薄高拱坝坝体屈曲稳定初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高拱坝结构稳定是坝体结构与坝基及周边岩体之间的复杂耦合作用的结果,其当前主要研究内容包括坝肩稳定、坝体上滑稳定和坝体结构稳定等,高拱坝结构稳定是拱坝研究与设计的重要课题之一。由于我国西南和西北正在修建和即将修建的一些300m级的特高拱坝越来越多,且随着拱坝体形优化设计及高强度混凝土材料的应用使坝体的厚度越来越薄,拱坝部分区域已接近薄壳结构,可能导致坝体结构失稳的发生。以往坝工界对坝体应力、坝基坝肩稳定和坝体上滑失稳等问题研究较多,而对坝体结构稳定研究则较少,特别是对于坝高200m以上的高拱坝,无规范可依。目前高薄拱坝的坝体屈曲稳定影响研究的核心问题是:“高薄拱坝何时需考虑屈曲失稳影响?”、“在坝高一定下,‘临界柔度系数’是否存在?如果存在又是多少?”等。由于高薄拱坝的坝体屈曲稳定影响涉及因素较多,复杂性较大,当前国内外还未得出深刻的结论。因此,目前薄高拱坝实践设计中均逐一进行屈曲稳定校核,使得薄高拱坝的优化设计增加了相当大的计算量和不便。
     基于以上问题,本文将通过理论分析和数值模拟等方法,结合其他学者的研究成果,并通过对国内外实际已建拱坝工程的运行情况,综合分析研究了高薄拱坝坝体屈曲稳定的影响,为高薄拱坝的坝体屈曲稳定影响的深入研究提供基础。本文主要研究内容如下:
     (1)对拱坝的拱梁分载法理论进行归纳总结,对冯广宏(1980)提出的特殊拱梁分载法:“微分法(导数法)”进行分析,通过工程实例比较分析,认为微分法更简单实用。基于结构力学方法及数值分析原理,对拱梁分载法中梁的变位系数进行了深入研究,认为当前采用的变位系数误差在10%以内,基本满足工程计算要求,但部分变位系数误差相对较大,本文基于数值分析理论对其进行修正,修正后误差由原来最大8%降低到1%以内,并给出了张量表达式。
     (2)基于拱梁分载法理论,对圆弧型双曲高拱坝的水平拱圈的非线性屈曲进行了初步研究,认为经典屈曲理论高估了水平拱圈的抗屈曲性能,拱坝水平拱圈的屈曲临界荷载应采用非线性屈曲理论计算。基于Pi等人的研究成果,应用能量法、数值内插和拟合的思想,得出了高拱坝水平拱圈在弹性地基(转动弹性约束、径向、环向弹性约束)和等温变荷载影响下的临界屈曲荷载近似计算公式,为高薄拱坝水平拱圈的抗屈曲稳定研究奠定了基础。
     (3)基于拱梁分载法理论,对圆弧型双曲拱坝和抛物线型双曲拱坝的水平拱圈的力学特性进行比较研究,得出了不同矢跨比和厚跨比下两种拱圈的弯矩、轴力分布图,认为抛物拱拱端的弯矩比圆拱拱端的弯矩更集中,特别当水平拱圈的矢跨比较大时,抛物线型双曲拱坝水平拱圈的拱端上游易出现较大的拉应力,建议抛物线型双曲高拱坝水平拱圈拱端厚度大于拱冠厚度。对抛物线型双曲拱坝的水平拱圈的抗屈曲特性进行研究,并与圆弧拱进行比较分析,认为抛物拱的抗屈曲性能稍强于圆拱。基于结构扰动理论对两种拱结构进行了简单的敏感分析,认为当两种拱结构的厚跨比较小时(T/L<0.03),拱内应力随结构扰动较敏感;矢跨比对拱应力扰动影响不是很大,但矢跨比越小,其扰动敏感性增强。
     (4)对抛物线型双曲拱坝在多拱多梁理论下的抗屈曲理论进行了近似分析,假设水荷载方向近似为垂直于水平拱跨距方向,通过虚功原理对水平拱圈在受非均布荷载下的抗屈曲特性进行了近似研究,得到水平拱圈临界屈曲荷载分布系数的控制方程,并给出了近似屈曲安全系数的求解方程。
     (5)通过统计分析的方法得出了高拱坝的经验开裂界限柔度系数C与坝高H和坝顶河谷宽B之间的关系式;同时基于典型拱坝纵断面展开模型的几何计算,得出高拱坝的柔度系数C与厚高比之间T/H的关系式函数,该函数与坝高H无关,与拱坝纵断面展开图几何形状参数、拱冠梁厚度分布有关;结合以上两公式,通过参数代换得出典型高薄拱坝的厚高比T/H与坝高H和河谷宽B之间的关系式,从而得到拱坝底厚TB的建议公式。通过比较分析认为美国勘务局(1984)建议拱坝底厚公式对于坝高较高(300m)的拱坝计算的建议底厚太大,完全无参考价值;对于我国《水工设计手册》(1987)的建议底厚相对偏小,而本文建议公式更合理,更有设计参考价值。
     (6)基于拱冠梁法,对圆弧型双曲高薄拱坝水平拱圈的抗屈曲和强度安全之间的力学关系进行了研究,分析了混凝土等级、设计工况等因素的影响,认为混凝土材料等级提高到C45时,且坝顶厚径比(T/R)大于0.03时(厚跨比T/B>0.0173),高拱坝的水平拱圈(等厚)的强度破坏一般先于屈曲破坏发生,此时可忽略屈曲稳定对坝体稳定的影响。但由于拱冠梁法未能充分体现拱坝的空间效应,并且拱坝结构稳定是坝体、坝基和库水之间复杂耦合的结果,其影响因素较大,因此该结论有待于通过拱坝空间理论的进一步证实。最后通过工程实际大量计算及本文基于拱冠梁法的研究成果,偏保守地建议对于坝顶拱圈的厚跨比T/B<0.015的高薄拱坝(300m级别的)应该进行抗屈曲稳定分析,特别是在进行优化设计过程中,需进行抗屈曲约束控制,并给出了临界柔度系数计算公式。
     (7)通过对典型高拱坝模型数值模拟成果的分析,分别得出典型单曲、双曲高拱坝的整体稳定超载安全系数与坝高及柔度系数之间的拟合关系式;同时得出坝高、坝体厚度、周边约束条件、坝址地质状况及河谷对称性等主要因素对坝体整体稳定的影响关系。并对锦屏一级拱坝和小湾拱坝的整体稳定性分别进行了深入研究,认为拱坝(锦屏拱坝)坝基的不对称性不仅影响把体内的应力分析不均,还降低了拱坝的结构稳定承载力;拱坝(小湾)设缝后拱坝拱的作用增强、梁的作用削弱,整体刚度略有降低,但对拱坝整体安全性影响很小,设缝位置处于拉应力区,可以起到释放拉应力的作用,对改善坝踵应力状态有利。
Structural stability of arch dams is comprehensive stability between dam body,foundation of dam and their interafee. It contains abutment stability,up-slide stability and structural stability of dam body etc,which is one of the vital subjects in arch dam design and research.There are many hight arch dam (hight of 300m level ) that buliding and would building in the south-west and north-west of china.As the increased levels of concrete and thinner dam body with the use of optimum designing, the local regions of hight arch dams approach thin shell structure,which will lead to the structural buckling. Anciently study almost on dam body stress,the abutment stability and up-slide stbaility is rather abundant by the dam engineers,but quite few on the structural stbaility of dam body. Because the hight arch whose hight is over 200m is not inclued in the Concrete arch dam design standard(2003) of china, the research structural stability of dam body is a difficult challenge for dam engineers.The dilemma of this subject is:“How thin the dam body is that arch dam should considering the structural stability?”,“Whether the critical flexibity confficient of arch dam which is difinited by DingXiao tang is exist ? And What’s it if exists?”,“What’s the relation between the structural stability of dam body and the stress safety of dam material?”Because this subject relates many other codition such as: the valley shape, distribution of faults around arch dam,earthquake and so on, the research of structural stability of arch dam is so difficult that the dam engineers always analysis the structural stability of hight arch dam in addtion in the arch dam designing.
     In this paper,we studied the tructural stability of hight arch dam by crown-cantilever method and theory of shell and FEM numerical analysis. Mainly includes the several aspects as following:
     (1) The trial load method of arch dam is comprehensive dicribed in this paper,and a new method called differential method which is given by FengGuang hong in 1980.Compared by actual project, we conclude that the differential method is more practical and convenient than the common crown contilever method. Beside, the displacement cofficient of crown contilever are also discussed. By actual project,we conclue that the errors of the existing cofficients of crown contilever in arch dam are less than 10%. And some of cofficients whose errors are more larger are corrected.
     (2) The critical buckling load of arches are researched. We conclude that the classic theory overestimated the critical buckling load of arches, and the non-linear theory is more suitable for horizontal arch buckling in arch dam. Beside, we discuss the influence of the elasic foundation and temperature load to the horizontal arch buckling in arch dam.And the empirical formula of the critical buckling load of arches which are effected by the elasic foundation and temperature load is given.
     (3) Base on crown-cantilever method, the mechanical properties and structural stability of the parabolic arch and circular arch are compared.And the internal forces of parabolic arch in different f/L are given. We conclude that circular arch is better than parabolic arch in mechanical properties aspact. However, parabolic arch is little better than circular arch in structural stability aspact. The effect of the internal force in arches with structural perturbation are discussed.And we conclude that the effect of the internal force in arches with structural perturbation is more sensitivity when T/B of arch is smaller than 0.03.
     (4) The buckling of parapoblic arches with non-uniform loads of arch dam are approximate researched by the pinciple of virtual work method. And structual safety factors of parapoblic arches in arch dam are given in this paper.
     (5) Base on the calculation of statistical method, the experience function of the critical cracking flexibility cofficient of arch dam which is related with the height of arch dam and ratio of the valley width to height is given. Beside, we also get the experience function of the thickness to height ratio with the height of arch dam and the ratio B/H of arch dam. Those experience function of key cofficient for arch dam is very helpful for dam engineers.
     (6) By the crown-cantilever method, the relations between the tructural stability of arch dam and the stress safety of dam material in the circular arch dam under different condition and level of concrete are researched. And we conclued that the safety of arch dam is dominated by the sress safety of of dam material when the thickness to radius ratio of horizontal arch in hight arch dam is larger than 0.03, and the structual stability of dam body could be ignored at that condition. However, as the stability of arch dam is related with many other complex factors and the crown-cantilever method is approximation, we should continue confirming those conclusion by 3D-method.
     (7) Base on the FEM numerical calculation, the experience function of tructural stability cofficient of arch dams which are related with the flexibility cofficient and dam heigh are given. Beside, we also analysis the relation between tructural stability of arch dam and other main factors such as dam heigh, thickness of dam, end-restraits and so on. And the JinPing hight arch dam and XiaoWan hight arch dam is analysised by FEM numerical method. At last, we consist that the tructural stability of arch dam should must be considered when the thickness to valley width ratio of top arch in arch dam is smaller than 0.015, expecially in the shape optinoization of hight arch dam.
引文
白雪飞,郭日修. 2004.近代弹性稳定性理论的几个重要分支[J].海军工程大学学报, 16(3):40-46
    白俊光,林鹏等. 2008.李家峡拱坝复杂地基处理效果和反馈分析[J].岩石力学与工程学报,27(5):902-912.
    白正国等.1992.黎曼几何初步(修订版)[M].高等教育出版社. 10-30
    柴军瑞,刘浩吾. 2001.高拱坝研究新进展[J].水利水电科技进展, 21(6):1-4
    蔡建国,冯建等. 2010 .抛物线浅拱面内弹性稳定性分析[J].中国科学,第二期, 132~138
    蔡永恩,罗纲等.2004.不连续岩体-拱坝系统的动力过程数值模拟方法[J].岩土力学,25(S2):361-365.
    陈宗梁. 1998.世界超级高坝[M].北京:中国电力出版社,50-120
    陈欣,周维垣等. 2002.锦屏拱坝破坏仿真的三维有限元分析[J].岩石力学与工程学报, 21(S2):2403-2407
    陈祖坪.2001.拱坝强度裂缝的定量研究[J ] .水利学报, (8) :12 - 19.
    陈胜宏,汪卫明,徐明毅等. 2003.小湾高拱坝坝踵开裂的有限单元法分析[J].水利学报,1:66-71
    成鸿学,郭建华等. 1986.薄壳力学的数值计算[M].武昌:华中工学院出版社:100-200
    崔玉柱,张楚汉,徐艳杰等. 2002.用刚体弹簧元研究梅花拱坝的破坏机理[J].清华大学学报, 42(51):88-92
    董福品,朱伯芳等.2003.国内外高拱坝应力分析概况[J].中国水利水电科学研究院学报, 1(4):292-299
    丁晓唐.2005.高拱坝结构稳定转异和体形优化分析理论和方法[D].南京河海大学:20-50
    邓建中,刘行之.2000.计算方法[M].西安:西安交通大学出版社:100-130
    杜成斌,任青文. 2001.底缝对高拱坝工作性态的影响[J].水利学报, (5):1-4
    杜成斌等. 2002.设缝高拱坝的整体安全度和破坏机理研究[J ] .水力发电, (7) :24 - 28
    杜修力,涂劲,陈厚群. 2000.有缝拱坝-地基系统非线性地震波动反应分析方法[J].地震工程与工程振动, 20(1):11-20
    傅作新.2002.拱坝设计计算的几个问题[J].水电站设计, 18(2):7-11
    冯广宏郎重平. 1980.拱冠梁法分载的导数解法[J].砌石拱坝技术经验汇编: 70-100
    傅少君,陈胜宏,邹丽春.2006.小湾拱坝诱导底缝的三维有限元分析[J].水利学报, 37(1):97-102.
    郭仲衡等.1987.近代数学与力学[M].北京大学出版社: 80-120
    郭永刚,侯顺载等.2000.高拱坝伸缩横缝的开合对拱座岩体稳定的影响研究[J].水利学报,(12):38~42.
    官福海,刘耀儒,杨强等. 2010.白鹤滩高拱坝坝趾锚固研究[J].岩石力学与工程学报,29(7):1324-1332
    黄文熙. 1995.拱坝抗屈曲稳定初探[J].水利学报, (9):1-3
    黄岩松,周维垣,杨若琼等.2006.拉西瓦拱坝稳定性分析和评价[J].岩石力学与工程学报,25(5):902-906
    胡海昌等. 1985.弹性力学变分原理及其应用[M].科学出版社: 200-300
    胡冉,毛新莹,张萍.2009.基于变分不等式法的渗流有限元分析及程序设计[J].水电能源科学,27(4):54-57
    华东水利学院,四川省水利电力局等.1980.砌石坝设计[M].北京:水利电力出版社:80-120
    侯艳丽,张冲等.2005.拱坝沿建基面上滑溃决的可变形离散元仿真[J].岩土工程学报,27(6):657-661.
    侯顺载,胡晓,涂劲. 2000.底缝对高拱坝地震反应影响的研究[J].云南水力发电, 16(1):50-54
    贾金生,袁玉兰,李铁洁. 2003.年中国及世界大坝情况[J].中国水利, (13):25-33
    蒋勇,丁晓唐等.2008.特高薄拱坝坝体屈曲分析及应力控制指标的修正[J].河海大学学报, 36(1)54-57
    金峰,胡卫等.2008.基于工程类比的小湾拱坝安全评价[J].岩石力学与工程学报,27(10):2028-2033
    J.龙巴地.1965.薄拱坝-壳体作用和扭转影响的研究[M].北京,水利电力出版社, 70-100
    寇晓东,周维垣,杨若琼. 2000.三维快速拉格朗日法进行小湾拱坝稳定分析[J].水利学报, (9):8-14.
    李瓒,陈飞,郑建波. 2004.特高拱坝枢纽分析与重点问题研究[M].北京:中国电力出版社: 100-200
    李瓒. 2002.拱坝设计中值得注意的几个问题[J].水电站设计,218(1):12-16
    李同春,温召旺. 2002.拱坝应力分析中的有限元内力法[J].水力发电学报, (4):18-24
    李同春,李森等. 2003.局部非协调网格在高拱坝应力分析中的应用[J].河海大学学报, 31(1):42-45
    龙奴球等. 2003.结构力学(上)[M].北京:高等教育出版社:260-300
    黎展眉.1982.拱坝[M].北京:水利电力出版社: 80-120
    刘钧玉. 2008.裂纹内水压对重力坝断裂特性影响的研究[D].大连,大连理工大学: 50-80
    林皋,胡志强等. 2004.考虑横缝影响的拱坝动力分析[J].世界地震工程与工程震动, 24(6):45~52.
    林皋,胡志强.2004.拱坝横缝影响及有效抗震措施研究[J].世界地震工程与工程震动, 20(3):1~8.
    林皋,陈健云.2001.混凝土大坝的抗震安全评价[J].水利学报,(2):8~15.
    林继镛.2005.水工建筑物(第四版)[M].北京中国水利电力出版社:145-215
    林绍忠,杨仲侯.1987.分析拱坝应力的分载位移法[J].水利学报, (1): 17-25.
    刘元高,周维垣等. 2003.裂隙岩体局部化破坏多重势面分叉模型及其应用[J].岩石力学与工程学报. 22(3):358-363.
    刘耀儒,王峻等. 2010.小湾拱坝坝体裂缝对拱坝受力和稳定的影响研究[J].岩石力学与工程学报. 29(6):1332-1139.
    刘光廷,徐增辉,胡星. 2002.侧约束对拱坝坝体应力和位移的影响[J].清华大学学报,42(11):1537-1540
    李开泰,马逸尘等.2008.广义函数和Sobolev空间[M].高等教育出版社:150-180
    老大中.2010.变分法基础(第二版)[M].国防工业出版社:150-200
    美国垦务局. 1984.拱坝设计[M].北京:水利电力出版社:100-200
    马以超等. 2001.坝体型优化设计中的若干问题探讨[J].大坝与安全,5:13-17
    梅明荣,徐建强等.2006.白鹤滩拱坝整体安全度的非线性分析[J].水利水电科技进展, 26(5):41-44
    M.A.拉夫连季耶夫等. 2006.复变函数论方法(第6版) [M].高等教育出版社:200-300
    潘家铮,陈式慧. 1997.关于高拱坝建设中若干问题的讨论[J].科技导报, (2):17-19
    P.铁摩辛柯, J.M.盖莱. 1965.弹性稳定理论(第二版)[M].北京:科学出版社, 170-260
    钱向东. 2003.基于有限元等效应力法的拱坝强度设计准则探讨[J].河海大学学报,31(3):318-320
    钱向东. 2005.混凝土拱坝的强度计算与极限荷载分析[D].河海大学博士论文.
    丘成桐,孙理察. 2004.微分几何讲义[M].高等教育出版社:20-50
    清华大学.2000.高拱坝设计与计算分析高级研讨班论文集[R].北京,清华大学,20-100
    任青文,余天堂. 2001.边坡稳定的块体单元法分析[J].岩石力学与工程学报,20(1):20-24.
    任青文,钱向东等.2002.高拱坝沿建基面抗滑稳定性的分析方法研究[J ].水利学报, (2) :1 - 7.
    任青文.2007.高拱坝安全性研究现状及存在问题分析[J].水利学报,38(9):1023-1031.
    任青文,王柏乐. 2003.关于拱坝柔度系数的讨论[J].河海大学学报, 31(1):1-4
    任青文,杜小凯. 2008.基于最小变形能原理的加固效果评价理论[J].工程力学,25(4):5–9.
    饶宏铃. 2004.拱坝体形参数统计分析[J].水电站设计, 20(3):1-5
    任灏,李同春等.2008.拱坝应力分析的结构力学方法综述[J].人民黄河.30(2) :73-75
    孙林松,王德信,孙文俊.1998.考虑开裂深度约束的拱坝体形优化设计[J ] .水利学报, (10) :18 - 22.
    史姣,王正中,蔡坤.2006.张量分析中简化记法在公式推导中的应用及张量分量的计算[J].工程力学,23(10):45~48
    宋战平,李宁,陈飞熊等. 2004.拱坝有缝坝体-坝基系统的非线性抗震分析[J].水利学报, (6):33~40.
    王正中,沙际德.1995.深孔钢闸门主梁横力弯曲正应力与挠度计算[J].水利学报,.9:40~46.
    王正中,刘计良. 2010.拱坝抗屈曲稳定再探[J].工程力学, 27(6): 147-153.
    卫星,李俊等. 2007.考虑二阶效应的拱结构面内弹性屈曲[J].工程力学, 24(1):147-142
    卫星. 2005.钢筋混凝土肋拱二阶设计方法研究[D].成都西南交通大学,70-100
    王勖成. 2003.有限单元法[M].北京,清华大学出版社: 666~671
    王仁坤,林鹏等. 2007.复杂地基上高拱坝开裂与稳定研究[J].岩石力学与工程学报,26(10):1 951-1958.
    汪卫明,徐明毅等.2001.小湾拱坝坝肩稳定的弹黏塑性块体理论分析[J].武汉大学学报,34(3):42-46.
    吴家龙.1999.弹性力学[M].高等教育出版社: 175-215
    W.Rudin著,刘培德译.2004.泛函分析(原书第二版)[M].机械工业出版社: 159-181
    徐福卫,田斌.2007.关于拱坝柔度系数的研究[J].人民长江,38(11):41-42.
    项海帆,刘光栋. 1991.拱结构的稳定与振动[M].北京:人民交通出版社:60-150
    夏桂云,李传习等.2008.大曲率圆弧深拱平面弹性稳定分析[J].工程力学,25(1):145-149
    夏富洲,孙保立.1994.加权残值法在变厚度板及圆柱壳块稳定分析中的应用[J].武汉水利电力大学学报, 27(5):591-595
    徐艳杰,张楚汉,王光纶等.2001.小湾拱坝模拟实际横缝间距的非线性反应分析[J].水利学报,(4):68~74.
    夏志皋.1991.塑性力学[M].同济大学出版社:110-150
    杨强,薛利军等.2005.岩体变形加固理论及非平衡态弹塑性力学[J].岩石力学与工程学报,24(20):3704–3 712.
    杨强,刘耀儒等. 2008.变形加固理论及高拱坝整体稳定与加固分析[J].岩石力学与工程学报, 27(6): 1121–1 136.
    杨强,陈新等. 2004.三维弹塑性有限元计算中的不平衡力研究[J].岩土工程学报, 26(3):323-326.
    杨强,陈英儒,周维垣. 2007.基于变形加固理论的小湾拱坝坝趾锚固研究[J].云南水力发电,23(1):1-8
    余天堂,任青文. 2007.锦屏高拱坝整体安全度评估[J].岩石力学与工程学报, 26(4):787–794.
    杨令强,练继建,张社荣,陈祖坪. 2003.拱坝的破坏分析及超载问题探讨[J].水利学报, (3):55-62
    燕柳斌,李国华等.2003.地基基础-坝体体系动力特性及地震反应分析的有限元与无限元耦合法[J].广西大学学报,28(3):249-253.
    朱诗鳌.1995.坝工技术史[M].北京:水利电力出版社:80-180
    中华人民共和国水利部.2003.混凝土拱坝设计规范S(L282-2003)[M].中国水利水电出版社:50-170
    朱伯芳,高季章,陈祖煌,厉易生. 2002.拱坝设计与研究[M].北京,中国水利水电出版社:170-280
    朱伯芳. 2000.拱坝应力控制标准研究[J ] .水力发电, (12) :39 - 44.
    朱伯芳,厉易生. 1999.提高拱坝混凝土强度等级的探讨[J].水利水电技术, 30(3):15-19
    朱伯芳. 2000.混凝土拱坝的应力水平系数与安全水平系数[J].水利水电技术,31(8):1~3.
    张林,费文平,李桂林等. 2005.高拱坝坝肩坝基整体稳定地质力学模型试验研究[J ].岩石力学与工程报,4 (19) :3465 - 3469.
    郑宏,刘德富等. 2005.一个新的有自由面渗流问题的变分不等式提法[J].应用数学与力学,26(3): 363-370.
    赵兰浩,李同春,牛志伟. 2007.有横缝高拱坝非线性地震响应动接触模型[J].水力发电学报,26(4): 91-95.
    邵国建,卓家寿等. 2003.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报,22(5): 691–696.
    张冲,侯艳丽等. 2006.拱坝-坝肩三维可变形离散元整体稳定分析[J].岩石力学与工程学报,25(6): 1226-1232.
    周维垣,胡云进,杨若琼. 2004.垫脚加锚-高拱坝加固增稳的高效方法[J].水力发电学报,23(1):5-9.
    周维垣,杨若琼等. 2005.高拱坝整体稳定地质力学模型试验研究[J].水力发电学报,24(1): 53–58
    周维垣,王仁坤,林鹏. 2006.拱坝基础不对称性影响研究[J].岩石力学与工程学报,25(6):1081–1085.
    周伟,常晓林等.2002.溪落渡高拱坝渐进破坏过程仿真分析与稳定安全度研究[J].四川大学学报,34(4):46-50
    周元德,陈观福等.2002.用工程类比分析法研究高拱坝坝踵开裂稳定性,水力发电学报, (1):19-26
    周承徟.1981.弹性稳定理论[M].成都:四川人民出版社: 190-220
    张路青,杨志法,吕爱钟. 2000.两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报, 19(5): 584-589
    张家忠. 2010.非线性动力系统运动稳定性-分岔理论及其应用[M].高等教育出版社:190-250
    张学言,闫澍旺. 1991.岩土塑性力学基础[M].天津大学出版社:170-230
    George Papadakis.2008. Buckling of thick cylindrical shells under external pressure:A new analytical expression for the critical load and comparison with elasticity solutions[J]. International Journal of Solids and Structures.45:5308-5321.
    Jiho Moona,Ki-Yong Yoonb,ect. 2007. In-plane elastic buckling of pin-ended shallow parabolic arches[J]. Engineering Structures: 29:2611–2617
    Mehmet.Akko¨se,Su¨leyman.Adanur,ect.2008. Elasto-plastic earthquake response of arch dams including fluid- structure interaction by the Lagrangian approach[J]. Applied Mathematical Modelling 32:2396–2412
    Ahmad Aftabi Sani,Vahid Lotfi.2007. Linear dynamic analysis of arch dams utilizing modified efficient fluid hyper-element[J]. Engineering Structures 29:2654–2661
    M.Akkose,A.Bayraktar,ect.2008. Reservoir water level effects on nonlinear dynamic response of arch dams[J]. Journal of Fluids and Structures 24:418–435
    S.M.Seyedpoor,J.Salajegheh,ect.2010. Shape optimal design of arch dams including dam-water–foundation rock interaction using a grading strategy and approximation concepts[J]. Applied Mathematical Modelling: 34:1149–1163
    Feng.L.M,PekauO.A,Zhang.C.H. 1996. Crakcing analysis of arch dam by 3D boundary element method.J of Sturct Eng,122(6):691-699
    Y.-L.Pi,M.A.Bradford,F.Tin-Loi.2007. Nonlinear analysis and buckling of elastically supported circular shallow arches,International Journal of Solids and Structures. 44:2401-2425.
    Pi.Y.L, BradfordM A, Uy B. 2002.In-plane stability of arches[J].International Journal of Solids and Structures, 39 (1):105-125.
    Y.-L.Pi,M.A.Bradford. 2009. Non-linear in-plane postbuckling of arches with rotational end restraints under uniform radial loading, International Journal of Non-Linear Mechanics .44:975-989.
    Y.-L.Pi,M.A.Bradford, G.-S.Tong. 2010. Elastic lateral–torsional buckling of circular arches subjected to a central concentrated load[J]. International Journal of Mechanical Sciences 52:847–862
    Yong-Lin Pi,Mark Andrew Bradford. 2010. Nonlinear in-plane elastic buckling of shallow circular arches under uniform radial and thermal loading. International Journal of Mechanical Sciences 52 :75–88.
    Yong-Lin Pi,Mark Andrew Bradford. 2008.Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load. Journal of Sound and Vibration. 317: 898-917.
    Linsbaurer H N,Ingraffea A R. 1989. Simulation of creaking in lagre arch dam (Partl) [J]. J ofSturcting.115(7):1599-1615
    Linsbaurer H N,Ingraffea A R.1989. Simulation of creaking in lagre arch dam (Part2)[J]. J of Sturcting,115(7):1616-1630
    Gajewski A , Zyczkowski M.1988. Optimal Stureutral Design Under Stbailiyt Constraints[M].The Netherlands:Kuwer Aeademic Publishers.
    Katona M G,Zienkiewicz.1985. A unified set of signle-step algorithms,Part 3: he beta-m method,a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering,21:1345~1359.
    Peric D,Owen D R J. 1992. Computational Model for 3-D contact problems with friction based on the penalty method[J]. International Journal for Numeical Methods in Engineering, 35:1289~1309.
    FENG.L,PEKAU.O.A,ZHANG.C,H.Cracking. 1996.Analysis of arch dams by 3D boundary element method[J].Journal of Structural Engineering, ASCE, 122(6):691–699.
    Zhang Chuhan,Song Chongmin. 1991. Infinite boundary elementsfor dynamic problem of 3-D half space [J]. Int J Num Method in Eng, 31:447~462.
    Maurin, K. 1972.“Methods of Hilbert Space”, P.W.N. Polish Scientific Publishers, Warsaw Mikhlin, S.G . 1964.“Variational Methods in Mathematical Physics”, Macmillan Go. New York Diaz,J.B. 1960. Bound. Prubl. Diff.Eqs. (ed. By E.langer) P.47-83,University of Wisconsin, Press. Madison

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700