基于信息更新的RC受弯构件抗力衰减概率模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国现有公路桥梁65.81万余座,其中混凝土桥梁占90%以上,因环境和车辆荷载等因素导致的钢筋锈蚀病害突出,进而引起钢筋混凝土(RC)桥梁抗力衰减,严重影响其服役安全。对既有桥梁进行抗力评估存在很大的不确定性,若完全通过试验和统计回归的方法概括出结构生命周期的发展规律实为不易。因此,如何充分挖掘和利用RC桥梁的检测信息,得到更为合理的抗力评估结果,是值得深入研究的课题。
     针对上述问题,本文结合国家自然科学基金项目“模糊及随机信息条件下既有RC桥梁时变可靠性研究(50908023)”和“既有RC桥梁构件抗剪性能退化模型及可靠性研究(50878031)”,对氯离子引起的钢筋锈蚀进而导致的RC桥梁性能退化、抗力衰减等展开研究,主要做了以下的工作:
     (1)建立了RC桥梁中钢筋锈蚀率的先验概率模型。根据Fick第二扩散定律,结合Monte Carlo数值模拟的方法,分析了锈蚀初始时间、开裂时间和开裂至规定宽度时间的概率特征,并对各参数的敏感性进行探讨;研究了钢筋局部锈蚀深度的分布规律,对比了保护层厚度、混凝土强度对其的影响。
     (2)建立了钢筋锈蚀率的后验概率模型。采用信息更新的Bayes原理和方法,通过引入不同时段的实桥检测信息,对锈蚀率先验模型进行了动态更新,并得到了锈蚀率的概率密度函数,结果显示更新后的模型较接近于实际,更加真实可靠,可为由于锈蚀导致的结构耐久性评估提供科学依据。
     (3)基于钢筋力学性能试验与粘结试件的拔出试验,研究了锈蚀对钢筋强度的影响,提出了钢筋与混凝土间协同工作系数的表达式。对从实桥和快速腐蚀构件中得到的452根钢筋进行力学性能试验,讨论了钢筋锈蚀对其破坏形式的影响,得到了钢筋锈蚀率与屈服强度的关系。通过快速锈蚀内贴片变形钢筋混凝土试件的拔出试验,给出了钢筋与混凝土协同工作系数的表达式。
     (4)构建了更新后RC桥梁构件的抗力衰减动态概率模型。考虑锈蚀钢筋截面积减小、钢筋强度降低和粘结性能退化,以实桥受弯构件为例,建立了信息更新后的抗力衰减概率模型。针对无实测信息的桥梁或构件,分析了信息不确定性对抗力的影响。研究表明:通过Bayes方法得到更新后的模型能较好地综合先验信息与RC构件的具体信息,进而减小了主观不确定性,由此得到结构的评估和预测结果更接近真实情况。
There are about 658100 highway bridges of China, which concrete bridge account for above 90%. Corrosion due to the environment and vehicle loads has become a serious problem in these concrete bridges, which is a key factor to affect the resistance attenuation and service security. It is difficult to gain the law of life-cycle based on experiment and statistical regression method because great uncertainty lie in evaluation of existing bridge. Therefore, it is an important task to evaluate the performance of degraded for RC bridge by fully using inspection data.
     Aim at the above problems, the performance and resistance attenuation of RC bridge due to corrosion in chloride ions environment are studied. This work is supported by National Natural Science Fund of China under the Project NO.50908023“Research on Time-variant Reliability of Existing RC Bridge under Fuzzy and Random Information”and NO.50878031“The Degradation Model and Reliability of Shear of Existing RC Bridge”. The main research works include as follows:
     (1) The prior probability model of corrosion rate is established. On the basis of Fick diffusion law, the distribution form and the probability density function (PDF) of corrosion initiation time, propagation time and the sensitivity of input parameters are analyzed. Monte Carlo simulation method is also applied. The effect of concrete cover and concrete strength on the probability distribution of the corrosion depth are analyzed.
     (2) The posterior probability model of corrosion rate is established based on information updating. The inspection data of bridge are incorporated and the prior probability model of corrosion rate is updated using bayes method, in addition, the probability density function is obtained. The results show that the updated model is more reliable and closer to the actual situation. This will provide scientific basis for durability assessment of RC bridge.
     (3) The tensile test on 452 corroded reinforcements from the electrochemical accelerated corrosion members and the field bridge members are conducted. The effect of corrosion rate on failure model are also discussed. The relation between steel corrosion rate and yield strength is established. The pullout tests on the bonding specimens with the deformed reinforcing bar installed by the interior strain gauge are conducted, and the associate expression of bond between steel and concrete is introduced.
     (4) The dynamic probability model of resistance attenuation of flexural member for RC bridge is established. In this model, the reduction of steel cross-sectional, and the decrease of corroded steel strength, and the degradation of bond properties between corroded steel and concrete are considered. For structural members with no inspection data, the effect of uncertainty information on resistance is also studied. The results show that the Bayes Model can efficiently combine the prior information and the specific information of RC bridge so that can reduce knowledge-based epistemic uncertainties, thus making resistance analysis more accurate.
引文
[1]混凝土结构耐久性设计规范[S]. GB/T 50476-2008
    [2] Park CH. Time dependent reliability models for steel girder bridges [D]: [The Philosophy Doctor Thesis of University of Michigan]. Detroit: University of Michigan, 1999
    [3] Wang H. Steel-free hybrid reinforcement system for reinforced concrete flexural members [D]: [The Philosophy Doctor Thesis of University of Missouri-rolla]. Missouri: University of Missouri-rolla, 2005
    [4]洪定海.混凝土中钢筋的腐蚀与防护[M].北京:中国铁道出版社, 1998
    [5]张克波.锈蚀钢筋混凝土桥梁受力性能试验研究[D]: [长沙理工大学博士学位论文].长沙:长沙理工大学, 2009
    [6]范颖芳,胡志强,张英姿.受腐蚀钢筋混凝土材料力学性能研究现[J].四川建筑科学研究, 2007, 33(2): 59-64
    [7]王磊.考虑模糊性与随机性的既有RC梁桥时变可靠性研究[D]: [长沙理工大学博士学位论文].长沙:长沙理工大学, 2008
    [8]赵国藩,李树瑶,廖婉卿等,钢筋混凝土结构的裂缝控制[M].北京:海洋出版社, 1991
    [9]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版), 2002, 36(4): 371-380
    [10] Dhir RK, Hewlett PC, Chan YN. Near surface characteristics of concrete: prediction carbonation resistance [J]. Magazine of Concrete Research. 1989, 42: 137-143
    [11] Papadakis VG. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Materials Journal. 1991, 88: 363-373
    [12]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社, 2002
    [13]仲伟秋,赵国藩.多种腐蚀因素作用下钢筋混凝土结构的可靠度分析[J].土木工程学报, 2003, 36(11): 1-5
    [14]姬永生,袁迎曙.恒定气候混凝土内钢筋锈蚀速率的时变特征与机理[J].中国矿业大学学报, 2007, 36(2): 153-158
    [15]俞海勇,张贺,王琼,等.海工混凝土钢筋锈蚀速率预测模型研究[J].建筑材料学报, 2009,12(4): 478-481
    [16]刘西拉,苗澎柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报, 1990, 11
    [17] Thoft-Christensen P, Jensen FM, Middleton CR. Assessment of the reliability of concrete slab bridges [C]. In: Frangopol DM, editor. Reliability and Optimization of Structral Systems. Pergamon: Elsevier, New York, 1997, 321-328
    [18] Thoft-Christensen P. Lifetime reliability assessment of concrete slab bridges [C]. In: Frangopol DM, editor. Optimal Performance of Civil Infrastructure Systems. Reston: ASCE, 1998, 181-193
    [19] Vu KAT, Stewart MG. Structural reliability of concrete bridges including improved chloride-induced corrosion models [J]. Structural Safety. 2000, 22: 313-333
    [20] Bazant ZP. Physical model for steel corrosion in concrete sea structures-application [J]. Journal of Structural Division, ASCE. 1979, 105(6): 1155-1166
    [21] Liu Y, Weyers R. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures [J]. ACI Materials Journal. 1998, 95(6): 675-681
    [22] EI Maaddawy T, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking [J]. Cement & Concrete Composites. 2007, 29(3): 168-175
    [23]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D]: [同济大学博士学位论文].上海:同济大学, 1999
    [24]潘振华,牛荻涛,王庆霖.钢筋锈蚀开裂条件的实验研究[J].工业建筑. 1999, 29(5): 46-49
    [25]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社, 2003
    [26]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报, 2005, 36(8): 939-945
    [27]牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型[J].工业建筑, 1996, 26(4): 8-9, 62
    [28]牛荻涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测模型[J].工业建筑, 1996, 26(4): 11-13
    [29]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003, 146-162
    [30]管品武,孟会英,李丽.钢筋与混凝土间粘结锚固性能及粘结作用机理[J].郑州工业大学学报, 2001, (9): 65-66
    [31] Almusallam Abdullah A, Al-Gahtani Ahmad S, Aziz Abdur Rauf and Rasheeduzzafart. Effect of reinforcement corrosion on bond strength [J]. Construction and Building Materials, 1996, 10(2): 123-129
    [32] Ballim Y, Reid JC, Kemp AR. Deflection of RC Beams under Simultaneous Load and Steel Corrosion [J]. Magazine of Concrete Research, 2001, 53(3): 171-181
    [33] Lee HS, Noguchi T, Tomosawa F. Evaluation of the Bond Properties between Concrete and Reinforcement as a Function of the Degree of Reinforcement Corrosion [J]. Cement and Concrete Research, 2002, 32(8): 1313-1318
    [34] WANG Xiaohui, LIU Xila. A Strain-softening Model for Steel-concrete Bond [J]. Cement and Concrete Research, 2003, 33(10): 1669-1773
    [35] Mangat PS, Elgarf MS. Bond characteristics of corroding reinforcement in concrete beams [J]. Materials and Structures/Materlauxet Constructions, 1999, 32: 89-97
    [36] Bhargava Kapilesh, Ghosh AK, Mori Yasuhiro, et al. Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models [J]. Nuclear Engineering and Design, 2007, 237, 1140-1157
    [37] Fang Congqi, Lundgren K, CHEN Liuguo, et al. Corrosion Influence on Bond in Reinforced Concrete [J]. Cement and Concrete Research, 2004, 34(11): 2159-2167
    [38] Chung L, Kim JJ, Yi ST Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars [J]. Cement & Concrete Composites, 2008, 30: 603-611
    [39]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响[J].同济大学学报, 2002, 30(7): 792-796
    [40]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报, 2001, 34(3): 47-52
    [41]范颖芳,黄振国,李健美等.受腐蚀钢筋混凝土试件中钢筋与混凝土粘结性能研究[J].工业建筑, 1999, 29(8): 49-51
    [42] Sonmayaji S, Shan SP. Bond Stress Versus Slip Relation-ship Cracking Response of Tension Members [J]. ACI Journal Proceedings, 1981, 78(3): 217-224
    [43]张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报, 2001, 34(5): 40-44
    [44]金伟良,赵羽习.随不同位置变化的钢筋与混凝土的粘结本构关系[J].浙江大学学报(工学版), 2002, 36(1): 1-6
    [45]徐港,卫军,王青.锈蚀变形钢筋与混凝土粘结应力模型研究[J].工程力学, 2008, 25(12): 123-126
    [46]王磊,马亚飞,张建仁等.锈蚀钢筋粘结性能对比试验研究[J].公路交通科技, 2010, 27(6): 91-96
    [47]袁迎曙,章鑫森,姬永生.人工气候与恒电流通电法加速锈蚀钢筋混凝土梁的结构性能比较研究[J].土木工程学报, 2006, 39(3): 42-46
    [48]牛荻涛等.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构, 1999, (8): 23-25
    [49]孙彬,牛获涛,王庆霖.锈蚀钢筋混凝土梁抗弯承载力计算方法[J].土木工程学报, 2008, 41(11): 1-6
    [50]吴瑾,吴兴胜.锈蚀钢筋混凝土受弯构件承载力评估[J].河海大学学报(自然科学版), 2004, 32(3): 283-286
    [51] Castel A. Mechanical behavior of corroded reinforced concrete beam: Part1-experimental study of corroded beams [J]. Materials and Structures, 2000, 33(11): 539-544
    [52] Castel A. Mechanical behavior of corroded reinforced concrete beam: part2-bond and notch effects [J]. Materials and Structures, 2000, 33(11): 545-551
    [53]惠云玲,李容,林志伸等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑, 1997, 27(5): 14-19
    [54]张建仁,张克波,彭晖等.锈蚀钢筋混凝土矩形梁正截面抗弯承载力计算方法[J].中国公路学报, 2009, 22(3): 45-51
    [55]吴庆,袁迎曙.基于钢筋锈蚀的混凝土梁承载能力退化预计模型[J].中国矿业大学学报, 2008, 37(4): 509-513
    [56]赵羽习,金伟良.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版), 2008, 42(1): 19-24
    [57]张雷顺,张晓磊,闫国新.再生混凝土无腹筋梁抗剪性能试验研究[J].工业建筑, 2007, 37(9): 57-61
    [58]季文玉.混凝土T形梁截面梁斜截面抗剪强度实用计算方法[J].北方交通大学学报, 1999, 23(4): 26-28
    [59]霍艳华.锈蚀钢筋混凝土简支梁受剪承载力研究[D]: [南昌大学硕士学位论文].南昌:南昌大学, 2007
    [60]张建仁.现有混凝土桥梁结构基于时变可靠度的评估研究[D]: [清华大学博士学位论文].北京:清华大学, 2002
    [61] Noortwijk JMv, Pandey MD. A stochastic deterioration process for time-dependent reliability analysis [C]. In: Maes MA, Huyse L, editors. the Eleventh IFIP WG 75 Working Conference on Reliability and Optimization of Structural Systems. Banff, Canada: M.A., 2003, 259-265
    [62] Enright MP, Frangopol DM. Condition prediction of deteriorating concrete bridges using Bayesian updating [J]. Journal of structure engineering, ASCE, 1999, 125(10): 1118-1125
    [63] Zhang ruoxue, Mahadevan Sankaran. Model uncertainty and Bayesian updating in reliability-based inspectin [J]. Structural Safety, 2000, 22(2): 145-160
    [64] Zhang ruoxue, Mahadevan Sankaran. Reliability-based reassessment of corrosion fatigue life [J]. Structural Safety, 2001, 23(1): 77-91
    [65]张俊芝,苏小卒.基于Bayesian方法的服役钢筋混凝土结构的随机时变抗力[J].浙江工业大学学报, 2004, 32(5): 539-545
    [66]卫军,罗扣.基于贝叶斯方法的时变可靠度分析[J].华中科技大学学报(自然科学版), 2007, 35(2): 1-3
    [67] Stewart MG. Effect of construction and service loads on reliability of existing RC building [J]. Journal of structural engineering, ASCE, 2001, 127(10): 1232-1235
    [68]王剑,刘西拉.基于多层bayes先验抗力模型的结构信息更新[J].上海交通大学学报, 2004, 38(6): 937-940
    [69] Stewart MG. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams [J]. Structural safety, 2009, 31(1): 19-30
    [70]李扬海,鲍卫刚,郭修武等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版, 1997
    [71] Yanaka M. Reliability-based criteria for corrosion in prestressed concrete bridge girders [D]. Detroit: University of Michigan, 2004
    [72] Vu KAT, Stewart MG. Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking [J]. Journal of Structural Engineering, 2005, 131(11): 1681-1689
    [73] Stewart MG, Rosowsky DV. Time-dependent reliability of deteriorating reinforced concrete bridge decks [J]. Structural Safety, 1998, 20: 91-109
    [74]张建仁,刘扬,许福友等.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社, 2003
    [75]程寿山,张劲泉,李万恒.钢筋锈蚀引起桥梁结构性能退化的可靠性分析[J].公路交通科技, 2006, 23(4): 33-36
    [76]彭建新,邵旭东,张建仁.考虑气候变化的受碳化腐蚀先张预应力混凝土梁时变可靠性评估[J].长沙理工大学学报(自然科学版), 2010, 7(2): 33-42
    [77]王剑,左志勇,刘西拉.结构时变可靠性问题的信息更新和Bayes方法[J].建筑科学, 2004, 1(20): 8-14
    [78]付涛.工程结构抗力标准值的小样本和贝叶斯统计推断方法[D]: [西安建筑科技大学硕士学位论文].西安:西安建筑科技大学, 2007
    [79]峁诗松.贝叶斯统计[M].北京:中国统计出版社, 1999
    [80]王俊杰,陈爱玖,姬凤玲等.岩土参数的概率分布拟合及Bayes方法优化[J].华北水利水电学院学报, 2004, 25(2): 51-54
    [81]张劲泉,宿健,程寿山等.混凝土旧桥材质状况与耐久性检测评定指南及工程实例[M].北京:人们交通出版社, 2007
    [82] Hong HP. Assessment of reliability of aging reinforced concrete structures [J]. Journal of Structural Engineering, ASCE, 2000, 126(12): 1458-1465
    [83]王立成,宋桂亭.氯盐腐蚀条件下钢筋混凝土结构抗力衰减模型研究[J].中国海洋平台, 2006, 21(5): 34-38, 43
    [84]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报(自然科学版), 2006, 34(5): 586-592
    [85] Du YG, Clark LA, Chan AHC. Residual capacity of corroded reinforcing bars [J]. Magazine of Concrete Research, 2005, 57(3): 135-147
    [86] Cairns J, Plizzari GA, Du Y, et al. Mechanical properties of corrosion-damaged reinforcement [J]. ACI Materials Journal, 2005, 102(4): 256-264
    [87] Lee HS, Noguchi T, Tomosawa F. FEM analysis for structural performance of deteriorated RC structures due to rebar corrosion [C]. Proceedings of the Second International Conference on Concrete under Severe Conditions. Troms, Norway, 1998, 327-336
    [88]周伟,马书红.基于木桶理论的公路交通与经济发展适应性研究[J].中国公路学报, 2003, 16(3): 77-82
    [89]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑, 2000, 30(1): 43-46
    [90]范颖芳,周晶.考虑蚀坑影响的锈蚀钢筋力学性能研究[J].建筑材料学报, 2003, 6(3): 248-252
    [91]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑, 1995, 25(9): 41-44
    [92] Coronelli D, Gambarova P. Structural assessment of corroded reinforcedconcrete beams: modeling guidelines [J]. Journal of Structural Engineering, ASCE, 2004, 130(8): 1214-1224
    [93] Almusallam AA. Effect of degree of corrosion on the properties of reinforcing steel bars [J]. Construction Building Materials, 2001, 15: 361-368
    [94] Palsson R, Mirza MS. Mechanical response of corroded steel reinforcement of abandoned concrete bridge [J]. ACI Structural Journal, 2002, 99(2): 157-162
    [95] Stewart MG, Suo Qinghui. Extent of spatially variable corrosion damage as an indicator of strength and time-dependent reliability of RC beams [J]. Engineering Structures, 2009, (31): 198-207
    [96] Higgins C, Farrow WC. Tests of reinforced concrete beams with corrosion-damaged stirrups [J]. ACI Structural Journal, 2006, 103(1): 133-141
    [97]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑, 2001, 31(5): 9-11
    [98]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构, 2002, 32(10): 14-17
    [99]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003
    [100]王庆霖,池永亮,牛荻涛.锈后无粘结钢筋混凝土梁的模拟试验与分析[J].建筑结构, 2001, 31(4): 51-53, 63
    [101] Mangat PS, Elgarf MS. Flexural strength of concrete beams with corroding reinforcement [J]. ACI Structure, 1999, 96(1): l49-158
    [102]董富枝.基于Monte Carlo方法的钢筋混凝土中钢筋锈蚀率研究[D]: [湖北工业大学硕士学位论文].武汉:湖北工业大学, 2007
    [103]张建仁,王磊.既有钢筋混凝土桥梁构件承载力估算方法[J].中国公路学报, 2006, 19(2): 49-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700