. Soil microbial diversity and the sustainability of agricultural of soils [J]. Plant and Soil, 170: 75-86.
    Kimber R W L. 1973. Phytotoxicity from plant residuesШThe relative effect of toxins and nit rogen immobilization on the germination and growth of wheat. Plant Soil, 38: 347-361.
    Kruse M, Strandberg M, Strandberg B. 2000. Ecological effects of allelopathic plants a review [R] NERI Technical Report. Ministry of Environment and Energy National Environmental Research Institute, Silkeborg Bogtryk, Denmark, 315: 27-29.
    Lynch J M, Gunn K B, Panting L M. 1980. On the concentration of acetic acid in straw and soil [J]. Plant and Soil, 56:93-98.
    Marilley L, Vogt G, Blanc M. 1998. Bacterial diversity in the bulk soil and rhizospherefractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis [J]. Plant and Soil, 198: 219-224.
    Marschner H. 1991. Mechanism of adaptation of paints to acid soil [J].Plant and Soil, 134:1-20.
    Marschner P, Crowley D E, Higashi R M. 1997. Root exudation and physiological status of a rootcolonizing fluorescent pseudomonad in mycorrhizal and nonmycorrhizal pepper (Capsicum annuumL.) [J]. Plant Soil, 189: 11-20.
    Marsh T L, et a1. 2000. Terminal restriction fragment 1ength polymorphism analysis program, a web-based research tool for microbial community analysis [J]. Appl Environ Microbio1, 66(8): 3616-3620.
    Martin V. L., McCoy E. L. and Dick W. A. 1988. Allelopathy of crop residues influences corn seed germination and early growth [J]. Agronomy Journal, 82: 555-560.
    Mattice J D, R H Dilday, E E Gbur, B W Skulman. 2001. Barnyard grass growth inhibition with rice using high performance liquid chromatography to identify rice accession activity [J]. Agron. J., 93: 8-11.
    Menon P, GopalM, Parsad R. 2005. Effects of chlor-pyrifos and quinalphos on dehydrogenase activities and reduction of Fe3+in the soils of two semi-arid fields of tropical India [J].Agriculture, Ecosystems and Environment, 108 (1): 73-83
    Mulller A K, Westergaard K, Christensen S, Sorensen S J. 2002. The diversity and function of soil microbial communities exposed to different disturbances [J]. Microbial Ecology, 44: 49-58.
    Muyzer G, De Waal E C, Uitterlinden AG. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerise chain reaction-amplified genes encoding for 16S rRNA [J]. Applied and Environmental Microbiology, 59 (3): 695-700.
    Nannipieri P, Ascher J, Ceccherini M T, et al. 2003. Microbial diversity and soil functions [J]. European Journal of Soil Science, 54: 655-670.
    Navarez D C, Olofsdotter M. 1996. International Weed Control Congress [J].Copenhagen (Denmark), 25-28.
    Ogram A. 2000. Soil molecular microbial ecology at age 20: methodological challenges for the future [J]. Soil Biol. Biochem., 32: 1499-1504
    Rasiah V, Kay B D. 1999. Temporal dynamics of microbial biomass-and mineral-N in legume amended soils from a spatially variable landscape [J]. Geoderma, 92: 239-256.
    Rice E L. 1974. Allelopathy [M]. New Yoke: Academic Press: 1-50.
    Ruling W F M, Van Breukelen B M, Braster M, Lin B, Van Verseveld H W. 2001.
    Relationships between microbial community structure and hydrochemistry in a landfill leachate polluted aquifer [J]. Applied and Environmental Microbiology, 67(10): 4619-4629.
    Schwieger F, Tebbe C C. 1998. A new approach to utilize PCR-single strand-conformation polymorphism for 16s rRNA based microbial community analysis [J]. Appl. Env. Microbiol., 64: 4870-4876.
    Sekiguchi H, Tomioka N, Nakahara T, et al. 2000. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis [J].Biotechnology Letters, 23(15): 1205-1208.
    Sekiguchi H, Watanabe M, Nakahara T, Xu B H, Uchiyama H. 2002. Succession of bacterial community structure along the changjiang river determined by denaturing gradient gel electrophoresis and clone library analysis [J]. Applied and Environmental Microbiology, 68(10): 5142-5150.
    Shishido M, Sakamoto K,Yokoyama H, et al. 2008. Changes in microbial communities in an apple orchard and its adjacent bush soil in response to season, land-use, and violet root rot infestation [J]. Soil Biology&Biochemistry, 40: 1460-1473.
    Sinclair D C R, Smith G M, Bruce A, et al. 1997. Soil dehydrogenase activity adjacent to remedially treated timber, weathered in a physical field model [J].International Biodeterioration& Biodegradation, 39(23): 207-216.
    Sparling G P. 1995. The substrate induced respiration method [A]. In: ALEF K, NANNIPIERI P, eds., Methods in Applied SoilMicrobiology and Biochemistry [C]. London: Academic Press, 397-404.
    Staddon W J et al.1997. Microbial diversity index and community structure of postdisturbance forest soils as determined by sole-carbon-ultilization patterns [J]. Microbial Ecology, 34: 125-130.
    Steinsiek J W, Oliver L R, Collins F C. 1982. Allelopathic potential of wheat ( Triticum aestiv um) straw on selected weed species [J]. Weed Sci , 30: 495-497.
    Stenber G B, Pell M, Torstensson L. Integrated evaluation of variation in biological, chemical and physical soil properties [J]. Ambio, 1998, 27: 9-15.
    Tabatabai M A, Bremner J M. 1972. Assay of urease activity in soil [J]. Soil Biol Biochem, 4: 479-487.
    Tjedje J M, Asuming B S, Nusslein K, et al. 1999. Opening the black box of soil microbial diversity [J]. Appl Soil Eco1, 13: 109- 122.
    Torsvik V and Ovreas L. 2002. Microbial diversity and function in soil: from genes to ecosystems [J]. Current Opinion in Microbiology, 5: 240-245.
    Torsvik V L, Goksoyr J, Daae F L. 1990. High diversity in DNA of soil bacteria [J]. Appl. Env. Microb., 56: 782-787
    Torsvik V L. 1980. Isolation of bacterial DNA from soil [J]. Soil Biol. Biochem., 12: 15-21
    Torsvik V. 1998. Microbial Diversity and Community Structure in Two Different Agricultural Soil community [J]. Microb Ecol., 36: 303- 315.
    Trevors J. 1984. Dehydrogenase activity in soil: a comparison between the INT and TTC assay [J]. Soil Biol Biochem, 16: 673-674.
    Ulton C S J, Higgins C F, Sharp P M. 1991. ERIC sequences: a novel family of repeatitive elements in the genomes of Escherichia coli, Salmonella typhi murium and other enterobacteria [J]. Molecular Microbiology, 5 (4): 825-834.
    Vallaeys T, Topp E, Muyzer G, et al. 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs [J]. FEMS Microbiol. Ecol, 24: 279-285.
    Weidenhamer J D. 1996. Distinguishing Resource Competition and Chemical Interference: Overcoing the Merhodological Imprasse [J]. Agronomy Journal, 88: 866-875.
    WestonL A. 1996. Utilization of allelopathy for weed management in Agroecosystems [J].Agronomy Journal, 88: 860-866.
    White D C. 1997. In Microbial in their Natural Environments [J]. Soc General Microbiol symp, 34: 37-66.
    Wieland G, Neumann R, Backhaus H. 2001. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development [J]. Applied and Environmental Microbiology, 67: 5849-5854.
    Wu F Z, Han X, Wang X Z. 2006. Allelopathic effect of root exudates of cucumber cultivars on fusarium oxysporum. Allelopathy Journal, 18(1): 163-172.
    Wu H W, Haig T, Pratley J, et al. 1999. Stimultaneous determination of phenolic acids and 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-32-one in wheat (Triticum aestivum L.) by gas chromatography-tandem mass spectrometry [J]. Journal of Chromatogram Aanlysis, 864: 315-321.
    Wu H W, Haig T, Pratley J, et al. 2000. Distribution and exudation of allelochemicals in wheat (Triticumaestivum) [J]. Journal of Chemical Ecology, 26(9): 2141-2154.
    Wu H W, Haig T, Pratley J, et al. 2001. Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one.Journal of Chemical Ecology, 27(8): 1691-1671.
    Wu H W, Haig T, Pratley J, et al. 2001. Allelochemicals in wheat (Triticum aestivum L.): cultivar difference in the exudation of phenolic acids [J].Journal of Agriculture and Food Chemistry, 49(8): 3742-3745.
    Wu H W, Pratley J, Lemerle D, et al. 1998. Differential allelopathic potential among wheat accessions to annual ryegrass.In: D.L.Michalk and J.E.Pratley eds.Proceedings of 9th Australian Agronomy Conference, 567-571.
    Wu H, Pratley J, Lemerle D, et al. 2000a. Evaluation of seedling allelopathy in 453 wheat(Triticum aestivum) accessions against annual ryegrass(Lolium rigidum) by the equal compartment agar method [J]. Australian Journal of Agricultural Research, 51: 937-944.
    Wu H, Pratley J, Lemerle D, et al. 2000b. Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual rye grass (Lolium rigidum).Australian Journal of Agricultural Research, 51: 259-266.
    Xu, Y., Wang, G., Jin, J., Liu, J., Zhang, Q., Liu, X. 2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage [J]. Soil Biol. Biochem. 41: 919-925.
    Ye S F, Yu J Q, Peng Y H, Zheng J H, Zou L Y. 2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates [J]. Plant Soil, 263: 143-150.
    Yu J Q, Matsui Y. 1993. Phytotoxic substances in root exudates of Cucumber (Cucumis sativus L.). Journal of Chemical Ecology, 20(1): 21-31.
    Yu J Q, Matsui Y. 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedling [J]. J. Chem. Ecol. 23: 817-827.
    Yu J Q, Shou S Y, Qian Y R, Zhu Z Z, Hu W H. 2000. Autotoxic potential of cucurbit crops [J]. Plant Soil, 223: 147-151.
    Zelles L, Bai Q Y, Rackwitz R, et al. 1995. Determination of phosphor lipid and lipopolysacc haride derived fatty acid as an estimate of microbial biomass and community structures in soils [J].Biol Fertil soi1s. 19: 115-123.
    Zelles L, Rackwitz R et al. 1995. Discrimination of microbial diversity index by fatty acid profiles of phospholipids and lipopolysaccharides in differently cultivated soils [J]. Plant and Soil, 170: 115-122.
    Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterizations of microbial communities in soils: a review [J]. Biol soils, 29: 111-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700