改进的虚土桩法及其在非等截面桩纵向振动中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外研究桩与桩底土相互作用关系的模型,大多数是非连续模型,且缺乏对桩底土作用的研究。为了建立桩与桩底土的严格耦合关系,本文提出了一种改进的虚土桩法。并基于该方法,分析了桩底土对单桩纵向振动特性的影响,研究了焊缝在多级混凝土管桩完整性检测中的作用及不同条件下静钻根植竹节桩这一新桩型的动力特性。主要的工作与创新成果如下:
     (1)基于地基中圆形竖向荷载下的Mindlin附加应力,提出了考虑应力扩散效应的虚土桩法。进一步结合平面应变模型,通过Laplace变换和卷积定理等数学方法,求得任意激振力作用下的桩体振动频域响应解析解和时域响应半解析解。通过分析桩底土体参数对桩动力响应的影响,发现土体剪切模量是决定桩底支撑刚度的重要因素,土体模量提高,将引起桩底支撑刚度和阻尼显著增大。桩底土对桩身动力响应的影响存在临界厚度,约5-7倍的桩体半径,在此范围内,桩体刚度与桩底土层厚度成反比关系,阻尼与之成正比关系。
     (2)将虚土桩法从平面应变模型发展到轴对称连续土体模型中,考虑土体的径向和竖向两相位移,建立三维波动效应下的桩土体系纵向振动模型。通过引入位移势函数和Laplace变换的手段,采用分离变量法将竖向和径向位移进行解耦,进而通过阻抗传递法求得桩体的频域响应,通过Laplace逆变换得到桩体的时域响应。根据所求得的解,对比了轴对称连续模型与平面应变模型下虚土桩法的差异,发现轴对称模型能更好地反映桩土体系的自振频率。
     (3)提出了混凝土管桩焊接缝的简化模型,将影响焊缝质量的物理因素转化到等效的刚度体系中,从而实现了可对焊缝进行理论拟合的目的。借助本文所提出的虚土桩法,求得多级混凝土焊接管桩桩顶的动力响应。经过分析有效焊接断面、焊接高度等参数的大小对桩顶速度响应的影响,表明焊接深度不应小于5mm,焊缝高度宜控制在2mm范围内。实测数据的拟合结果表明,该简化模型能有效地反映焊缝质量对管桩反射波信号的影响,可为桩基完整性检测提供指导。
     (4)根据静钻根植竹节桩的成桩机理,确立了径向非均质理论与虚土桩法相结合的桩土动力模型。结合系数矩阵传递法,求得径向非均质土体下竹节形根植桩的桩顶动力响应。分析了竹节及桩周水泥土等对桩顶动力响应的影响,结果表明桩体刚度与竹节密度和竹节半径成正比,桩侧水泥土的硬化程度越高,桩顶刚度越大,阻尼越小,且泥浆的水泥配合比为40%时,性价比较高。通过对工程数据的反演拟合验证了桩侧水泥土的硬化规律。
     完善地模拟桩与桩底土的作用关系是本文的核心,即文中提出的虚土桩法。以此来解决工程中出现的实际问题是本文的目的。基于此,本文提出的新方法、得到的新结论可为桩基工程设计及检测工作提供参考。
Currently, the existing models for the pile-soil interaction problem are mostly non-continuous and lack of extensive investigation on the effect of soil beneath the pile. In order to establish a precise coupling relationship between the pile and soil, a fictitious soil pile method was proposed in this research project to include the effect of stress dispersion at the tip of piles. Based on this method, the influence of soil on the longitudinal vibration behavior of single plies, the impact of welding on the integrity detection of multistage concrete tubular piles, as well as the dynamic characteristics of bored PHC nodular piles under different conditions were thoroughly studied. The main finished work and innovative achievements of this article are listed as following:
     (1) A fictitious soil pile method was proposed to consider the effect of stress dispersion based on the Mindlin additional stress distribution under the circular vertical loading on the foundation. Further, in combination with the plane strain model, the analytical solutions of longitudinal vibration response of piles in frequency domain and the corresponding semi-analytical solutions in time domain were obtained using Laplace transform and convolution theorem. It is shown that shear stiffness of soil is crucial to determine the complex stiffness of piles according to a parametric study of the influence of different parameters of soil on the dynamic response of piles. The increase of shear stiffness of soil will enhance the stiffness and damping of pile significantly. It was also found that there is a critical value of the thickness of soil between pile tip and bedrock that causing influence on the dynamic response of piles, and this value is about5-7times of the pile radius. Within this range, the stiffness of piles is proportional while the damping of piles is inversely proportional to the thickness of soil.
     (2) The fictitious pile soil model was further developed from the plane strain model to the axial symmetric continuous soil model, with which the longitudinal vibration model of pile-soil system taking into account of the three-dimensional wave effect of soil around the pile was built considering the radial and longitudinal displacement of soil. Then the displacement potential function and Laplace transform were imported, and the vertical and radial displacement was decoupled by the method of variable separation. Consequently the response of piles in frequency domain was obtained by the impedance transmission and the response of piles in time domain was obtained using Laplace inverse transform. The results obtained by fictitious pile soil method based on the axial symmetric continuous model was compared with that based on the plane strain model, and the drawed conclusion is that the axial symmetric continuous model is better to reflect the natural frequency of pile-soil system.
     (3) A simplified model of the welding seam of concrete tubular piles was proposed, in which the physical factors that affecting the welding quality are included in the effective stiffness, hence the welding can be theoretically simulated. The fictitious pile soil method was applied to solve the dynamic response at the top of multistage concrete welded tubular piles. The influec of parameters including the effective cross-section and height of welding on the velocity response at the top of piles were analyzed, and it was found that the depth of welding should be less than5mm and the height of welding should be limited to2mm. The fitted results using measured data show that this simplified model can effectively diagnose the influence of welding quality on the reflected wave of tubular piles, thus can provides guidance for the integrity detection of piles.
     (4) According to the forming mechanism of bored PHC nodular piles, a pile-soil dynamic model was developed regarding to the characteristics of radial nonhomogeneity of soil and the fictitious pile soil method. The dynamic response at the top of bored PHC nodular piles with surrounding nonhomogeneous soil was determined using the transmission method of coefficient matrix. The influence of some factors like the properties of nodular and surrounding cemented soil on the dynamic response of bored PHC nodular piles were also investigated, and the results show that the stiffness of piles is proportional to the density and radius of nodular. It was also found that when the hardening level of surrounding cemented soil is higher, the stiffness of pipe bolck is larger and the damping is smaller, and the cement with mix proportion of40%is most cost efficient. Finally, the hardening rule of surrounding cemented soil of piles was proven through inversion fitting of engineering data.
     The core achievement of this research is improvement of simulating the pile-soil interaction by proposing the fictitious pile soil method. With the aim of solving problems occurred in engineering practice, the newly proposed method and drawed conclusions in this article will provide reference for the engineering design of pile foundations.
引文
[I]Alves A M L, Lopes F R, Randloph M F, Danziger B R. Investigations on the dynamic behavior of small-strain diameter pile driven in soft clay[J]. Can. Geotech. J,2009,46:1418-1430.
    [2]Angelides D C, Roesset J M. Nonlinear lateral dynamic stiffness of piles[J]. Journal of the Geotechnical Engineering Division, ASCE,1980,107(11):1015-1032.
    [3]Barros P L A. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2006, 30(7):683-702.
    [4]Berrones R F, Whitman R V. Seismic Response of End Bearing Piles[J]. Journal of the Geotechnical Engineering Division,1982,108(4):554-569.
    [5]Blaney G W. Dynamic stiffness of piles[C]. Proceeding of 2nd International Conference on Numerical Method in Geomechanics,1976:1001-1012.
    [6]Cai Y Q, Chen G, Xu C J, Wu D Z. Torsional response of pile embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering,2006,26(12):1143-1148.
    [7]Chehab A G, El Naggar M H. Design of efficient base isolation for hammers and presses[J]. Journal of Soil Dynamics and Earthquake Engineering,2003,23(2):127-141.
    [8]Chen L Z, Wang G C. Torsional vibrations of elastic foundation on saturated media[J]. Soil Dynamics and Earthquake Engineering,2002,22(3):223-227.
    [9]Dappolonia D J, Lambe T W. Performance of four foundations on end-bearing piles[J]. J Soil Mech Found Eng Div, ASCE,1971,97(1):77-93.
    [10]Davies T G, Sen R, Banerjee P K. Dynamic behavior of pile groups in inhomogeneous soil[J]. Journal of the Geotechnical Engineering,1985,111(12):1365-1379.
    [11]Dezi F, Carbonari S, Leoni G. A model for the 3D kinematic interaction analysis of pile groups in layered soils[J]. Earthquake Engineering and Structural Dynamics,2009,38(11):1281-1305.
    [12]Dezi F, Carbonari S, Leoni G. Kinematic bending moments in pile foundations[J]. Soil Dynamics and Earthquake Engineering,2010,30(3):119-132.
    [13]Dobry R, Vincente E, O'Rourke M J, Roesset, M. Horizontal stiffness and damping of single piles[J]. Journal of Geo-technical Engineering Divison, ASCE,1982,108(GT3):439-459.
    [14]Dotson K W, Veletsos A S. Vertical and torsional impedances for radially inhomogeneous viscoelastic soil layers[J]. Soil Dynamics and Earthquake Engineering,1979,9(3):110-119.
    [15]El Naggar M H, Novak M. Effect of foundation nonlinearity on modal properties of offshore towers[J]. Journal of the Geotechnical Engineering Division, ASCE,1995(a),121(9):660-668.
    [16]El Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of the Geotechnical Engineering Division, ASCE,1994(a),120(4):678-696.
    [17]El Naggar M H, Novak M. Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamic and Earthquake Engineering,1995(b),14(2):141-157.
    [18]El Naggar M H, Novak M. Non-linear model for dynamic axial pile response[J]. Journal of the Geotechnical Engineering Division, ASCE,1994(b),120(2):308-329.
    [19]El Naggar M H, Novak M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering,1996,15:233-244.
    [20]El Naggar M H. Vertical and torsional soil reactions for radially inhoniogeneous soil layer[J]. Structural Engineering and Mechanics,2000,10(4):299-312.
    [21]El Sharnouby B, Novak M. Stiffness constants and interaction factors for vertical response of pile groups[J]. Journal of Canada Geotechnical,1990,27:813-822.
    [22]Gazetas G, Fan K, Kaynia A M. Dynamic response of pile groups with different configuration[J]. Soil Dynamics and Earthquake Engineering,1993,12:239-257.
    [23]Gazetas G, Mylonakis G, Nikolaou S. Simple methods for the seismic response of piles applied to the soil-pile-bridge interaction, state-of-the-art paper[C].3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering. April, MST, St Louis, MO.1995, 3:1547-1556.
    [24]Gazetas G. Seismic response of end bearing single piles[J]. Soil Dyn.& Earthq. Eng.,1984, 3(2):92-93.
    [25]Ghazavi M. Response of tapered piles to axial harmonic loading[J]. Canadian Geotechnical Journal,2008,45(11):1622-1628.
    [26]Han Y C, Sabin G C W. Impedance for radially inhomogeneous viscoelastic soil media[J]. Journal of Engineering Mechanics Division, ASCE,1995,121(9):939-947.
    [27]Han Y C, Vaziri H. Dynamic response of pile group under lateral loading[J]. Soil Dynamics and Earthquake Engineering,1992,11(2):87-99.
    [28]Han Y C. Dynamic vertical response of piles in nonlinear soil[J]. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE,1997,123(8):710-716.
    [29]Jin B, Zhong Z. Lateral dynamic compliance of pile embedded in poroelastic half space[J]. Soil Dyn. Earthq. Eng,2001,21:519-525.
    [30]Kagawa T, Kraft L M. Seismin p-y response of flexible piles[J]. Journal of the Geotechnical Engineering Division, ASCE,1980,106(GT8):965-978.
    [31]Kaynia A M, Kausel E. Dynamics soil behavior of pile groups[C]. Proa,2nd Int.Conf.on Numer.Meth.in offshore Piling,Univ.of Texas at Austin:509-532.
    [32]Kobayashi K, Ogura H. Vertical bearing capacity of bored pre-cast pile with enlarged base considering diameter of the enlarged excavation around pile toe[J]. Advances in Deep Foundations,2007:277-283
    [33]Kondner R L. Hyebrolic stress srtain response:cohesive soil[J]. Jounral of the Soil Mechanics and Foundation Engineering Division, ASCE,1963,89-96.
    [34]Kuhlemeyer R L. Static and dynamic laterally loaded floating piles[J]. J. Geotech. Engng Div., ASCE,1979(a),105:289-304.
    [35]Kuhlemeyer R L. Vertical vibration of piles[J]. J. Geotech. Engng Div., ASCE,1979(b), 105:273-287.
    [36]Lei Z K, Cheung Y K, Tham L G. Vertical response of single piles:transient analysis by time-domain BEM[J]. Soil Dynamics and Earthquake Engineering,1993,12(1):37-49.
    [37]Liang R Y, Husein, A I. Simplified dynamic method for pile-driving control[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1993,119(4):694-713.
    [38]Lu J F, Jeng D S, Nie W. Dynamic response of a pile embedded in a porous medium subjected to plane SH waves[J]. Computers and Geotechnics,2006,33(8):404-418.
    [39]Lysmer J, Richart, F E. Dynamic response of footings to vertical loading[J]. J Soil Mech Foundations Div, Proc Am Soc Civil Engrs,1966.
    [40]Madan B. KARKEE, Tomoko FUTAMI, Hitoshi OGURA. Considering group behavior of friction piles for settlement analysis of buildings[S]. SEWC2002, Yokohama, Japan:1-8.
    [41]Maeso O, Aznarez J J, Garcia F. Dynamic impedances of piles and groups of piles in Saturated soils[J]. Computers and Structures,2005,83(10/11):769-782.
    [42]Mamoon S M, Kaynia A M, Banerjee P K. Frequency domain dynamic analysis of piles and pile groups[J]. Journal of Engineering Mechanics, ASCE,1990,116(10):2237-2257
    [43]Matlock H, Foo S H C. Axial analysis of piles using a hysteretic degrading soil model[C]. Proc. Int. Symp. Numer. Methods Offshore Piling, Institute of Civil Engineers, London, England,1979.
    [44]Meyerholf G G. Bearing capacity and settlement of pile foundations[J]. Journal of the Geotechnical Engineering Division, ASCE,1976,102(3):195-228.
    [45]Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique,1999,49(1):91-109.
    [46]Millan M A, Dominguez J. Simplified BEM/FEM model for dynamic analysis of structures on piles and pile groups in viscoelastic and poroelastic soils[J]. Eng Anal Bound Elem,2009, 33(1):25-34.
    [47]Mindlin R D. Force at a Point in the Interior of a Semi-Infinite Soild[J]. Physics,1936, 195(7):195-202.
    [48]Nogami T, Konagai K, Otani J. Nonlinear time domain numerical model for pile group under transient dynamic forces[C]. Proceeding of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic, St. Louis,1991,3:881-888.
    [49]Nogami T, Konagai K. Dynamic response of vertically loaded nonlinear pile foundations[J]. Journal of Geotechnical Engineering, ASCE,1987,113(2):147-160.
    [50]Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics Division, ASCE,1986,112(11):1241-1252.
    [51]Nogami T, Konagai K. Time domain flexural response of dynamically loaded single piles[J]. Journal Engineering Mechanics Division, ASCE,1988,114(9):1512-1525.
    [52]Nogami T, Novak M. Resistance of soil to a horizontally vibrating pile[J]. International Journal of Earthquake Engineering and Structural Dynamics,1977,3(3):247-261.
    [53]Nogami T, Novak M. Soil-pile interaction in vertical vibration[J]. Earthquake Engineering and Structural Dynamics,1976,4:277-293.
    [54]Nogami T, Otani J, Konagai K, Chen H L. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of the Geotechnical Engineering Division, ASCE,1992,118(1): 89-106.
    [55]Nogami T. Dynamic group effect axial responses of grouped pile[J]. Journal of the Geotechnical Engineering, ASCE,1983,109(2):228-243.
    [56]Novak M, Aboul-Ella F. Dynamic soil reaction for plane strain case[J]. Journal of the Engineering Mechanical Division, ASCE,1978a,104(EM4):953-959.
    [57]Novak M, Aboul-Ella F. Impedance functions of piles in layered media[J]. Journal of the Engineering Mechanics Division, ASCE,1978b,104(EM6):643-661.
    [58]Novak M, Beredugo Y O. Vertical vibration of embedded footings[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98(SM12):1291-1310.
    [59]Novak M, EL Sharnouby B. Stiffness constants of single piles[J]. Journal of Geotechnical Engineering,1983,109(7):961-974.
    [60]Novak M, Nogami T. Soil-pile interaction in horizontal vibration[J]. International Journal of Earthquake Engineering and Structural Dynamics,1977,5(3):153-168.
    [61]Novak M, Sheta M. Approximate approach to contact problems of piles[C], Proceedings of the Geotechnical Engineering Division, American Society of Civil Engineering National Convention, Florida,1980:53-79.
    [62]Novak M. Dynamic stiffness and damping of piles[J]. Can. Geotech. J.,1974,11(4):574-598.
    [63]Novak M. Vertical vibration of floating piles[J]. J Eng Mech Div, ASCE,1977, 103(EMI):153-168.
    [64]Padron L A, Aznarez J J, Maeso O. BEM-FEM coupling model for the dynamic analysis of piles and pile groups[J]. Eng Anal Bound Elem,2007,31:473-484.
    [65]Pak, R.Y.S., Jennings, P.C.,1987. Elastodynamic response of pile under transverse excitations[J]. Journal of engineering mechanics,113:1101-1116.
    [66]Poulos H G, Davis E H. Prediction of Downdrag Forces in End-Bearing Piles[J]. Journal of the Geotechnical Engineering Division,1975,101(2):189-204.
    [67]Poulos H G, Mattes N S. The analysis of downdrag in end-bearing piles[C]. Proceedings of 7th international conference on soil mechanics and foundation engineering, Mexico City,1969b, 203-208.
    [68]Poulos H G, Mattes N S. The behaviour of axially loaded end-bearing piles[J]. Geotechnique, 1969a,19(2):285-300.
    [69]Rajapakse R K N D. A note on the elastodynamic load transfer problem[J]. International Journal of Solids and Structures,1988a,24(7):963-972.
    [70]Rajapakse R K N D. A torsion load transfer problem for a class of non-homogeneous elastic solids[J]. International Journal of Solids and Structures,1988b,24(2):139-151.
    [71]Randolph M F, Simons H A. An improved soil model for one-dimensional pile driving analysis[C]. In Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France,21-22 May 1986. Editions Technip, Paris,1-17.
    [72]Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division,1978, 104(GT12):1465-1488.
    [73]Sen R, Kausel E, Banerjee P K. Dynamic analysis of pile groups embedded in non-homogeneous soi!s[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985, 9(6):507-524.
    [74]Senjuntichai T, Mani S, Rajapakse R K N D. Vertical vibration of an embedded rigid foundation in a poroelastic soil[J]. Soil Dynamics and Earthquake Engineering,2006,26:626-636.
    [75]Takashi H, Madan B K. Load tests on bored PHC nodular piles in different ground conditions and the bearing capacity based on simple soil parameters[J]. Journal of Architecture & Building Seience,1995,12:89-94
    [76]Vaziri H, Han Y C. Impedance functions of piles in inhomogeneous media[J]. Journal of the Geotechnical Engineering Division, ASCE,1993,119(9):1414-1430.
    [77]Veletsos A S, Dotsos K. W. Impedances of soil layer with disturbed boundary zone[J]. Journal of Geotechnical Engineering Division, ASCE,1986,112(3):363-368.
    [78]Veletsos A S, Dotsos K W. Vertical and torsional vibration of foundations in inhomogeneous media[J]. Journal of Geotechnical Engineering Division, ASCE,1988,114(9):1002-1021.
    [79]Wang G Q, Dong Z M. Design optimization of low impact transmission foundation for forging hammers[J]. International Journal for Computer-Aided Engineering and Software,2006,23 (2):166-186.
    [80]Wang J H, Zhou X L, Lu J F. Dynamic response of pile groups embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering,2003,23(3):235-242.
    [81]Wang K H, Wu W B, Zhang Z Q, Leo C J. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics,2010,37(4):536-544.
    [82]Wang K H, Zhang Z Q, Chin J L, Xie K H. Dynamic torsional response of an end bearing pile in saturated poroelastic medium[J]. Computers and Geotechnics,2008,35(3):450-458.
    [83]Wang N,Wang K H, Wu W B. Analytical model of vertical vibrations in piles for different tip boundary conditions:parametric study and applications[J]. Journal of Zhejiang University Science A,2013,14(2):79-93.
    [84]Wang Y, Rajapakse R K N D. BE analysis of dynamics of rigid foundations embedded in transversely isotropic soils[J]. Journal of the Chinese Institute of Engineers,2000,23(3):275-288.
    [85]West R P, Heelis M E, Pavlovic M N, Wylie G B. Stability of end-bearing piles in a non-homogeneous elastic foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(12):845-861.
    [86]Wolde-Tinsae A M, Greimann L, Yang P S. End-bearing Piles in Jointless Bridges[J], Journal of Structural Engineering,1988,114(8):1870-1884.
    [87]Wolf J P, Von-Arx G A. Impedance function of a group of vertical pilesfC]. Proc. Of ASCE Geotech. Engrg. Div. Specialty Conf. On Earthq. Engrg. And Soil Dynamincs:1024-1041.
    [88]Wu G, Finn W. Dynamic elastic analysis of pile foundations using finite element method in the frequency domain[J]. Canadian Geotechnical Journal,1997a,34(1):34-43.
    [89]Wu G, Finn W. Dynamic nonlinear analysis of pile foundations using finite element method in the time domain[J]. Canadian Geotechnical Journal,1997b,34(1):44-52.
    [90]Wu Y S, Yang Y B. A semi-analytical approach for analyzing ground vibrations caused by trains moving over elevated bridges[J]. Soil Dynamics and Earthquake Engineering,2004,24:949-962.
    [91]Yang D Y, Wang K H, Zhang Z Q, Chin J L. Vertical dynamic response of pile in a radially heterogeneous soil layer[J]. International Journal for Numerical and Analytical method in Geomechanics,2009,33(8):1039-1054.
    [92]Yang D Y, Wang K H. Study on vertical vibration of pile in radial inhomogeneous soil[C]. Structural condition assessment, monitoring and improvement,2007:241-249.
    [93]Yu C P, Liao S T. Theoretical basis and numerical simulation of impedance log test for evaluating the integrity of columns and piles[J]. Canadian Geotechnical Journal,2006,43(12):1238-1248.
    [94]Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, ASCE,1999,125(9):1048-1055.
    [95]Zhou X L, Wang J H, Jiang L F, Xu B. Transient dynamic response of pile to vertical load in saturated soil[J]. Mechanics Research Communications,2009(b),36(5):618-624.
    [96]Zhou X L, Wang J H. Analysis of pile groups in a poroelastic medium subjected to horizontal vibration[J]. Computers and Geotechnics,2009(a),36(3):406-418.
    [97]Zienkiewicz O C. The finite element method[M]. New York:McGraw-Hill,1977.
    [98]陈嘉熹.虚土桩法可行性初步研究与分析[D].杭州:浙江大学,2008.
    [99]胡昌斌,黄晓明.成层粘弹性土中桩土耦合纵向振动时域响应研究[J].地震工程与工程振动,2006,26(4):205-211.
    [100]胡昌斌,王奎华,谢康和.桩与粘性阻尼土耦合纵向振动时桩顶时域响应研究[J].振动工程学报,2004,17(1):72-77.
    [101]胡昌斌,王奎华,谢康和.考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J].工程力学,2003,20(2):146-154.
    [102]孔德森,栾茂田,杨庆.桩土相互作用分析中的动力Winkler模型研究评述[J].世界地震工程,2005,21(1):12-17.
    [103]雷国辉,赵维炳,施建勇.锤击打入桩与土的共同作用分析[J].河海大学学报,1999,27(2):55-59.
    [104]李强,王奎华,谢康和.饱和土中大直径嵌岩桩纵向振动特性研究[J].振动工程学报,2005,18(4):500-505.
    [105]李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究[J].力学学报,2004(a),36(4):435-442.
    [106]李强,王奎华,谢康和.饱和土桩纵向振动引起土层复阻抗分析研究[J].岩土工程学报,2004(b),26(5):679-683.
    [107]刘凯.考虑虚土桩扩散角时桩土动静特性分析[D].杭州:浙江大学,2011.
    [108]刘林超,闫启方.饱和土中管桩的纵向振动特性[J].水利学报,2011,42(3):366-378.
    [109]刘宁.预应力混凝土管桩水平承载力现场试验及数值模拟[D].太原理工大学,2011.
    [110]栾茂田,孔德森.层状土中单桩竖向简谐动力响应简化解析方法[J].岩土力学,2005,26(3):375-380.
    [111]栾茂田,孔德森.单桩竖向动力阻抗计算方法及其影响因素分析[J].振动工程学报,2004,17(4):500-505.
    [112]彭宏.预应力混凝土管桩及其沉桩挤土效应研究[D].华中科技大学,2004.
    [113]阀仁波,王奎华,考虑土体径三维波动效应时弹性支承桩的振动力理论及其应用[J].计算力学学报,2005(c),22(6):658-664.
    [114]阙仁波,王奎华,考虑土体径向位移时桩土耦合振动特性及其应用[J].振动工程学报,2005(b),24(3):212-218.
    [115]阙仁波,王奎华.考虑土体三维波动效应时黏性阻尼土中桩的纵向振动特性及其应用研究[J].岩石力学与工程学报,2007,26(2):381-390.
    [116]阀仁波.考虑土体三维波动效应时桩的纵向振动特性与应用研究[D].杭州:浙江大学,2005a.
    [117]尚守平,任慧,曾裕林,余俊.非线性土中单桩竖向动力特性分析[J].工程力学,2008,25(11):111-115.
    [118]尚守平,余俊,王海东,任慧.饱和土中桩水平振动分析[J].岩土工程学报,2007,29(11):1696-1702.
    [119]王海东,费模杰,尚守平,卢华喜.考虑径向非匀质性的层状地基中摩擦桩动力阻抗研究[J].湖南大学学报(自然科学版),2006,33(4):6-11.
    [120]王海东,尚守平,刘可,周志锦.考虑径向非均质性的层状地基中单桩动力阻抗研究[J].建筑结构学报,2008,29(5):128-134.
    [121]王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究[J].振动工程学报,2006,19(2):258-264.
    [122]王奎华,刘凯,吴文兵,王宁.虚土桩扩散角对桩的纵向振动特性影响研究[J].工程力学,2011,28(9):129-136.
    [123]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及应用[J].土木工程学报,1998,31(6):56-67.
    [124]王奎华,谢康和,曾国熙.有限长桩受迫振动问题解析解及应用[J].岩土工程学报,1997,19(6):27-35.
    [125]王奎华,杨冬英.基于复刚度传递多圈层平面应变模型的桩动力响应研究[J].岩石力学与 工程学报,2008,27(4):825-831.
    [126]王奎华,杨冬英.两种径向多圈层土体平面应变模型的对比[J].浙江大学学报(工学版)2009,43(10):1902-1908.
    [127]王奎华,应宏伟.广义Voigt土模型条件下桩的纵向振动响应与应用[J].固体力学学报,2003,24(3):293-303.
    [128]王奎华.变截面阻抗桩纵向振动问题积分变换解[J].力学学报,2001,33(4):479-491.
    [129]王奎华.多元件粘弹性土模型条件下桩的纵向振动特性与时域响应[J].声学学报,2002,27(5):455-464.
    [130]王奎华.考虑桩体粘性的变阻抗桩受迫振动问题的解析解[J].振动工程学报,1999,12(4):513-520.
    [131]王小岗.层状横观各向同性饱和地基中桩基的纵向耦合振动[J].土木工程学报,2011(a),44(6):87-97.
    [132]王小岗.横观各向同性饱和层状土中垂直受荷群桩的动力阻抗[J].岩土工程学报,2011(b),33(11):1759-1766.
    [133]吴文兵,王奎华,武登辉,马伯宁.考虑横向惯性效应时楔形桩纵向振动阻抗研究[J].岩石力学与工程学报,2011,30(S2):3618-3625.
    [134]肖德瑛.预应力混凝土管桩的承载机理研究及沉降分析[D].中国石油大学,2009.
    [135]涂涛.预应力混凝土管桩承载性能的研究[D].长安大学,2009.
    [136]燕彬,黄义.群桩刚性承台竖向动阻抗的简化计算[J].岩土工程学报,2004,26(5):465-468.
    [137]杨冬英.复杂非均质土中桩土竖向振动理论研究[D].杭州:浙江大学,2009.
    [138]杨冬英,王奎华.非均质土中基于虚土桩法的桩基纵向振动[J].浙江大学学报(工学版),2010,44(10):2021-2028.
    [139]杨冬英,王奎华.径向非均质土中平面应变模型的精度及适用性研究[J].土木工程学报,2009(a),42(7):98-105.
    [140]杨冬英,王奎华.任意圈层径向非均质土中桩的纵向振动特性研究[J].力学学报,2009(b),41(2):243-252.
    [141]杨轶.预应力混凝土管桩竖向承载力数值分析与试验研究[D].长沙理工大学,2008.
    [142]张德文,李咸亨,欧阳金福.时域垂直载重桩反应与土模式应用[J].岩土工程学报,2000,22(2):162-169.
    [143]中华人民共和国建设部.JGJ94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.
    [144]浙江省标准设计站.浙G37静钻根植先张法预应力混凝土竹节桩[S].杭州:浙江工商大学出版社,2012.
    [145]张智卿,王奎华,靳建明.轴对称横观各向同性土体中桩的扭转振动响应研究[J].振动工程学报,2011,24(1):60-66.
    [146]张智卿,王奎华,谢康和,李强.考虑地下水位影响时桩的纵向振动特性研究[J].岩石力学与工程学报,2006(a),5(S2):4215-4225.
    [147]张智卿,王奎华,谢康和.饱和土层中桩的扭转振动响应分析[J].浙江大学学报(工学版)2006(b),40(7):1211-1218.
    [148]张智卿,王奎华,谢康和.非饱和土层中桩的扭转振动响应分析[J].岩土工程学报,2006(c),28(6):729-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700