不同含盐量石油污染土壤的植物—微生物联合修复效率
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油开采量和使用量的增加,石油不可避免的进入土壤环境,形成石油污染土壤。当石油进入土壤环境后,会改变土壤的理化性质,导致土壤通透性降低,同时,作为复杂化合物,其中芳香族化合物,特别是PAHs具有“三致”效应,对土壤中动物、植物及微生物造成严重威胁。
     植物-微生物作为一种快速、高效且不具有二次污染的处理方法,已经被普遍应用于石油污染土壤修复。结合天津市土壤盐碱化特点,采用植物-微生物联合修复的方法研究石油污染土壤的降解效率为原位土壤修复提供理论基础。通过设定含盐量2493mg/kg、3690mg/kg和4666.67mg/kg,含油量5000 mg/kg、10000 mg/kg和15000mg/kg,研究对土壤中石油污染物的去除,可以得出以下结论:
     通过对比分析非根系、植物和植物-微生物联合修复发现对于含油量5000mg/kg盆栽土壤,植物修复<非根系土壤<植物-微生物联合修复;对于含油量10000mg/kg和15000mg/kg盆栽土壤,植物修复≈非根系土壤<植物-微生物联合修复。
     研究不同条件下土壤中微生物数量和脱氢酶活性表明,在有植物作用的情况下,土壤中微生物数量到达峰值的时间要明显比非根系土壤推迟,同时,微生物数量亦高于非根系土壤。在高含盐量条件下,土壤中微生物数量明显受到抑制,这一结果在测定脱氢酶过程中亦有所体现。
     通过对盆栽土壤中微生物进行形态学结构分析,初步鉴定土壤中微生物菌群可分为10个属:芽孢杆菌属(12.8%)、芽孢乳杆菌属(38.5%)、葡萄球菌属(10.3%)、气球菌属(5.1%)、节杆菌属(12.8%)、盐芽孢杆菌(5.1%)、乳杆菌属(2.6%)、梭菌属(2.6%)、链球菌属(2.6%)和微球菌属(5.1%)。
     研究植物各项生理指标表明在含盐量4666.67mg/kg条件下,供试植物苜蓿的发芽率、株高、生物量和根长等明显受到抑制。同时对比分析植物根系活力发现,在有外源微生物菌群作用的条件下明显高于单一植物作用。
     通过研究高盐条件下细菌和真菌菌群对石油降解效果,并同时测定摇瓶中微生物数量、酶活性、pH及微生物群落多样性(PCR-DGGE)可以得到以下主要结论:
     石油在细菌和真菌菌群作用下的降解规律为:含油量30000>含油量10000>含油量50000。同时,通过平板计数研究微生物数量随时间变化发现,细菌数量明显高于真菌在各个时期的数量,反映到菌液中脱氢酶活性上亦可得到相似的结论,这在一定程度上可以解释细菌菌群中石油降解率明显高于真菌菌群的原因。
     在不同时期测定细菌和真菌菌群中pH变化发现,随着时间的推移摇瓶中pH呈现了弱碱性,需从菌群生长和代谢过程入手,找出具体原因。
     通过PCR-DGGE分析,可以发现无论细菌菌群还是真菌菌群,随着摇瓶中含油量的增加,体系中优势条带增多且强度增强,同时,菌群中其它条带增多,说明菌群多样性增加,结构更加复杂。
With increased yield and consumption of crude oil, it is inevitable to enter soil environment and to contaminate the soil. Once crude oil mixing with soil, the physical and chemical characters of soil will be changed and permeability of the soil voids will be blocked. Meanwhile, as a complex compound, aromatic compounds in the crude oil take a large proportion, especially for PAHs, which can cause carcinogenic, teratogenic and mutagenic, all of these will run a high risk to animals, plants and microbes in the soil.
     Plant-microbial remediation as a fast, efficient and non-secondary pollution treatment has been applied remediation of crude oil contaminated soil commonly. Based on the salinity character of soil in Tianjin, crude oil contaminated soil remediation under high salt concentration by using plant-microbial method can provide theories for restoring in-suit soil directly. In this test, three salt contents, including 2493mg/kg, 3690mg/kg and 4666.67mg/kg, three crude oil contents, including 5000 mg/kg, 10000 mg/kg and 15000mg/kg are designed to study crude oil degradation rate in the pot experiments by applying plant-microbial combined method, the main conclusions are listed:
     Through comparison of non-root group, plant group and plant-microbe group, it shows that the degradation rate under 5000mg/kg crude oil is plant group     When considering the effect of plant in the whole process of remediation, the time of reaching peak point of the total microbial amount in the soil is delayed comparing with non-root group. Meanwhile, total microbial amount in the soil is higher than that of non-root group. Also, under high salt condition, microbial amount is inhibited, the same results can be found when measuring DHA in the different salt and oil contents.
     Ten sorts of bacteria in the pot experiment are identified through morphological structure of microbe, including Bacillus(12.8%), Sporolactobacillus(38.5%), Staphylococcus(10.3%), Aerococcus(5.1%), Arthrobacter (12.8%), Halobacillus-spring(5.1%), Lactabacillus(2.6%), Clostridium(2.6%), Strptococcus(2.6%) and Micrococcus(5.1%).
     Physiological indicators of plant describe that germination rate, height, biomass and root length of plant are inhibited under the condition of 4666.67mg/kg salt content. Meanwhile, comparing with root activity of plant group, the root activity under the effect of exogenous microbial flora is much higher than plant group.
     The main conclusions in the crude oil degradation under high salt concentration (7000mg/L) by bacteria flora and fungus flora are:
     The similar discipline of degradation rate of crude oil can be found in both bacteria flora and fungus flora: 30000mg/L>10000mg/L>50000mg/L. However, the final degradation rate of crude oil in the fungus flora is lower than that of in the bacteria flora. The same conclusions of DHA and total microbial amount in the flask are resulted.
     It is worth to point out that pH in both bacteria flora and fungus flora has changed greatly from neutral/acidic to alkaline. However, an exact explanation to this phenomenon cannot be concluded now.
     Through PCR-DGGE analysis, the main strain is increased as crude oil content increasement and the strength of these main strains is increased as well. Meanwhile, the structure and complex of bacteria and fungus flora become more and more diverse as crude oil increasement by observing other stains in each flask system.
引文
[1]徐玉林.石油污染土壤降解与土壤的环境关系[J].农机化研究,2006,(6):86-88
    [2]陈梅梅,陈保冬,许毓等.菌根真菌对石油污染土壤修复作用的研究进展[J].生态学杂志,2009,28(6):1171-1177
    [3]张宝良.油田土壤石油污染与原位生物修复技术研究[D].大庆石油学院,2007
    [4]孙娟.浅谈我国石油污染及其检测分析的注意事项[J].环境研究与监测,2008,21(4):34-36
    [5]陆秀君,郭书海,孙清等.石油污染土壤的修复技术研究现状及展望[J].沈阳农业大学学报,2003,34(1):63-67
    [6]刘五星,骆永明,滕应.我国部分油田土壤及油泥的石油污染初步研究[J].土壤(Soils),2007,39(2):247-251
    [7]何良菊,魏德洲,张维庆.土壤微生物处理石油污染的研究[J].环境科学进展,1999,7(3):110-115
    [8]赵玉霞,杨珂.石油污染土壤修复技术研究综述[J].环境科技,2009,22(1): 60-63
    [9]任磊,黄廷林.土壤的石油污染[J].农业环境保护,2000,19(6):360-363
    [10] Cunningham SD, Anderson TA, Schwab AP, etal. Phytoremediation of soils contaminated with organic pollutants[J]. Adv . Agron. , 1996(56): 53-114
    [11]陈晓东,常文越,邵春岩.土壤污染生物修复技术研究进展[J].环境保护科学,2001,10(27):23-25
    [12]王一华,傅荣恕.中国生物修复的应用及进展[J].山东师范大学学报,2003,6(18):79-83
    [13]胡春华,邓先珍,汪茜.土壤污染修复技术研究综述[J].湖北林业科技,2005,5(135):44-47
    [14]余素林,赵桂芳,刘芳等.石油污染土壤微生物治理技术发展方向[J].中国农业科技导报, 2007,9(4):55-60
    [15] Chih-Wen Liu, Hwai-Shen Liu. Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors[J]. Process Biochemistry 46 (2011) 202–209
    [16] Mojtaba Binazadeh, Iftekhar A. Karimi, Zhi Li. Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449[J]. Enzyme and Microbial Technology 45 (2009) 195–202
    [17] Zhengzhi Zhang, Zhaowei Hou, Chunyu Yang. etal. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Bioresource Technology 102 (2011) 4111–4116
    [18] Jianya Ling, Guoying Zhang, Haibo Sun. etal. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A[J]. Science of the Total Environment 409 (2011) 1994–2000
    [19] Guo-Ying Zhang, Jian-Ya Ling, Hai-Bo Sun, etal. Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11[J]. Journal of Hazardous Materials 172 (2009) 580–586
    [20] Liu HuiJie, Yang CaiYun, Tian Yun, etal. Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs[J]. International Biodeterioration & Biodegradation 65 (2011) 269-275
    [21] Hernando Bacosa, Koichi Suto, Chihiro Inoue. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium[J]. International Biodeterioration & Biodegradation 64 (2010) 702-710
    [22] Esmaeil AL-Saleh, Hana Drobiova, Christian Obuekwe. Predominant culturable crude oil-degrading bacteria in the coast of Kuwait[J]. International Biodeterioration & Biodegradation 63 (2009) 400–406
    [23] X. Tang, L.Y. He, X.Q. Tao, etal. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil[J]. Journal of Hazardous Materials 181 (2010) 1158–1162
    [24] M. Ros, I. Rodríguez, C. García,etal. Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments[J]. Bioresource Technology 101 (2010) 6916–6923
    [25] Vladimir P. Be?koski, Gordana Gojgic′-Cvijovic′, Jelena Milic, etal. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)– A field experiment[J]. Chemosphere 83 (2011) 34–40
    [26] Yuting Liang , Xu Zhang , Dongjuan Dai, etal. Porous biocarrier-enhanced biodegradation of crude oil contaminated soil[J]. International Biodeterioration & Biodegradation 63 (2009) 80–87
    [27] Marius Byss, Dana Elhottová, Jan Tlíska, etal. Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study[J]. Chemosphere 73 (2008) 1518–1523
    [28]王伟,曾光明,黄国和等.生物表面活性剂在土壤修复及堆肥中应用现状展望[J].环境科学与技术,2005,28(6):99-101
    [29] Ajay Singh, Jonathan D. Van Hamme, Owen P. Ward. Surfactants in microbiology and biotechnology: Part 2. Application aspects[J]. Biotechnology Advances, 2007(25): 99–121
    [30] N.K. Bordoloi, B.K. Konwar. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions[J]. Colloids and Surfaces B:Biointerfaces, 2008(63): 73–82
    [31] Hasanshahian Mehdi, Emtiazi Giti. Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation[J]. International Biodeterioration & Biodegradation, 2008(62): 170–178
    [32] Catherine N. Mulligan. Recent advances in the environmental applications of biosurfactants[J]. Current Opinion in Colloid &Interface Science, 2009(14): 372-378
    [33] Hisashi Saeki, Masaru Sasaki, Koei Komatsu, etal. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058[J]. Bioresource Technology, 2009 (100): 572–577
    [34] Yin H, Qiang J, Jia Y, etal. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater[J]. Process Biochemistry, 2009 (44): 302–308
    [35] Claudio Ruggeri, Andrea Franzetti, Giuseppina Bestetti etal. Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments[J]. International Biodeterioration & Biodegradation, 2009 (63): 936–942
    [36] Thu T. Nguyen, Noha H. Youssef, Michael J. McInerney, etal. Rhamnolipid biosurfactant mixtures for environmental remediation[J]. Water research, 2008(42): 1735-1743
    [37] Zhang QZ, Cai WM, Wang J. Stimulatory effects of biosurfactant produced by Pseudomonas aeruginosa BSZ-07 on rice straw decomposing[J]. Journal of Environmental Sciences, 2008 (20): 975–980
    [38] Santanu Paria. Surfactant-enhanced remediation of organic contaminated soil and water[J]. Advances in Colloid and Interface Science, 2008(138): 24–58
    [39] Shonali Laha, Berrin Tansel, Achara Ussawarujikulchai. Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: A review[J]. Journal of Environmental Management, 2009 (90): 95–100
    [40] Kingsley Urum, Turgay Pekdemir. Evaluation of biosurfactant for crude oil contaminated soil washing[J]. Chemosphere, 2004(57): 1139-1150
    [41] Maria S. Kuyukina. Irena B. Ivshina, Sergey O. Makarov etal. Effect of biosurfactant on crude oil desorption and mobilization in a soil system[J]. Environmental International, 2005(31): 155-161
    [42]支银芳,陈家军,杨官光等.表面活性剂溶液清洗油污土壤试验研究[J].土壤(Soils),2007, 39 (2): 252-256
    [43] Guiyun Bai, Mark L. Brusseau, Raina M. Miller. Biosurfactant-enhanced removal of residual hydrocarbon from soil[J]. Journal of Contaminant Hydrology, 1997 (25): 157-170
    [44] Palashpriya Das, Soumen Mukherjee, Ramkrishna Sen. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin[J]. Chemosphere, 2008, 72: 1229-1234
    [45]郑金秀,彭祺,张甲耀.产表面活性剂的石油降解菌降解特性研究[J].环境科学与技术,2007,30(1):5-8
    [46] K. Urum. T. Pekdemir. M. Gopur. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions[J]. Trans IChemE., 2003, 81: 203-209
    [47] K. Urum. S. Grigson. T. Pekdemir. S. McMenamy. A comparison of the efficiency of differentsurfactants for removal of crude oil from contaminated soils[J]. Chemosphere, 2006(62): 1403-1410
    [48] Chin-Chi Lai, Yi- Chien Huang, Yu-HongWei , etal. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009 (167): 609-614
    [49] Orathai Pornsunthorntawee, Nampon Arttaweeporn, Sarawut Paisanjit etal. Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery[J]. Biochemical Engineering Journal, 2008 (42): 172-179
    [50] Wenjun Zhou, Juanjuan Yang, Linjie Lou, etal. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant[J]. Environmental Pollution 159 (2011) 1198-1204
    [51] P. Darvishi, etal, Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2[J], Colloids Surf. B: Biointerfaces (2011), doi:10.1016/j.colsurfb.2011.01.011
    [52] M. Abouseoud, A. Yataghene, A. Amrane, etal. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas ?uorescens[J]. Journal of Hazardous Materials 180 (2010) 131–136
    [53] N.K. Bordoloi, B.K. Konwar. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions[J]. Colloids and Surfaces B: Biointerfaces, 2008 (63): 73-82
    [54] Grayyna A. Pyaza, Ireneusz Zjawiony, Ibrahim M. Banat. Use of different methods for detection of thermophilic biosurfactantproducing bacteria from hydrocarbon-contaminated and bioremediated soils[J]. Journal of Petroleum Science and Engineering, 2006 (50): 71-77
    [55] Ilori MO, Amobi CJ, Odocha AC. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment[J]. Chemosphere, 2005, 61(9): 85-92
    [56] Batista SB, Mounteer AH, Amorim FR, Totola MR. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites[J]. Bioresour Technol, 2006, 97(8): 68-75
    [57] Costa SG, Nitschke M, Haddad R, Wberlin MN, Contiero J. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils[J]. Process Biochem, 2006, 41(48): 3-8
    [58] Sira Pansiripat, Orathai Pornsunthorntawee, Ratana Rujiravanit, etc.. Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effect of oil-to-glucose ratio[J]. Biochemical Engineering Journal 49 (2010) 185–191
    [59] A.R. Najafi, M.R. Rahimpour, A.H. Jahanmiri, etal. Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology[J]. Chemical Engineering Journal 163 (2010) 188–194
    [60] G. Seghal Kiran, T. Anto Thomas, Joseph Selvin, etal. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture[J]. Bioresource Technology 101 (2010) 2389–2396
    [61] G. Seghal Kiran, T. Anto Thomas, Joseph Selvin. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation[J]. Colloids and Surfaces B: Biointerfaces 78 (2010) 8–16
    [62] Wan Mohd Fazli Wan Nawawi, Parveen Jamal, Md. Zahangir Alam. Utilization of sludge palm oil as a novel substrate for biosurfactant production[J]. Bioresource Technology 101 (2010) 9241–9247
    [63] Rengathavasi Thavasi, Singaram Jayalakshmi, Ibrahim M. Banat. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil[J]. Bioresource Technology 102 (2011) 3366–3372
    [64] Rengathavasi Thavasi, Singaram Jayalakshmi, Ibrahim M. Banat. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa[J]. Bioresource Technology 102 (2011) 772–778
    [65] Anand S. Nayak, M.H. Vijaykumar, T.B. Karegoudar. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation[J]. International Biodeterioration & Biodegradation, 2009 (63): 73-79
    [66] Kishore Das, Ashis K. Mukherjee. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India[J]. Bioresource Technology, 2007 (98): 1339-1345
    [67] F.L. Toledo, C. Calvo, B. Rodelas, J. Gonzalez-Lopez. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities[J]. Systematic and Applied Microbiology, 2006 (29): 244-252
    [68] Kyung-Hee Shin, Kyoung-Woong Kima, Yeonghee Ahn. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization- biodegradation process[J]. Journal of Hazardous Materials B2006 (137): 1831-1837
    [69] Schippers, C., Geβer, K., Muller, T., Scheper, T. Microbial degradation of phenanthrene by addition of a sophorolipid mixture[J]. Journal of Biotechnology, 2000 (83): 189-198
    [70] Catherine N., Mulligan. Environmental applications for biosurfactants[J]. Environmental Pollution, 2005 (133): 183–198
    [71] J.L. Kirk, J.N. klironomos, H. Lee, J.T. Trevors, The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil[J]. Environ. Pollut. 133 (2005) 455–465
    [72] E.A.H. Pilon-Smits, J.L. Freeman, Environmental cleanup using plants: biotechnological advances and ecological considerations[J], Front. Ecol. Environ. 4 (2006) 203–210
    [73] Karen E. Gerhardt, Xiao-Dong Huang, etal. Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges[J]. Plant Science 176 (2009) 20–30
    [74] Zhang Cai, Qixing Zhou, Shengwei Peng, etal. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance[J]. Journal of Hazardous Materials 183 (2010) 731–737
    [75] Qianxin Lin, Irving A. Mendelssohn. Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands[J]. Ecological Engineering 35 (2009) 85–91
    [76] Michael H. Huesemann, Tom S. Hausmann, Tim J. Fortman, etal. In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina) [J]. Ecological Engineering 35 (2009) 1395–1404
    [77] Z.Wang,Y.Xu, J. Zhao, F. Li,D.Gao,B.Xing,Remediation of petroleumcontaminated soils through composting and rhizosphere degradation[J], Journal of Hazardous Materials (2010), doi:10.1016/j.jhazmat.2011.03.103
    [78] Anna Muratova, Natalia Pozdnyakova, Sergey Golubev, etal. Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment[J]. Chemosphere 74 (2009) 1031–1036
    [79] M.B. Leigh, P. Prouzova, M. Mackova, etal. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB contaminated site[J], Appl. Environ. Microbiol. 72 (2006) 2331–2342
    [80]佟丽华,侯卫国.菌根生理机能及其在污染土壤修复中的应用[J].安徽农学通报,2007,13(17):19-22
    [81]吴金平,顾玉成.丛枝菌根真菌(AMF)在土壤修复中的生态应用[J].中国农学通报,2009,25(07):243-245
    [82]耿春女,李培军,韩桂云.生物修复的新方法—菌根根际生物修复[J].环境污染治理技术与设备,2001,2(5):20-26
    [83]陈瑞蕊,林先贵,尹睿.有机污染土壤中菌根的作用[J].生态学杂志,2005,24(2):176-180
    [84] Heinonsalo J, Jorgensen KS , Haahtela K, etal. Effects of Pinus sylvest ris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum2contaminated soils[J]. Can. J. Microbial, 2000, 46 (5): 451-464
    [85] Mohsen Soleimani, Majid Afyuni, Mohammad A. Hajabbasi, etal. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses[J]. Chemosphere 81 (2010) 1084–1090
    [86] Djouher Debiane, Guillaume Gar?on, Anthony Verdin, etal. Mycorrhization alleviates benzo[a]pyrene-induced oxidative stress in an in vitro chicory root model[J]. Phytochemistry 70 (2009) 1421–1427
    [87] Hernández-Ortega, H.A., etal. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate[J], Journal of Environmental Management (2011), doi:10.1016/j.jenvman.2011.02.015
    [88]王丽萍,郭光霞,华素兰等.丛枝菌根真菌-植物对石油污染土壤修复实验研究[J].中国矿业大学学报,2009,38(1):91-95
    [89]程国玲,李培军.小叶白蜡接种外生菌根真菌对土壤石油烃的降解效果[J].生态学杂志,2007,26 (3) : 389-392
    [90] Etsuko Kaimi, Tsukasa Mukaidani, Shyoji Miyoshi, etal. Ryegrass enhancement of biodegradation in diesel-contaminated soil[J]. Environmental and Experimental Botany, 2006 (55): 110-119
    [91]耿春女,李培军,陈素华.不同丛枝菌根真菌对万寿菊生长及柴油降解率的影响[J].应用生态学报,2003,14(10):1775-1779
    [92] Thomas Gunther, Utz Dornberger, Wolfgang Fritsche. Effects of ryegrass on biodegradation of hydrocarbons in soil[J]. Chemosphere, 1996, 33(2): 203-215
    [93] Lori A. Phillips, James J. Germida, Richard E. Farrell, Charles W. Greer. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants[J]. Soil Biology & Biochemistry, 2008 (40): 3054-3064
    [94] Maria Tesar, Thomas G. Reichenauer, Angela Sessitsch. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel[J]. Soil Biology & Biochemistry, 2002 (34): 1883-1892
    [95] Elisabeth Lefrancois, Ali Quoreshi, Damase Khasa, etal. Field performance of alder-Frankia symbionts for the reclamation of oil sands sites. Applied Soil Ecology 46 (2010) 183–191
    [96]李秋玲.丛枝菌根对多环芳烃污染土壤的修复作用[D].南京农业大学,2008
    [97] Andrew A. Meharga, John W.G. Cairney. Ectomycorrhizas-extending the capabilities of rhizosphere remediation[J]. Soil Biology & Biochemistry, 2000(32): 1475-1484
    [98] Fan S.X., Li P.J., Gong Z.P., etal. Promotion of pyrene degradation in rhizosphere of alfalfa[J]. Chemosphere, 2008 (71): 1593-1598
    [99] G. Chiapusio, S. Pujol, M. L. Toussaint, etal. Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils[J]. Plant Soil, 2007(294):103-112
    [100] Joner EJ, Leyval C, Colpaert JV. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere[J]. Environ Pollut, 2006(142): 34-38
    [101] Johnsen AR, Wickb LY, Harms H. Principles of microbial PAH-degradation in soil[J]. Environ Pollut, 2005(133): 71-84
    [102]刘世亮,骆永明,丁克强.苯并[a]芘污染土壤的丛枝菌根真菌强化植物修复作用研究[J].土壤学报,2004,41(3):336-341
    [103] N. Dashti, M. Khanafer, I. El-Nemr, etal. The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils[J]. Chemosphere 74 (2009) 1354–1359
    [104] D.M. Al-Mailem, N.A. Sorkhoh, M. Marafie, etal. Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology[J]. Bioresource Technology 101 (2010) 5786–5792
    [105] P. Agamuthua, O.P. Abioyea, A. Abdul Azizb. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas[J]. Journal of Hazardous Materials 179 (2010) 891–894
    [106] Zhineng Zhang , Qixing Zhou, Shengwei Peng, etal. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community[J]. Science of the Total Environment 408 (2010) 5600–5605
    [107] Fariba Mohsenzadeh, Simin Nasseri, Alireza Mesdaghinia, etal. Phytoremediation of petroleum-polluted soils: Application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils[J]. Ecotoxicology and Environmental Safety 73 (2010) 613–619
    [108] Sijin Lu, Yanguo Teng, Jinsheng Wang. etal. Enhancement of pyrene removed from contaminated soils by Bidens maximowicziana[J]. Chemosphere 81 (2010) 645–650
    [109] Sardar Alam Cheema, Muhammad Imran Khan, Xianjin Tang, etal. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea)[J]. Journal of Hazardous Materials 166 (2009) 1226–1231
    [110] Sardar Alam Cheema, Muhammad Imran Khan, Chaofeng Shen, etal. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation[J]. Journal of Hazardous Materials 177 (2010) 384–389
    [111] Anu Mikkonen, Elina Kondo, Kaisa Lappi, etal. Contaminant and plant-derived changes in soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis[J]. Geoderma 160 (2011) 336–346
    [112]耿春女,李培军,陈素华等.不同AM真菌对三叶草耐油性的影响[J].应用与环境生物学报,2002,8(6):648-652
    [113] Leyval C., Binet P. Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants[J]. Journal of Environmental Quality, 1998 (27): 402-407
    [114] Nicolotti G., Egli S. Soil contamination by crude oil: impact on the mycorrhizosphere and on revegetation potential of forest tress[J]. Environmental Pollution, 1998(99): 37-43.
    [115] Lori A. Phillips, Charles W. Greer, James J. Germida. Culture-based and culture-independentassessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil[J]. Soil Biology & Biochemistry, 2006 (38): 2823-2833
    [116] Walton BT, Anderson TA. Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites[J]. Appl Environ Microbiol, 1990(56): 1012-1016
    [117] Shann JR. The role of plants and plant/microbial systems in the reduction of exposure[J]. Environ Health Perspect, 1995(103): 13-15
    [118] Cunningham, S.D., Ow, D.W. Promises and prospects of phytoremediation[J]. Plant Physiol, 1996(110): 715-719
    [119] N.A. Sorkhoh, N. Ali, S. Salamah, M. Eliyas, M. Khanafer, S.S. Radwan. Enrichment of rhizospheres of crop plants raised in oily sand with hydrocarbon-utilizing bacteria capable of hydrocarbon consumption in nitrogen free media[J]. International Biodeterioration & Biodegradation 64 (2010) 659-664
    [120] Sohail Yousaf, Verania Andria, Thomas G. Reichenauer, etal. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multi?orum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment[J]. Journal of Hazardous Materials 184 (2010) 523–532
    [121] M. Nie, X.D. Zhang, J.Q. Wang. Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization[J]. Soil Biology & Biochemistry, 2009 (41): 2535-2542
    [122] Zhang Q.R., Zhou Q.X., Ren L.P., etal. Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres[J]. Journal of Environmental Sciences, 2006, 18(6): 1101-1106
    [123] Rosario Iturbe, Carlos Flores, Claudia Chavez, etal. In situ ?ushing of contaminated soils froma refinery: organic compounds andmetal removals[J]. Remediation Journal 14 (2004) 141-152
    [124] R.M. Péreza, G. Cabrerab, J.M. Gómez, etal. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters[J]. Journal of Hazardous Materials 182 (2010) 896-902
    [125] N.A. Sorkhoh, N.Ali, H. Al-Awadhi, etal. Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal[J]. Ecotoxicology and Environmental Safety 73 (2010)1998–2003
    [126]何炜.汽油和柴油污染土壤通风修复试验研究[D].中国地质大学(北京),2007
    [127]张峰,薛晓虎.石油污染土壤的生物通风修复[J].能源环境保护,2008,22 (3):1-4
    [128] J. Bachman, S.M. Kanan, H.H. Patterson. Monitoring laboratory-scale bioventing using synchronous scan fluorescence spectroscopy: analysis of the vapor phase[J]. Environmental Pollution, 2001(113): 155-162
    [129]沈铁孟,黄国强,李凌等.石油污染土壤生物通风修复及其强化技术[J].环境污染治理技术与设备,2002,3(7):67-70
    [130]李玮,陈家军,郑冰等.轻质油污染土壤及地下水的生物修复强化技术[J].安全与环境学报,2004,4(5):47-51
    [131]王春艳.强化生物通风修复柴油污染土壤的正交实验[D].中国地质大学(北京), 2007
    [132] Morgan P. Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds[J]. Fems Microbiology Reviews, 1989, 63: 277-300
    [133]朱春芳.汽油污染土壤的物理通风实验室模拟研究[D].中国地质大学(北京),2007
    [134]土壤pH测定.中华人民共和国农业行业标准[S],NY/T 1377-2007
    [135]森林土壤水溶性盐分分析.中华人民共和国林业行业标准[S],LY/T 1251-1999
    [136]土壤有机质测定法.中华人民共和国国家标准[S],GB 9834-88
    [137]森林土壤全氮测定.中华人民共和国林业行业标准[S],LY/T 1228-1999
    [138]森林土壤全磷测定.中华人民共和国林业行业标准[S],LY/T 1232-1999
    [139]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008
    [140]张清敏,李洪远,王兰.环境生物学实验技术[M].北京:化学工业出版社,2005:130-131
    [141]刘国生.微生物学实验技术[M].北京:科学出版社,2007:44-51
    [142] R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984
    [143]郭婷,张承东,张清敏.生物修复石油污染盐碱土壤小试模拟系统中土壤性质与微生物特性变化[J].中国环境科学2010,30(8):1123-1129
    [144]陈翔.脱氢酶在环境监测中的应用概况[J].解放军预防医学杂志,1997,74(1):30-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700