纳米材料对细菌的生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料(Nanomaterials,简称NMs)的生物效应研究已有大量相关报道,主要是通过研究NMs对动物、植物、微生物的生物效应,探讨NMs对生态环境及人体的潜在危害。微生物中利用藻类测试NMs的毒性报道较多,而对于细菌毒性测试相对较少,因此不能全面地评价NMs对整个生态系统的毒性效应。本文通过研究NMs对细菌的毒性效应,探讨NMs对微生物系统的危害,旨在从微生物系统层面为NMs的生态毒理效应提供一定的科学依据。本文研究的主要内容及结论如下:
     (1)采用平板计数法、光密度值法、MTT法三种不同方法测试NMs对常用指示菌大肠杆菌的生长抑制率。结果表明,三种测试方法测得的NMs对细菌的毒性效应趋势基本一致,但是操作繁琐程度、灵敏性、重复性各不相同。其中MTT法操作简单,重复性好,可以较好地运用于NMs对细菌的毒性测试中。
     (2)主要选取微生物生态系统中三种常见的细菌(革兰氏阴性大肠杆菌、革兰氏阳性枯草芽孢杆菌及革兰氏阳性金黄色葡萄球菌)作为受试物测试NMs的微生物效应,探讨了MTT法测试枯草芽孢杆菌及金黄色葡萄球菌细胞活性的可行性及具体实施过程中的实验条件。通过MTT法考察了不同种类NMs及同种不同粒径NMs对大肠杆菌、枯草芽孢杆菌及金黄色葡萄球菌的生物毒性,利用半数效应浓度(EC50)值比较了不同NMs的毒性大小。结果表明:随着NMs浓度的增加,其对细菌的毒性逐渐增强;不同种NMs生物毒性大小不同,对于纳米氧化物,其毒性大小顺序为:nZnO > nTiO_2>nFe_3O_4> nSiO_2> nFe_2O_3;对于载银材料,有Ag-doped nZrP > Ag-doped nTiO_2;对于纳米银分散液,有SNP-1 > SNP-2;不同粒径的同种NMs毒性大小不同,粒径越小,NMs毒性越大;同种NMs对不同细菌的毒性大小不同,其中NMs对枯草芽孢杆菌的毒性最大,对金黄色葡萄球菌的毒性最小。
     (3)通过考马斯亮蓝法测定了菌液蛋白质含量的变化,并通过电导率法测试了菌液电导率的变化,以此探讨了NMs对细菌细胞膜通透性的影响;通过细胞膜是否受损探讨了NMs的抑菌机理。结果表明,NMs对细菌细胞膜通透性有一定影响,而且不同NMs对细菌细胞膜通透性影响不同,同种NMs对不同细菌细胞膜影响程度不同。
     总之,NMs对细菌具有一定的毒性效应,其毒性大小与NMs种类和粒径等因素有关,且对不同细菌的生物效应不同。通过研究NMs对细菌的生物效应能够为NMs的微生物效应提供充分的依据。
In recent years, much attention has been paid to the toxicity of nanomaterials (NMs) onanimals, plants and microorganism. For microorganism, alga is employed as model organisms.However, the study about toxicity of NMs on bacteria is limited. In this paper, bacteria is usedto test the toxicity of NMs. In order to provide base date for the toxicity on microbialecosystem, the results are listed as follows:
     (1) Plate counting, optical density and MTT assays are applied to investigate the toxiceffects of nanomaterials on bacteria. Among these three different methods, MTT assay issimple, rapid, steady and more suitable for evaluating the toxicity of NMs.
     (2) Gram-negative Escherichia coli, Gram-positive Bacillus subtilis and Staphylococcusaureus Gram-positive, common bacteria in microbial ecosystem, are selected to test thetoxicity of nanomaterials. The effects of concentration and particle size on the toxicity ofNMs to these three different kinds of bacteria are systematically examined with MTT assay.The different toxicities of nanomaterials are distinguished by 12 h EC_(50). The results show thatantibacterial activity increase with the increase of dose. Different NMs have different toxicity.As for nanoparticles of oxides, the most toxic is nZnO followed by nTiO_2, nFe_3O_4, nSiO_2andnFe2O3. For silver doped nanoparticles, Ag-doped nTiO_2is less toxic than Ag-doped nZrP.About silver nanoparticles, SNP-1 is more toxic than SNP-2. In addition, the toxicity of NMsincreases with decreasing particle size. The toxicity of the same NMs to different bacteria isdifferent, and these nanomaterials are more toxic to Bacillus subtilis than Escherichia coli andStaphylococcus aureus.
     (3) Coomassie brilliant blue is used to test the content of protein in bacterial solution andconductimetric methods is used to test the conductivity of bacterial solution, discussing theeffect of nanomaterials on cell membrane permeability of different bacteria. The resultsindicate that nanomaterials destroy the cell membrane to a diferent degree. The effects ofnanomaterials on different bacteria are different.
     In short, NMs present toxic effect on bacteria, the kind and particle size influence thetoxicity of NMs. The NMs present different toxic effect on different bacteria. This study canprovide support for the toxicity of nanomaterials on microorganism.
引文
[1]国家质量监督检验总局,国家标准化管理委员会.中华人民共和国国家标准(GB/T 19619-2004):纳米材料术语[S].北京:国标准出版社,2004.12.
    [2]林道辉,冀静,田小利等.纳米材料的环境行为与生物毒性[J].科学通报, 2009, 54 (23): 3590-3604.
    [3] Dhawan A, Sharma V. Toxicity assessment of nanomaterials: methods and challenges [J]. Anal BioanalChem, 2010, 398: 589-605.
    [4]杨运梁,胡和平.纳米材料的环境毒理学研究进展[J].广东化工, 2010, 5 (37): 171-173.
    [5] Borm P J, Robbins D, Haubold S, et al. 2006. The potential risks of nanomaterials: A reviewcarried out for ECETOC [J]. Particle and Fibre Toxicology, 3: 1- 35.
    [6]曲秋莲,张英鸽.纳米技术和材料在医学上应用的现状与展望[J].东南大学学报,2011,30(1) :157-163.
    [7]叶灵.纳米材料的应用于发展前景[J].科技资讯, 2011,20:116-118.
    [8]杨召营,李晓静.纳米材料与技术在水处理中的应用[J].化工技术与开发, 2012, 41 (1): 23-25.
    [9]刘子宏,王翔,贾光.纳米材料在环境领域的应用及其负面效应[J].国外医学卫生学分册, 2006, 33 (5):310-315.
    [10]李福林,宁月辉,王佳祥.纳米材料的生物效应[J].化学工程师, 2011, 7: 48-51.
    [11]朱小山,朱琳.人工纳米材料生物效应研究进展[J].安全与环境学报, 2005, 5 (4): 86-90.
    [12] FarréM, Gajda-Schrantz K, Kantiani L, et al. Ecotoxicity and analysis of nanomaterials in the aquaticenvironment [J]. Anal Bioanal Chem, 2009, 393: 81-95.
    [13] Zhu X, Zhu L, Chen Y, et al. Acute toxicities of six manufactured nanomaterial suspensions toDaphnia magna [J]. J Nanopart Res, 2009, 11: 67-75.
    [14] Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineerednanoparticles to algae, plants, and fungi [J]. Ecotoxicology, 2008, 17: 372-386.
    [15] Handy R D, Kammer F von der, Lead J R, et al. The ecotoxicology and chemistry of manufacturednanoparticles [J]. Ecotoxicology, 2008, 17: 287-314.
    [16]杨文娟,沈超,张治洲.检测纳米材料毒性的若干实验方法[J].中国生物工程杂志, 2009, 29 (2):119-124.
    [17] Ferin J, Oberdrster G, Soderholm S C, et al. Pulmonary tissue access of ultrafine particles [J]. JAerosol Med, 1991, 4 ( 1) : 57-68.
    [18] Takeda K, Suzukiki, Ishiara A, et al.Nanoparticles transferred from pregnant mice to their offspringcan damage the genital and cranial never systems [J].Journal of Health Science, 2009, 55( 1) : 95-102.
    [19] Yang L P, Liu Z Y, Shi J W, Zhang Y Q, Hu H, Shangguan W F. Degradation of indoor gaseousformaldehyde by hybrid VUV and TiO2/UV processes [J]. Separation and Purification Technology,2007, 54: 204- 211.
    [20] Ma Y H, Kuang L L, HE X, et al.Effects of rare earth oxide nanoparticles on root elongation of plants[J].Chemosphere, 2010, 78 ( 3) : 273-279.
    [21] Canas J, Long M, Nations S, et al.Effects of functionalized and nonfunctionalized single-walledcarbon nanotubes on root elongation of select crop species [J]. Environ Toxicol Chem, 2008, 27 ( 9) :1922-1931.
    [22]张林,庞小峰.纳米二氧化钛的细胞增殖效应及其安全性[J].生命科学仪器, 2007, 5( 7) : 54-56.
    [23]蒋国翔,沈珍瑶,牛军峰,等.环境中典型人工纳米颗粒物毒性效应[J].化学进展, 2011, 23 (8) :1669-1781.
    [24] Seoktae K, Mathieu P, Lisa DP, et al. Single-Walled Carbon Nanotubes Exhibit Strong AntimicrobialActivity [J]. Langmuir, 2007, 23(17): 8670-8673.
    [25] Lyon D Y, Adams L K, Falkner J C, et al. Antibacterial Activity of Fullerene Water Suspensions:Effects of Preparation Method and Particle Size [J]. Environmental Science&Technology, 2006, 40(14): 4360-4366.
    [26] Narayan R J, Berry C J, Brigmon R L. Structural and Biological Properties of Carbon NanotubeComposite Films [J]. Materials Science and Engineering, 2005, 123(2) : 123–129.
    [27] Zhang L L, Jiang Y H, Ding Y L, et al. Investigation into the Antibacterial Behaviour of Suspensionsof ZnO Nanoparticles (ZnO Nanofluids) [J]. Journal of Nanoparticle Research, 2007, 9 (3): 479-489.
    [28]陈灏,谷立坤,刘雷,等.纳米TiO2水悬浮液对大肠杆菌生长的影响[J].环境科学学报, 2009, 29 (5):919-923.
    [29] Adams, Laura K L, Delina Y A, Pedro J J. Comparative Ecotoxicity of Nanoscale TiO2, SiO2, and ZnOWater Suspensions [J]. Water Research, 2006, 40 (19): 3527-3532.
    [30]宋志慧,商勇,张学萍.纳米ZnO对细菌的抑制作用[J].青岛科技大学学报, 2004, 25 (3): 232-234.
    [31] Shen C L, Li Y F, QI W J, et al. Investigations of the interaction between cuprous oxide nanoparticlesand Staphylococcus aureus [J]. Science in China Series B: Chemistry, 2009, 52 (7): 1028-1032.
    [32] Margit Heinlaan, Angela Ivask etal. Toxicity of Nanosized and Bulk ZnO, CuO and TiO2to BacteriaVibrio Fischeri and Crustaceans Daphnia Magna and Thamnocephalus Platyurus [J]. Chemosphere,2008, 71: 1308-1316.
    [33]金星龙,李晓,张宁,等.三种纳米氧化物对发光细菌的毒性效应研究[C]//ZHOU X L. 2010 Firstinternational conference on cellular, molecular biology, biophysics and bioengineering. Wuhan,China:Institute of Electrical and Electronics Engineers, Inc, 2010.
    [34]居荫诚,解世文,吕刚,等.应用发光细菌检测纳米金属添加剂生物毒性的研究[J].润滑与密封, 2006,3 (175): 7-10.
    [35]王学,李勇超,李铁龙,等.零价纳米铁对大肠杆菌的毒性效应[J].生态毒理学报, 2012, 7 (1): 49-56.
    [36] Mehendra S, Zhu H, Colvin V L, et al. Quantum Dot Weathering Results in Microbial Toxicity [J].Environmental Science&Technology, 2008, 42 (24): 9424-9430.
    [37] Lu Z S, Li C M, Bao H F, et al. Mechanism of Antimicrobial Activity of CdTe Quantum Dots [J].Langmuir, 2008, 24 (10): 5445-5452.
    [38] Lyon D Y, Brunet L, Hinkal G W, et al. Antibacterial activity of fullerene water suspensions ( nC60) isnot due to ROS mediated damage [J]. Nano Lett, 2008, 8 (5): 1539-1543.
    [39] Fang J, Lyon D Y, Wiesner M R, et al. Effect of a fullerene water suspension on bacterialphospholipids and membrane phase behavior [J]. Environ Sci Technol, 2007, 41: 2636-2642.
    [40] Kang S, Pinault M, Pfefferle L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobialactivity [J]. Langmuir, 2007, 23: 8670-8673.
    [41] Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of carbon nanotubes: size does matter[J]. Langmuir, 2008, 24: 6409-6413.
    [42] Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns [J]. ACS Nano,2008, 2: 213-226.
    [43] Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia colibacteria in ultrafine ZnO nanoparticles colloidal medium [J]. Nano Lett, 2006, 6 ( 4 ) : 866-870.
    [44] Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles andtheir cytotoxicity toward Escherichia coli [J]. Environ Sci Technol, 2008, 42: 6730-6735.
    [45] Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano- and micro-scaled oxideparticles [J]. Environ Pollut, 2009, 157(5) : 1619-1625.
    [46] Ruparelia J P, Chatterjee A K, Duttagupta S P, et al. Strain specificity in antimicrobial activity ofsilver and copper nanoparticles [J]. Acta Biomaterialia, 2008, 4: 707-716.
    [47] Yoon K, Byeon J H, Park J, et al. Susceptibility constants of Escherichia coli and Bacillus subtilis tosilver and copper nanoparticles [J]. Sci Total Environ, 2007, 373: 572-575.
    [48] Kim J S, Kuk E, Yu K N, et al. Antimicrobial effects of silver nanoparticles [J]. Nanomedicine:Nanotechnology, Biology, and Medicine, 2007, 3: 95-101.
    [49] Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifyingbacteria [J]. Environ Sci Technol, 2008, 42: 4583-4588.
    [50] Kloepfer J A, Mielke R E, Nadeau J L. Uptake of CdSe and CdSe /ZnS quantum dots into bacteria viapurine-dependent mechanisms [J]. Appl Environ Microbiol, 2005, 71: 2548-2557.
    [51] Du W, Niu S, Xu Y, et al. Antibacterial activity of chitosan tripolyphosphate nanoparticles loadedwith various metal ions [J]. Carbohydr Polym, 2009, 75: 385-389.
    [52] Shi Z, Neoh K G, Kang E T, et al. Antibacterial and mechanical properties of bone cementimpregnated with chitosan nanoparticles [J]. Biomaterials, 2006, 27: 2440-2449.
    [53] Qi L, Xu Z, Jiang X, et al. Preparation and antibacterial activity of chitosan nanoparticles [J].Carbohydr Res, 2004, 339: 2693-2700.
    [54]朱小山,朱琳,田胜艳,等.三种金属氧化物纳米颗粒的水生态毒性[J].生态学报, 2008, 28(8): 3507‐3516.
    [55]朱小山,朱琳,田胜艳,等.三种碳纳米材料对水生生物的毒性效应[J].中国环境科学, 2008, 28 (3):269‐273.
    [56] Villem A, Dubourguier H C, Kasemetsa K, Kahrua A. Toxicity of Nanoparticles of CuO, ZnO andTiO2to Microalgae Pseudokirchneriella Subcapitata [J]. Science of the Total Environment 2009, 407(4): 1461-1468.
    [57]金星龙,张宁,李晓,等.四种纳米氧化物对小球藻的毒性效应研究[J].天津理工大学学报, 2011, 27 (2): 58‐62.
    [58] Sadiq I M, Pakrashi S, Chanarasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3)nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. [J]. Journal of NanoparticleResearch, 2011, 13: 3287–3299.
    [59] Kasemets K, Ivask A, Dubourguier HC, et al. Toxicity of Nanoparticles of ZnO, CuO and TiO2toYeast Saccharomyces Cerevisiae [J]. Toxicology in Vitro, 2009, 23 (6): 1116-1122.
    [60]汪志荣,高琼,马传鑫,等.MTT法测定大肠杆菌活菌数实验研究[J].环境科学学报, 2011, 31(12):2642-2650.
    [61] Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generationby silica in inflammation and fibrosis [J]. Free Rad Biol Med, 2003, 34: 1507-1516.
    [62] Zhang L L, Jiang Y.H, Ding Y L, et al. Mechanistic investigation into antibacterial behavior ofsuspensions of ZnO nanoparticles against E. coli [J]. J Nanopart Res, 2010, 12: 1625-1636.
    [63] Kubo M, Onodera R, Shibasaki-Kitakawa N, et al. Kinetics of ultrasonic disinfection of Escherichiacoli in the presence of titanium dioxide particles [J]. Biotechnol Prog, 2005, 21:897-901.
    [64] Heinlaan M, Ivask A, Blinova I, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2to bacteriaVibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus [J]. Chemosphere.2008, 71: 1308-1316.
    [65] Chudasama B, Vala A K, Andhariya N, et al. Highly bacterial resistant silver nanoparticles: synthesisand antibacterial activities [J]. J Nanopart Res. 2010, 12: 1677-1685.
    [66] Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli and Staphylococcus aureus [J]. J Biomed Mater Res. 2000, 52: 662-668.
    [67]陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2008.
    [68]孙京新,王文娟.茶多酚对假单胞菌抑菌机理研究[J].肉类工业, 2010, 1: 36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700