大坝安全监测数据分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大坝监测数据分析理论和方法的研究与应用已经取得了相当的进展,为保证大坝安全运行发挥了巨大的作用,但是,在数据分析方面依然存在许多问题和不足。针对现有分析方法和分析模型中存在的问题和不足,本文以混凝土坝变形监测数据分析为主,将其它领域的研究理论和分析方法应用到大坝监测数据的分析中,致力于提高监测数据分析时模型的预测精度,更加有效合理地实现对大坝运行现状的评价,满足实际工程应用的需要。
     为了避免回归模型可能存在的伪回归现象。本文利用协整理论检验大坝监测变量及相关环境影响因子数据序列的平稳性,对于存在协整关系的时间序列,采用误差修正模型来描述变量之间的长期均衡和短期非均衡关系,以提高模型的拟合精度和预测能力。
     为了评价大坝运行中坝体的安全状态和结构性态,根据平稳系统自回归模型特征多项式的根距离单位圆的远近,在一定程度上反映了该系统平稳性的变化情况,本文据此提出一种安全监控指标。
     时间序列的高阶统计量包含了二阶统计量所没有的大量丰富信息,能更好地反映系统的性态。本文介绍了现代谱估计及双谱估计理论、原理及方法,通过钢筋混凝土梁损伤试验验证了监测数据的双谱能较好地反映结构性态的变化,并尝试用于大坝变形监测数据的分析来评价大坝的结构性态变化趋势。
     时效分析在大坝变形监测中具有十分重要的意义,本文假定大坝系统为时不变系统,将时效作为反映大坝结构性态的状态变量,采用EM算法,利用状态空间模型进行时效分量的估计,实例分析验证了该方法不但具有较好的拟合及预测能力,而且可以有效提取出时效分量用于评价大坝的运行性态。
     自变量的多重共线性及随机噪声干扰往往会造成回归模型出现过拟合现象,使得模型拟合精度很高,但是预测能力很差,不能有效地用于大坝安全监控的预测预警。本文应用自组织数据挖掘技术的数据分组处理(GMDH)算法建立分析模型,增强模型稳健性,提高模型的预测能力,实例分析验证了该方法的有效性。
Analysis theory and Methods for dam safety monitoring data, playing a major role in guaranteeing the dam safety, have been made considerable progress. However, there are still many problems and and deficiencies in the data analysis. In this paper, research theory and analytical methods in the other fields are introduced and applied to the analysis of dam monitoring data such as the analysis of deformation monitoring data of concrete dam. The main purpose of study in this paper is to solve some problems and to correct some deficiencies of the analysis of dam monitoring data in the existing, for improving the monitoring data analysis precision of the model and achieving more effective and rational assessment of the state of the dam, in order to meet the needs of practical engineering applications.
     In order to avoid possible suprious regression in regression model, in this paper, cointegration theorom is used to test whether a set of data of dam monitoring variables are stationary time series. The cointegrated series can be represented by error correction models to describe long run equilibrium and short run unequilibrium among them, in order to improve the model fittness and predictions capacity.
     In order to evaluate the security state and the structural change trend of the dam, a kind of safety monitoring index is introduced, according to the distance to the unit circle of roots which are calculated from the characteristic polynomial of stationary autoregression system reflects the properties of stationary system.
     As the higher-order statistics of time series which contains more information than a second-order statistics can better reflect the properties of system, this paper describes the modern spectral estimation and bispectrum estimation theory, principles and methods, the analysis result of a damage experiment of two reinfoced concrete beams indicates bispectrum can effectively reflect the change of structure status, and try for the analysis of dam monitoring data to assess the structural state of the dam.
     Considering the importance of time-effect displacement in deformation monitoring data analysis, suppose that the dam system is a time invariable system, the time-effect variable is selected as state variable to discribe the structural properties of dam body. The parameters of state space model arc estimated by using the EM algorithm. The example analysis result shows that the state space model has good precision of fitness and forecastion, and time-effect variable can effectively extract from the monitoring data of dam used to evalute the dam status.
     Multicollinearity of independent variables and random noise tend to result in overfitting of the regression model, making the model fitting accuracy is high, but the predictive ability is poor, so that the regression model can not be effectively applied to forecast for dam safety monitoring. In this paper, the group method of data handling(GMDH) of self-organizing data mining is used to make model in order to enhance the robustness of the model and to improve the model's predictive ability, example analysis result validates the effectiveness of the method.
引文
[1]陈文燕,朱林,王文韬.大坝安全监测的现状与发展趋势[J].电力环境保护.2009(6):38-42.
    [2]中华人民共和国水利部.全国水利发展统计公报(2010年)[G].北京:中国水利水电出版社,2011.
    [3]钮新强.大坝安全与安全管理若干重大问题及其对策[J].人民长江.2011(12):1-5.
    [4]吴中如,沈长松,阮焕祥.水工建筑安全监控理论及其应用[G].南京:河海大学出版社,1990.
    [5]何勇军,刘成栋,向衍,等.大坝安全监测与自动化[G].北京:中国水利水电出版社,2007.
    [6]方卫华.纵论大坝安全监测[J].水利水文自动化.2001(3):9-12.
    [7]]王德厚.大坝安全与监测[J].水利电力科技.2006,32(1):1-9.
    [8]赵志仁,徐锐.国内外大坝安全监测技术发展现状与展望[J].水电自动化与大坝监测.2010(5):52-57.
    [9]李珍照.混凝土坝观测资料分析[G].北京:水利电力出版社,1989.
    [10]吴中如.水工建筑物安全监控理论及其应用[G].北京:高等教育出版社,2003.
    [11]Tonini D. Observed behaviour of several Italian arch dams[J]. Proc. ASCE, Journal Power Division.1956, 82(P06).
    [12]Xerez A, Lamas F J. Methods of analysis of arch dam behavior[C]. New York:1958.
    [13]Rocha M. A quantitative method for the interpretation of the results of the observation of dams[C]. New York: 1958.
    [14]胡灵芝.混凝土坝变形安全监控时变模型及其应用研究[D].河海大学,2005.
    [15]黄红女,周琼,华锡生.大坝安全监控理论与技术研究现状综述[J].大坝与安全.2005(2):54-57.
    [16]Purer E, Steiner N. Application of statistical methods in monitoring dam behaviour[J]. International water power\& dam construction.1986,38(12):33-35.
    [17]吴中如,刘观标.混凝土坝的位移确定性模型研究[J].大坝观测与土工测试.1987(1):16-25.
    [18]李旦江,杨立新,顾宁.混合模型及其在恒山拱坝原观资料分析中的应用[J].水力发电.1988(5):46-51.
    [19]吴中如.混凝土坝安全监控的确定性模型及混合模型[J].水利学报.1989(5):64-70.
    [20]何金平,李珍照.大坝结构性态多测点数学模型研究[J].武汉水利电力大学学报.1994(2):134-136.
    [21]汪树玉,刘国华,杜王盖,等.大坝观测数据序列中的混沌现象[J].水利学报.1999(7):23-27.
    [22]张正禄,张松林,黄全义,等.大坝安全监测、分析与预报的发展综述[J].大坝与安全.2002(5):13-16.
    [23]王晓蕾,王其霞,槐先锋.逐步回归模型在大坝监测中的应用[J].水科学与工程技术.2006(1):60-62.
    [24]许后磊,冯茂静,杨阳,等.因子相关性对大坝监测模型精度的影响探究[J].水电能源科学.2009(5):77-80.
    [25]Yu H, Wu Z, Bao T, et al. Multivariate analysis in dam monitoring data with PCA[J]. Science China(Technological Sciences).2010(4):36-40.
    [26]虞鸿,吴中如,包腾飞,等.基于主成分的大坝观测数据多效应量统计分析研究[J].中国科学:技术科学.2010(7):830-839.
    [27]谢守亮.岭回归及其在大坝监测资料分析中的应用[J].湖北水力发电.1992(2):31-36.
    [28]Qunge H, Chang X, Yufan D. Dam Deformation Analysis Based on Ridge Regression[C].2009.
    [29]王小军,雷娜.大坝安全监测的遗传—偏回归(GA-PLSR)模型研究及应用[J].水利与建筑工程学报.2010(5):113-116.
    [30]杨杰,杨丽,李建伟,等.基于改进遗传算法-偏最小二乘回归的大坝变形监测模型[J].西北农林科技 大学学报(自然科学版).2010(2):206-210.
    [31]邓念武,陈正,叶泽荣.基于遗传算法的偏最小二乘回归模型在大坝安全监测中的应用[J].大坝与安全.2007(4):33-35.
    [32]徐培亮.应用时间序列方法作大坝变形预报[J].武汉测绘科技大学学报.1988(3):23-31.
    [33]涂克楠,高飞,黄芳伟.时间序列预测法在大坝变形监测数据处理中的应用[J].水科学与工程技术.2008(3):65-67.
    [34]张利,李富强,汪树玉,等.观测分析中的回归-时序列模型[J].浙江大学学报(工学版).2002(5):102-106.
    [35]郑箫,金青.回归模型与时间序列在大坝变形监测中的应用[J].湖北师范学院学报(自然科学版).2010(1):83-88.
    [36]刘祖强.大坝安全监测动态系统灰色模型研究[J].勘察科学技术.1994(1):49-53.
    [37]熊支荣,李珍照.灰色系统理论在大坝观测资料分析中的应用[J].水利水电技术.1991(4):46-51.
    [38]刘观标.大坝观测物理量的灰色系统模型[J].大坝观测与土工测试.1991:61-67.
    [39]刘祖强.大坝安全监测动态系统灰色模型研究[J].勘察科学技术.1994(1):49-53.
    [40]齐长鑫,汪树玉.灰色系统模型在坝基位移预测中的应用[J].水利学报.1996(9):49-52.
    [41]蓝悦明,下新洲.灰色预测用于大坝水平变形预测的研究[J].武汉测绘科技大学学报.1996(4):44-48.
    [42]王利,张双成,李亚红.动态灰色预测模型在大坝变形监测及预报中的应用研究[J].西安科技大学学报.2005(3):328-332.
    [43]何金平,廖文来,周桂林.大坝安全监测灰色—时序动态组合模型[J].水电能源科学.2005(3):68-70.
    [44]李智录,李波.基于PLSR的静态灰色模型在大坝安全监控中的应用[J].大坝与安全.2006(6):48-51.
    [45]刘国华,何勇兵,汪树玉.土石坝沉降预测中的多变量灰色预测模型[J].水利学报.2003(12):84-88.
    [46]焦明连,蒋廷臣.基于小波分析的灰色预测模型在大坝安全监测中的应用[J].大地测量与地球动力学.2009(2):115-117.
    [47]罗亦泳,张豪,张立亭.基于遗传支持向量机的多维灰色变形预测模型研究[J].浙江工业大学学报.2010(1):79-83.
    [48]岳建平.灰色动态神经网络模型及其应用[J].水利学报.2003(7):120-123.
    [49]邓跃进,张正禄.大坝变形的频谱分析方法[J].测绘信息与工程.1997(4):7-10.
    [50]李英冰,徐绍铨,张永军,等.谱分析在大坝外观GPS自动化监测中应用的研究[J].全球定位系统.2001(1):31-34.
    [51]尤炀,黄腾,李桂华.频谱分析在大坝变形影响因子选择中的应用[J].水电自动化与大坝监测.2008(4):56-58.
    [52]华锡生,周卫娟.状态估计在大坝安全监测中的应用[J].水力发电学报.1995(4):86-93.
    [53]陆付民.顾及时间和水位因子的卡尔曼滤波法在大坝变形分析中的应用[J].三峡大学学报(自然科学版).2004(5):392-394.
    [54]陆付民.卡尔曼滤波法在大坝变形分析中的应用[J].勘察科学技术.2002(1):43-45.
    [55]陆付民.顾及多个因子的卡尔曼滤波法在大坝变形分析中的应用[J].水电自动化与大坝监测.2003(3):71-73.
    [56]陆付民,何薪基.基于模型筛选法的卡尔曼滤波法在大坝变形分析中的应用[J].水电自动化与大坝监测.2002(4):55-56.
    [57]郭丽,王启明,袁永生. Kalman滤波用于大坝位移模拟与预报[J].水电能源科学.2006(6):53-56.
    [58]李子阳,郭丽,顾冲时.大坝监测资料的时变Kalman预测模型[J].武汉大学学报(信息科学版).2010(8):991-995.
    [59]李智录,胡静.卡尔曼滤波回归统计模型及工程应用分析[J].水电自动化与大坝监测.2007(1):82-84.
    [60]马攀,孟令奎,文鸿雁.基于小波分析的Kalman滤波动态变形模型研究[J].武汉大学学报(信息科学版).2004(4):349-353.
    [61]李捷斌,孔令杰.基于Kalman滤波的BP神经网络方法在大坝变形预测中的应用[J].大地测量与地球动力学.2009(4):124-126.
    [62]李珍照,李硕如.古田溪一级大坝实测变形性态分析[J].大坝与安全.1989:21-33.
    [63]吴子平,王振波,宋修广.施工期混凝土拱坝应力实测数据的混合模型研究[J].河海大学学报(自然科学版).2000(1):102-107.
    [64]蒋清华,马福恒,刘成栋.碗窑碾压混凝土坝变形成因分析及监控指标的拟定[J].中国安全科学学报.2007(4):172-176.
    [65]任德记,高满军,李广民.混合模型在大坝变形分析中的应用[J].水利科技与经济.2008(1):29-30.
    [66]李端有,周元春,甘孝清.混凝土拱坝多测点确定性位移监控模型研究[J].水利学报.2011(8):981-985.
    [67]茹菲,李铁鹰.人工神经网络系统辨识综述[J].软件导刊.2011(3):134-135.
    [68]樊琨.基于人工神经网络的大坝位移预测[J].长江科学院院报.1998(5):46-49.
    [69]李守巨,刘迎曦,刘玉静.基于进化神经网络混凝土大坝变形预测[J].岩土力学.2003(4):634-638.
    [70]赵二峰,金永强,金怡,等.基于递阶对角神经网络的大坝变形预报模型[J].武汉大学学报(工学版).2009(3):344-348.
    [71]曾凡祥,李勤英.基于LM算法的BP神经网络在大坝变形监测数据处理中的应用[J].水电自动化与大坝监测.2008(5):72-75.
    [72]赖道平,顾冲时.Elman回归神经网络在大坝安全监控中的应用[J].河海大学学报(自然科学版).2003(3):255-258.
    [73]徐洪钟,胡群革,吴中如.自适应模糊神经网络在大坝安全监控中的应用[J].河海大学学报(自然科学版).2001(2):8-10.
    [74]邓兴升,王新洲.动态模糊神经网络在大坝变形预报中的应用[J].水电自动化与大坝监测.2007(2):64-67.
    [75]黎昵,岳建平,段鹏.改进模糊神经网络模型及其在大坝监测中的应用[J].水电自动化与大坝监测.2007(1):74-76.
    [76]王铁生,华锡生.模糊神经网络在大坝变形预报中的应用[J].工程勘察.2002(5):56-58.
    [77]徐洪钟,单泰松,吴中如.大坝观测数据的模糊神经网络分析[J].大坝观测与土工测试.2001(3):17-18.
    [78]李雪红,徐洪钟,顾冲时,等.主成分神经网络模型在大坝观测资料分析中的应用[J].大坝观测与土工测试.2001(5):14-16.
    [79]田伟,魏光辉,高强.基于主成分分析与BP神经网络模型的大坝渗流监测资料分析[J].大坝与安全.2009(5):29-31.
    [80]李小荣,郭永刚.基于遗传算法优化神经网络权值的大坝结构损伤识别[J].震灾防御技术.2008(2):189-196.
    [81]刘健,蔡建军,程森.基于遗传神经网络的大坝变形预测模型研究[J].山东大学学报(工学版).2006(2):62-66.
    [82]苏怀智,吴中如,温志萍,等.遗传算法在大坝安全监控神经网络预报模型建立中的应用[J].水利学报.2001(8):44-48.
    [83]王志军,刘红彩.遗传神经网络在大坝变形预报因子重要度判定重的应用[J].水电自动化与大坝监测.2008(5):69-71.
    [84]闫滨,周晶,高真伟.基于遗传单纯形神经网络的大坝变形监控模型[J].水力发电学报.2007(4):110-114.
    [85]邓念武,邱福清.偏最小二乘回归神经网络模型在大坝观测资料分析中的应用[J].岩石力学与工程学报.2002(7):1045-1048.
    [86]徐洪钟,吴中如,李雪红.等.基于小波分析的大坝观测数据异常值检测[J].水电能源科学.2002,20(4):20-21,81.
    [87]钱镜林,李富强,张晔.大坝变形监控指标的小波变换与特征根分析研究[J].土木工程学报.2009(6):140-144.
    [88]徐洪钟,吴中如,李雪红,等.基于小波分析的大坝变形观测数据的趋势分量提取[J].武汉大学学报(工学版).2003(6):5-8.
    [89]聂学军,侯玉成,卢兆辉.小波分析在大坝安全监测数据处理中的应用研究[J].红水河.2004(2):106-109.
    [90]黄世秀,洪天求,高飞.基于小波消噪及BP神经网络的大坝变形分析[J].人民长江.2011(9):90-93.
    [91]陈继光,李光东,刘中波.大坝变形数据处理中的离散小波分析方法[J].水电能源科学.2003(4):11-13.
    [92]郑雪琴,秦栋.改进闽值提升小波法在大坝位移分析中的应用[J].水电能源科学.2010(9):67-69.
    [93]田胜利,徐东强,葛修润.大坝水平位移监测数据的小波变换去噪处理[J].水电自动化与大坝监测.2004(1):49-53.
    [94]高平,薛桂玉.基于小波网络的大坝变形监测模型与预报[J].水利学报.2003(7):107-110.
    [95]刘红萍,李波,张史宏.基于小波网络的大坝非线性组合预测模型[J].水电能源科学.2010(11):75-77.
    [96]刘新华,余清,周卿.小波神经网络在大坝变形监测中的应用[J].广西城镇建设.2008(6):70-72.
    [97]马攀,孟令奎,文鸿雁.基于小波分析的Kalman滤波动态变形模型研究[J].武汉大学学报(信息科学版).2004(4):349-353.
    [98]季颖,高原,陈颙.模拟地震的弹簧滑块模型的混沌运动[J].东北地震研究.1995(1):1-6.
    [99]刘健,刘康,王广月.混凝土重力坝沿建基面滑动的尖点突变模型研究[J].山东大学学报(工学版).2006(1):65-68.
    [100]薛新华,张我华.大坝失稳的尖点突变模型分析[J].中国农村水利水电.2006(12):101-103.
    [101]钱镜林,张晔.大坝渗流观测数据中的混沌现象[J].水利与建筑工程学报.2005(4):38-40.
    [102]包腾飞,吴中如,顾冲时.基于统计模型与混沌理论的大坝安全监测混合预测模型[J].河海大学学报(自然科学版).2003(5):534-538.
    [103]何鲜峰,顾冲时,谷艳昌.分形-混沌混合预测模型在大坝安全监测中的应用[J].武汉大学学报(工学版).2008(1):45-49.
    [104]李富强.混沌时间序列的伏尔托拉滤波器在大坝监测分析中的应用[J].水利学报.2004(4):118-122.
    [105]田旦,许才军,周命端,等.基于混沌时间序列的大坝变形短期预测[J].水电自动化与大坝监测.2008(5):65-68.
    [106]李波,顾冲时,李智录,等.基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型[J].水利学报.2008(12):1390-1394.
    [107]李智录,张真真.支持向最机在大坝渗流监测中的应用[J].大坝与安全.2008(1):21-24.
    [108]王新洲,范千,许承权,等.基于小波变换和支持向量机的大坝变形预测[J].武汉大学学报(信息科学版).2008(5):469-471.
    [109]汪树玉,刘国华,刘立军,等.大坝监测分析中的贝叶斯动态模型[J].水利学报.1998(7):74-78.
    [110]朱伟宾.贝叶斯多变量动态线性模型在大坝监测中应用[J].水电能源科学.2008(2):68-71.
    [111]金光球,汪莲,王宗志,等.遗传门限自回归模型的改进及其应用[J].长江科学院院报.2006(2):31-34.
    [112]张发启,张斌,张喜斌.盲信号处理及应用[G].西安:西安电子科技大学出版社,2006.
    [113]朱伯芳.大坝数字监控的作用和设想[J].大坝与安全.2009(6):8-11.
    [114]朱伯芳,张国新,贾金生,等.混凝土坝的数字监控——提高大坝监控水平的新途径[J].水力发电学报.2009(1):130-136.
    [115]张贤达.现代信号处理[G].北京:清华大学出版社,2002.
    [116]孙敬水,马淑琴.计量经济学(第二版)[G].北京:清华大学出版社,2009.
    [117]Manuca R, Savit R. Stationarity and nonstationarity in time series analysis[J]. Physica D:Nonlinear Phenomena.1996,99(2-3):134-161.
    [118]何书元.应用时间序列分析[G].北京:北京大学出版社,2005.
    [119]Phillips P C B. Time series regression with a Unit Root[J]. Econometrica.1987,55(2):277-301.
    [120]Dickey D A, Bell W R, Miller R B. Unit Roots in Time Series Models:Tests and Implications[J]. The American Statistician.1987,40(1):12-26.
    [121]Dickey D A, Fuller W A. Distribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American statistical association.1979:427-431.
    [122]Said S E, Dickey D A. Testing for unit roots in autoregressive-moving average models of unknown order[J]. Biometrika.1984,71(3):599.
    [123]Elliot B E, Rothenberg T J, Stock J H. Efficient tests of the unit root hypothesis[J]. Econometrica.1996,64: 813-836.
    [124]Phillips P C B, Perron P. Testing for a unit root in time series regression[J]. Biometrika.1988,75(2): 335-346.
    [125]Ng S, Perron P. Lag length selection and the construction of unit root tests with good size and power[J]. Econometrica.2001,69(6):1519-1554.
    [126]Mackinnon J G. Numerical distribution functions for unit root and cointegration tests[J]. Journal of applied econometrics.1996,11(6):601-618.
    [127]Granger C W J. Some properties of time series data and their use in econometric model specification[J]. Journal of econometrics.1981,16(1):121-130.
    [128]Engle R F, Granger C W J. Co-integration and error correction:representation, estimation, and testing[J]. Econometrica:Journal of the Econometric Society.1987:251-276.
    [129]Granger C W J, Newbold P. Spurious Regression in Econometrics[J]. Journal of Econometrics.1974(2): 111-120.
    [130]Mackinnon J G. Critical Values for Cointegration Tests,in R. F. Engle and C. W. J. Granger(eds),Long-run Economic Relationships:Readings in Cointegration[G]. Oxford:Oxford University Press,1991:267-276.
    [131]Mackinnon J G. Critical Values for Cointegration Tests[R]. Kingston,Ontario,Canada:Department of Economics,Queen's University,2010.
    [132]Johansen S. Statistical analysis of cointegration vectors[J]. Journal of Economic Dynamics and Control.1988, 12(2-3):231-254.
    [133]Johansen S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models[J]. Econometrica.1991,59(6):1551-1580.
    [134]Johansen S. A Statistical Analysis of Cointegration for Ⅰ(2) Variables[J]. Econometric Theory.1995,11(1): 25-59.
    [135]Johansen S, Juselius K. Maximum Likelihood Estimation and Inference on Cointegration with Application to The Demand for Money[J]. Oxford Bulletin of Economic and Statistics.1990,52(2):169-210.
    [136]Gonzalo J. Five alternative methods of estimating long-run equilibrium relationships[J]. Journal of Econometrics.1994,60(1-2):203-233.
    [137]Davidson J E H, Hendry D F, Srba F, et al. Econometric Modeling of the Aggregate Time Series Relationship Between Consumers' Expenditure and Income in the United Kingdom[J]. The Economic Journal.1978,88(352): 661-692.
    [138]李子奈,叶阿忠.高等计量经济学[G].北京:清华大学出版社,2003:309-315.
    [139]谢衷洁.时间序列分析[G].北京:北京大学出版社,1990.
    [140]Brockwell P J, Davis R A. Time series:theory and methods[M]. Springer Verlag,2009.
    [141]Ulrych T J, Bishop T N. Maximum Entropy Spectral Analysis and Autoregressive Decomposition[J]. Reviews of Geophysics and Space Physics.1975,13(1):183-200.
    [142]Yule G U. On a Method of Investigating Periodicities in Disturbed Series with Special Reference to Wolfer's Sunspot Numbers[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.1927(226):267-298.
    [143]Walker G. On Periodicity in Series of Related Terms[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.1931,131(818):518-832.
    [144]Levinson N. The Wiener RMS(Root Mean Square) Error Criterion in Filter Design and Prediction[J]. Journal of Mathematics and Physics.1947(25):261-278.
    [145]Durbin J. The Fitting of Time-Series Models[J]. Review of the International Statistical Institute.1960,28(3): 233-244.
    [146]Akaike H. A New Look at the Statistical Model Identification[J]. IEEE Transactions on Automatic Control. 1974,19(6):716-723.
    [147]Schwarz G. Estimating the Dimension of a Model[J]. The Annals of Statistics.1978,6(2):461-464.
    [148]Hannan E J, Quinn B G. The Determination of the Order of an Autoregression[J]. Journal of the Royal Statistical Society. Series B(Methodological).1979,41(2):190-195.
    [149]吴中如,陈继禹.大坝原型观测资料分析的方法和模型[J].河海大学科技情报.1989(2):48-64.
    [150]沈新方.金坑水库浆砌石拱坝变形成因分析[J].浙江水利科技.2006,146(4):13-18.
    [151]马福恒,刘成栋.金坑浆砌石拱坝结构安全形态分析评价[J].水电能源科学.2005,23(1):79-82.
    [152]马以超.金坑拱坝裂缝危害性分析及相关问题研究[D].浙江大学,2003.
    [153]张贤达.时间序列分析—高阶统计最方法[G].北京:清华大学出版社,1996.
    [154]Cohen L. Generalization of the Wiener-Khinchin theorem[J]. Signal Processing Letters, IEEE.1998,5(11): 292-294.
    [155]Lampard D G. Generalization of the Wiener-Khintchine Theorem to Nonstationary Processes[J]. Journal of Applied Physics.1954,25(6):802-803.
    [156]李平,卢文喜,辛欣,等.挠力河流域降水量序列的功率谱分析和最大熵谱分析[J].世界地质.2008(1):63-67.
    [157]燕碧娟.大型直线振动筛裂纹信号的功率谱分析[J].矿山机械.2010(1):102-104.
    [158]李洪涛,卢文波,舒大强,等.基于功率谱的爆破地震能量分析方法[J].爆炸与冲击.2009(5):492-496.
    [159]顾超林,王轲.基于功率谱密度的结构随机疲劳寿命仿真[J].计算机与现代化.2010(2):143-146.
    [160]刘斌,姬巧玲,蔡维由,等.基于WP-MUSIC功率谱的水轮机低频故障信号分析….水电自动化与大坝监测.2006(1):31-34.
    [161]孙艳敏,潘向峰,张少波.功率谱估计在防撞雷达信号处理中的应用….信息系统工程.2011(5):102-103.
    [162]赵小龙,王玉平,鲍丽红.相关杂波的产生及功率谱估计技术研究[J].自动化与仪器仪表.2011(3):18-20.
    [163]Blackman R B, Tukey J W. The measurement of power spectra:from the point of view of communications engineering[M]. New York:Dover Publications Inc.,1959.
    [164]Burg J P. Maximum entropy spectral analysis.[C].37th Annual International Meeting,Oklaboma:Geophysics, Society Of Exploration,1967.
    [165]Papoulis A. Signal Analysis[G]. New York:McGraw-Hill,1977.
    [166]Keogh F R. On a Theorem of Fejer and Riesz[J]. Proceedings of the American Mathematical Society.1969, 20(1):45-50.
    [167]Brillinger D B. The identification of a particular nonlinear time series system[J]. Biometrika.1977,64(3): 509-515.
    [168]Nikias C L, Mendel J M. Signal processing with high-order spectral[J]. IEEE signal processing magazine. 1993(7):10-37.
    [169]Nikias C L, Raghuveer M R. Bispectrum estimation:A digital signal processing framework[J]. Proceedings of the IEEE.1987,75(7):869-891.
    [170]Brillinger D R. An introduction to polyspectra[J]. The Annals of mathematical statistics.1965:1351-1374.
    [171]Sasaki K, Sato T, Yamashita Y. Minimum bias windows for bispectral estimation[J]. Journal of Sound and Vibration.1975,40(1):139-148.
    [172]Van Ness J W. Asymptotic normality of bispectral estimates[J]. The Annals of Mathematical Statistics.1966: 1257-1272.
    [173]罗家洪.矩阵分析引论[G].广州:华南理工大学出版社,1993.
    [174]Rivola A, White P R. Bispectral analysis of the bilinear oscillator application to the detection of fatigue cracks[J]. Journal of Sound and Vibration.1998,216(5):889-910.
    [175]易伟建,段素萍.带裂缝钢筋混凝土梁的非线性振动特征识别[J].振动与冲击2008,27(3):26-29.
    [176]任宜春,易伟建.钢筋混凝土梁的非线性振动识别研究[J].工程力学.2006,23(8):90-95.
    [177]A N S, S W M, D M P. Nonlinear vibration characteristic of damaged concrete beams[J]. Journal of structrual engineering.2003,129(2):260-268.
    [178]V A K, D V J. Damaged assessment in reinforced concrete using spectral and temporal nonlinear vibration technique[J]. Cement and Concrete Research.2000(30):1453-1464.
    [179]J C, I H, X S, et al. A bispectrum feature extraction enhanced structure damage detecion approach[J]. JSME international Journal.2002,45(1):121-126.
    [180]Rivola A. Comparison between second and higher order spectral analysis in detecting structural damages[C]. 2000.
    [181]王柏生,何宗成,赵琛.混凝土大坝结构损伤检测振动法的可行性[J].建筑科学与工程学报.2005,22(2):51-56.
    [182]Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering. 1960,82(Series D):35-45.
    [183]Wu L S Y, Pai J S, Hosking J. An algorithm for estimating parameters of state-space models[J]. Statistics\& probability letters.1996,28(2):99-106.
    [184]仇伟杰.基于状态空间模型与KALMAN滤波的中国电力需求分析[J].工业技术经济.2006,25(2):63-66.
    [185]杨德权,袁佩良,史克禄,等.状态空间模型、协调积分与股票价格预测[J].系统工程理论与实践.1999(5):56-61.
    [186]顾剑华.政府公共投资、金融发展经济增长——丛于动态分布滞后模型和状态空间模型的实证分析[J].金融与经济.2009(10):12-15.
    [187]王相宁,李敏,缪柏其.基于BEER模型的人民币均衡汇率——来自状态空间理论的新证据[J].系统工程.2010(5):8-12.
    [188]Hamilton J D. A standard error for the estimated state vector of a state-space model[J]. Journal of Econometrics.1986,33(3):387-397.
    [189]张建伟,郭兵,丁志宏,等.基于状态空间模型的电站厂房构系统辨识[J].水电能源科学.2011(8):152-154.
    [190]吴令云,施用香,赵远东.太阳黑子相对数年观测值的平稳序列状态空间模型[J].南京大学学报(数学半年刊).2006(1):175-180.
    [191]汪树玉,刘国华.系统分析[G].杭州:浙江大学出版社,2002:79-83.
    [192]Kitagawa G. A self-organizing state-space model[J]. Journal of the American Statistical Association.1998: 1203-1215.
    [193]Shumway R H, Stoffer D S. Time series analysis and its applications[M]. Springer Verlag,2000.
    [194]Harvey A C. Forecasting, structural time series models and the Kalman filter[M]. Cambridge Univ Pr,1990. 150
    [195]Gupta N, Mehra R. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations[J]. Automatic Control, IEEE Transactions on.1974,19(6):774-783.
    [196]Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological).1977:1-38.
    [197]龚光鲁,钱敏平.应用随机过程教程及在算法和智能计算中的随机模型[G].北京:清华大学出版社,2005.
    [198]茆诗松,王静龙,濮晓龙.高等数理统计(第二版)[G].北京:高等教育出版社,2007:427-439.
    [199]De Jong P. Smoothing and interpolation with the state-space model[J]. Journal of the American Statistical Association.1989:1085-1088.
    [200]陈久宇.用非线性参数估计分析混凝土坝原体的时效变形[J].大坝观测与土工测试.1980(2):3-13.
    [201]方国宝,顾冲时,岑黛蓉.大坝安全分析中时效模型的改进及其应用[J].水电自动化与大坝监测.2006,30(5):56-59.
    [202]Ravisankar P, Ravi V. Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP[J]. Knowledge-Based Systems.2010,23(8): 823-831.
    [203]Abdel-Aal R E, Elhadidy M A, Shaahid S M. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks[J]. Renewable Energy.2009,34(7):1686-1699.
    [204]Chang F, Hwang Y. A self-organization algorithm for real-time flood forecast[J]. Hydrological Processes. 1999,13(2):123-138.
    [205]楼玉,赵小梅,刘国华.具有改进反馈环的NF-GMDH网络及其在混沌预测中的应用[J].电路与系统学报.2004(5):86-90.
    [206]贺昌政.自组织数据挖掘与经济预测[G].北京:科学出版社,2005.
    [207]Ivakhnenko A G. The Review of Problems Solvable by Algorithms of the Group Method of Data Handling(GMDH)[J]. Pattern Recognition and Image Analysis.1995,5(4):527535.
    [208]Ivakhnenko A G. Polynomial theory of complex systems[J]. Systems, Man and Cybernetics, IEEE Transactions on.1971,1(4):364-378.
    [209]Mueller J A, Ivachnenko A G, Lemke F. GMDH algorithms for complex systems modelling[J]. Mathematical and Computer Modelling of Dynamical Systems.1998,4(4):275-316.
    [210]贺诗波.自组织数据挖掘在高炉炉温预测控制中的应用[D].杭州:浙江大学,2008.
    [211]张宾,贺昌政GMDH算法的终止法则研究[J].吉林大学学报:信息科学版.2005,23(3):257-262.
    [212]Anastasakis L, Mort N. The development of self-organization techniques in modelling:a review of the group method of data handling (GMDH)[J]. RESEARCH REPORT-UNIVERSITY OF SHEFFIELD DEPARTMENT OF AUTOMATIC CONTROL AND SYSTEMS ENGINEERING.2001.
    [213]Ivakhnenko A G. Heuristic self-organization in problems of engineering cybernetics[J]. Automatica.1970, 6(2):207-219.
    [214]Hayashi I, Tanaka H. The fuzzy GMDH algorithm by possibility models and its application[J]. Fuzzy Sets and Systems.1990,36(2):245-258.
    [215]Nagasaka K, Ichihashi H, Leonard R. Neuro-fuzzy GMDH and its application to modelling grinding characteristics[J]. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH.1995,33(5):1229-1240.
    [216]Ivakhnenko A G, Ivakhnenko G A, Muller J A. Self-organization of neural networks with active neurons[J]. Pattern Recognition and Image Analysis.1994,4(2):185-196.
    [217]Ivakhnenko A G, M U Ller J A. Parametric and non parametric selection procedures in experimental systems analysis[J]. Systems Analysis Modelling Simulation.1992,9(2):157-175.
    [218]张宾,贺昌政,余海.基于FRI的改进相似合成算法及成都GDP预测研究[J].西南民族大学学报(人文 社科版).2004(11):198-202.
    [219]康银劳.基于自组织建模的成都GDP增长及影响因素研究[D].成都:西南交通大学,2006.
    [220]Savchenko I. Double-criterion Choice of the Optimal Model in GMDH Algorithms[C].2008.
    [221]Mehra R K. Group method of data handling (GMDH):review and experience[C].1977.
    [222]Yurachkovskiy Y P. Improved GMDH algorithms for process prediction[J]. Soviet Automatic Control c/c of Avtomatika.1977,10(5):61-71.
    [223]Stepashko V S. Selective properties of the consistency criterion of models[J]. Soviet Journal of Automation and Information Sciences c/c of Avtomatika.1986,19(2):38-46.
    [224]郑明翠,贺昌政.自组织数据挖掘与回归分析方法的比较研究[J].系统工程与电子技术.2005(10):1748-1751.
    [225]贺昌政,吕欣.GMDH与PLS解决多重共线性问题的比较研究[J].统计与决策.2007(16):4-6.
    [226]Wold H. Nonlinear estimation by iterative least squares procedures[J]. Research papers in statistics.1966: 411-444.
    [227]Eriksson L, Antti H, Holmes E, et al. Partial Least Squares (PLS) in Cheminformatics[J]. Handbook of Chemoinformatics.2003:1134-1166.
    [228]Wold S. Discussion:PLS in chemical practice[J]. Technometrics.1993,35(2):136-139.
    [229]贺昌政,张宾,俞海.自组织数据挖掘与人工神经网络方法比较研究[J].系统工程理论与实践.2002(11):11-14.
    [230]吴爽,贺昌政.数据分组处理算法和遗传算法的比较[J].统计与决策.2007(5):11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700