工业化厌氧颗粒污泥重要菌群及相关功能基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产甲烷菌群是厌氧颗粒污泥中的重要菌群,mcrA、mtr和F420是产甲烷菌中特有的辅酶编码基因。以取自工业化UASB反应器中处理阿维菌素和淀粉废水的厌氧颗粒污泥为研究对象,采用PCR-DGGE、FISH等分子生物学手段,对厌氧颗粒污泥的产甲烷菌群及相关功能基因进行研究,考察了菌群结构的多样性、系统发育关系和相对丰度等微生物学信息,同时考察了抗生素残留对厌氧颗粒污泥产甲烷活性的抑制情况,研究获得以下结果:
     基于mcrA和16S rRNA两种目标基因获得的PCR产物的DGGE图谱存在差异,但根据图谱计算所得产甲烷菌群Shannon多样性指数、Margalef丰富度指数和Berger-Parker优势度指数没有差异,表明基于两种目标基因的产甲烷菌群多样性分析基本一致。基于不同目标基因的优势产甲烷菌群系统发育种属的分析结果大体相似,产甲烷杆菌目和产甲烷八叠球菌目是厌氧颗粒污泥样品中的优势产甲烷种群;同时分析结果的差异表明两种目标基因的检测特异性不完全相同,但具有可替换性。
     对同一种污泥样品基于不同探针的产甲烷菌FISH杂交结果表明:产甲烷菌分布形态相同,但相对丰度存在差异,相对丰度由小到大的顺序为:mcrA     基于产甲烷菌群分析的结果,考察与阿维菌素结构类似的红霉素和典型抗生素链霉素对处理淀粉废水和处理阿维菌素废水污泥样品的产甲烷活性的影响,结果表明:链霉素对两种污泥样品的产甲烷菌和产酸菌都有明显抑制作用,对产甲烷菌的抑制作用表现为产甲烷过程滞后和产甲烷速率的降低。链霉素浓度不同时,对微生物的抑制程度也不同,对处理淀粉废水和处理阿维菌素废水的污泥样品中产甲烷菌的半抑制浓度分别为2.05 mg·L-1和7.49mg·L-1。红霉素对处理淀粉废水的颗粒污泥样品中的微生物也具有抑制作用,表现为低浓度(<10mg·L-1)下,对产酸菌的抑制作用较强,而在高浓度(>20mg·L-1)条件下,对产甲烷菌的抑制作用较强。由于红霉素与阿维菌素具有相似的结构,因而红霉素对处理阿维菌素废水的污泥样品中的微生物的抑制作用较弱。
Methanogens are considered to be important microbial populations in anaerobic granular sludge. and mcrA、mtr and F420 are the important functional genes in methanogens encoding some unique coenzymes. Methanogenic community and functional genes mentioned above in anaerobic granular sludge samples from full-scale UASB bioreactors treating avermactin or starch wastewater were investigated by PCR-DGGE and FISH analysis. The diversity of methanogenic community, the phylogenetic relationship of dominant methanogeinc populations and the relative abundance of methanogens were discussed and compared when 16S rRNA gene or functional gene was used as target gene. The inhibitory effects of antibiotics on methane-producing capacity of sludge samples were also explored. The results were shown as follows.
     The diversitv indices of methanogenic communitv calculated from DGGE band patterns. including Shannon diversity index. Margalef richness index and Berger-Parker dominance index. were no difference between mcrA gene-based and 16S rRNA gene-based PCR products. although their DGGE band patterns were different. implying that the diversity analysis of methanogenic community based on mcrA genes was consistent with 16S rRNA gene. The phylogenetic analysis of dominant methanogenic populations based on these two target genes also showed resemble and methanobacteriales and methanosarcinales were determined to be the main orders of methanogenic populations in anaerobic granular sludge sample treating avermectin wastewater. Then it could be conclude that mcrA gene and 16S rRNA gene could be alternative for methanogenic community analysis. although the difference in phylogenetic analysis suggested simultaneously some group-specific of these two target genes.
     The distribution forms of methanogens in FISH analysis based on different target genes were almost identical for one kind of sludge sample except some difference in hybridization areas. The average relative abundance of methanogens based on hybridization area was in the following order:mcrA     The inhibitory effect of streptomycin or erythromycin on methanogen and acetogenic bacteria in anaerobic granular sludge treating starch or avermectin wastewater was investigated. The results indicated that the process of methane production was lagged and the rate of methane production decreased in the presence of streptomvcin. The inhibitory effect depended on streptomycin concentration. The half-inhibitory streptomycin concentrations for methane production of sludge samples were obtained as 2.05 mg-L-1 for treating starch wastewater and 7.49 mg·L-1 for treating avermectin wastewater. The inhibitory effect of erythromycin was relatively stronger on methanogen at low erythromycin concentrations (<10mg·L-1) but on acetogenic bacteria at high erythromycin concentrations (>20mg·L-1). The inhibitory effect of erythromycin on methanogens in the sludge sample treating avermectin wastewater seemed weaker. due to similar structure of erythromycin with avermectin probably.
引文
[1]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003.
    [2]邹华,魏学军,阮文权,严群,赵明星.内循环(IC)厌氧反应器处理糖蜜酒精废水的研究[J].环境工程学报,2007,(05).41-44.
    [3]J.A. ALVAREZ, E. ANMSTRONG, M. GOMEZ, M. SOTO. Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresource Technology,2008,99(15):7051-7062.
    [4]孙寓姣,左剑恶,邢薇.高效厌氧产甲烷颗粒污(?)微生物多样性及定量化研究[J].环境科学,2006,27(11):2354-2357.
    [5]张忠祥,钱易.废水生物处理新技术.北京,清华大学出版社,2004.
    [6]郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理.中国给水排水,2000,26(1):33-40.
    [7]J.E. SEHMIDT, B.K.AHRING. Granular Sludge Formation in Upflow Anaerobic sludge Blanket (UASB) Reaetors. Biotechnology and Bioengingeering,1996,49(3):229-246.
    [8]刘双江,胡纪萃,顾夏声. UASB反应器系统中污泥颗粒化研究进展.中国环境科学,1990,10(5):343-346.
    [9]N KOSARIC, BLAZCZYK, L. RORPHAN, et al. Characteristics ofgranules from upflow anaerobic sludge blanket reactors.WaterResearch,1990,24:1473-1477.
    [10]MAELEOD, et.al. Layered structure of Baeterial Aggregates Production in an UASB and FilterReactor. Applied and Environment Microbiology,1990,56:1598-1607.
    [11]陈坚,李春生,伦世仪.厌氧颗粒污泥的形成机制.中国环境科学,1993,13(5):334-339.
    [12]D.R BOONE, WHITMAN, W.B. ROUVIERE, et.al. Diversity and taxonomy of methanogens. In Ferry, J.G. (Ed.), Methanogenesis. Chapman & Hall Co., New York,1993:35-80.
    [13]LIU YC, WILLIAM BW. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Annals of the New York Academy Sciences,2008,1125:171-189
    [14]J.L.GARCIA, B.K.C. PATEL, B.OLLIVIER. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe,2000,6 (4):205-226.
    [15]G. TALBOT, E. TOPP, M.F. PALINA, et.al. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water research.2008,42: 513-537.
    [16]ARLENE, K.ROMAN, et.al.Composition and diversity of arnmonia-oxidising baeterial communities in wastewater treatment reaetors of different design treating dentieal wastewater. FEMSM Microbiology eeology,2003(43):195-206.
    [17]F.A. MACLEOD, S.R GUIOT, J W.COSTERTON. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor.. Applied and Environment Microbiology,1990, 56(6):1598-607.,
    [18]H P. FANG. H K. CHUI. Y Y. LI. Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Science and Technology.1995.32 (8):16-172.
    [19]T峰.傅以钢.夏四清.等. PCR-DGGE技术在城市污水化学生物絮凝处理中的特点.环境科学.2004.25(6):74-79.
    [20]瞿礼嘉.顾红雅.胡苹,等..现代生物技术,北京:高等教育出版社,2004.8.378-379.
    [21]E F. DELONG. G S. WICKHAM. N R. PACE. Phylogenetic stains:ribosomal RNA-based probes for the identification of single microbial cell. Science,1989.243:1360-1363.
    [22]R. AMANN. WLUDW1G. KSCHLEIFER. Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without Cultivation. Microbiology Review.1995.59:143-169.
    [23]D.A. STAHL. Application of phylogenetically based hybridization probes to microbial ecology. Molecular Ecology.1995.4 (5):535-542.
    [24]Y.Y. SEKIGUCHI. K. KAMAGATA. AKAMURA. et al. Fluorescence In Situ Hybridization Using 16S rRNA-Targeted Oligonucleotides Reveals Localization of Methanogens and Selected Uncultured Bacteria in Mesophilic and Thermophilic Sludge Granules. Applied and Environment Microbiology. 1999.65:1280-1288.
    [25]T TAGAWA. K SYUTSUBO. Y SEKIGUCHIL. et al. Quantification of methanogen cell density in anaerobic granular sludge consortia by fluorescence in-situ hybridization. Water Science and Technology.2000.42(3):77-82.
    [26]J HERMIE. M HARMSEN. M P HARRY, et.al. Detection and Localization of Syntrophic Propionate Oxidizing Bacteria in Granular Sludge by In Situ Hybridization Using 16S rRNA Based Oligonuleotide Probes. Applied and Environment Microbiology,1996.62:1656-1663.
    [27]E SPRINGER. M S SACHS. C R WOESE. et al. Partial gene-sequences for the A subunit of methyl-coenzyme M reductase (mcrl) as a phylogenetic tool for the family Methanosarcinaceae. International Journal of Systematic Bacteriology.1995.45(3):554-559.
    [28]B A HALES. C EDWARDS. D A RITCHIE, et al. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Applied and Environmental Microbiology.1996.62(2):668-675
    [29]P.E. LUTON. J.M. WAYNE. R.J. SHARP, et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology.2002.148:3521-3530.
    [30]H. JUOTTONEN. P.E. GALAND. K.YRJALA. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Research in Microbiology,2006,157(10): 914-921.
    [31]G RASTOGI. D.R. RANADE. T.Y. YEOLE. et al. Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresource Technology.2008.99(13):5317-5326.
    [32]U. ERMLER. W. GRABARSE. S. SHIMA, M. GOUBEAUD. et.al. Crystal structure of methyl-coenzyme M reductase:the key enzyme of biological methane formation. Science,1997.278: 1457-1462.
    [33]W.GRABARSE. S. SHIMA. F MAHLERT. et.al:Methyl-coenzyme M reductase. Handbook of metalloproteins. John Wiley & Sons. Ltd., Chichester.2001:.897-914
    [34]T. WATANABE. M. KIMURA. S. ASAKAWA. Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil. Soil Biology and Biochemistry,2009,41 (2):276-285.
    [35]CH-G ZHU. J-Y ZHANG, et.al. Tang Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiological Research.2011,166(1):27-35.
    [36]A. MIHAJLOVSKI, M. ALRIC. J-F. BRUGERE. A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecuiar analyses of the mcrA gene. Research in Microbiology,2008,159(7-8):516-521
    [37]P. L HARTZELL. R. S WOLFE. Requirement of the nickel tetrapyrrole F430 for in vitro methanogenesis:Reconstitution of methylreductase component C from its dissociated subunits. Proceedings of the National Academy of SciencesP. USA.1986.83:6726-6730.
    [38]A. J. REED. R. DORN. et.al. Phylogenetic diversity of methanogenic,sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography.2009.56-1665-1674.
    [39]S ROSPERT, J.BREITUNG, et.al. Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO. and H, in the extreme thrmophile Methanopyrus kandleri. Archives of. Microbialogy.1991.156:49-55.
    [40]J.G FERRY. Methanogenesis:Ecology. Physiology. Biochemistry and Genetics. Chapman and Hall. New York.1993.
    [41]M.W FRIEDRICH. Methyl-coenzyme M reductase genes:unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods in Enzymology.2005.397:428-442.
    [42]T.LUEDERS. K.J.CHIN, R CONRAD. et.al. Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environtal Microbiology.2001.3:194-204.
    [43]J. ELLERMANN. R. HEDDERICH. R. BOCHER, et al. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). European Journal of Biochemistry,1988.172(3):669-677.
    [44]P.E LUTON. J.M. WAYNE. R.J.SHARP, et.al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen population in landfill. Microbiol.2002,148:3521-3530.
    [45]H JUOTTONEN, P E GALAND, K YRIALA Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Research in Microbiology.2006.157(10): 914-921.
    [46]G RASTOGI. D R RANADE. T Y YEOLE. et at. Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresource Technology.2008.99(13):5317-5326.
    [47]B. NOCEK. E. EVDOKIMOVA. M. PROUDFOOT. et.al. Structure of an Amide Bond Forming F420:γγ-glutamyl Ligase from Archaeoglobus Fulgidus-A Member of a New Family of Non-ribosomal Peptide Synthases Journal of Molecular Biology.2007.372(2):456-469.
    [48]YUN-HUAN CHENG. SHU-XUN SANG. HUA-ZHOU HUANG. et.al. Variation of Coenzyme F420 Activity and Methane Yield in Landfill Simulation of Organic Waste. Journal of China University of Mining and Technology.2007.17(3):403-408.
    [49]G. BASHIRI. C. J. SQUIRE. E. N. BAKER, et.al. Expression, purification and crystallization of native and selenomethionine labeled Mycobacterium tuberculosis FGDI using a Mycobacterium smegmatis expression system. Protein Expression and Purification.2007.54(1):38-44.
    [50]G. GOTTSCHALK. K.T. RUDOLF. The Na.-translocating methyltransferase complex from methanogenic archaea. Biochimica et Biophysica Acta.2001.1505:28-36.
    [51]ZHEN WANG. ZEPING XIAO. SABRA S. Low expression of catecholamine-O-methyl-transferase gene in obsessive-compulsive disorder. Journal of Anxiety Disorders.2009.23(5):660-664.
    [52]H. D. ARIESYADYA. T. ITOB. S. OKABEA. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Research.2007.41:1554-1568.
    [53]S.A REYES. C.IRAIL. et.al. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. Journal of Hazardous Materials.2010,175:352-358.
    [54]JAEHO HO, SHIHWU SUNG. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology.2010,101:2191-2196.
    [55]傅山岗.李宗义.厌氧颗粒污泥的超微结构分析.生物技术.2004.14(4):69-71
    [56]E.E.DIAZ. A.J.M.STAMS, R.AMILS, et al. Phenotypic Properties and Microbial Diversity of Methanogenic Granules from a Full-Scale Upflow Anaerobic Sludge Bed Reactor Treating Brewery Wastewater. Applied and Environmental Microbiology.2006.7:4942-4949
    [57]张苏,刘春.杨景亮.等.工业化废水处理反应器污泥总DNA提取方法研究.微生物学通报.2008.35(10):1659-1663
    [58]李建英.牛平(?).吴根.EGSB反应器处理链霉素有机废水工业性试验研究.重庆环境科学.2003,11(35)
    [59]E CHAN. et al. Pyrazinamide. ethambutol. ethionamide. and aminoglycosides. In:Rom WN, G Tuberculosis.2nd edition. Philadelphia, PA:Lippincott Williams & Wilkins..2003.773-789.
    [60]M. YAMAGUCHI. K. MINAMI. Y. TANIMOTO. et.al. Effects of volatile fatty acids on methanogenesis of methanol and of pregrowth with methanol on acetate utilization by methanogens. Journal of Fermentation and Bioengineering.1989,68:428-432.
    [61]J. H. HUN IK. H. V. M. HAMELERS.1. W. KOSTER. Growth-rate inhibition of acetoclastic methanogens by ammonia and pH in poultry manure digestion. Biological Wastes.1990.32:285-297.
    [62]G.WALLNER. R.AMANN. W.BEIKER. Optimizing Fluorescent in Situ Hybridization with 16S rRNA-targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cvtometry.1993.14:136-143.
    [63]Y S YU, C S LEE, J KIM, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Bioresource Technology,2005. 89 (6):670-679.
    [64]T C J HILL. K A WALSH, J A HARRIS. et al. Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology.2003.43:1-11.
    [65]S ASAKAWA. M. KIMURA. Comparison of bacterial community structures at main habitats in paddy field ecosystem based on DGGE analysis. Soil Biology and Biochemistry.2008.40:1322-1329.
    [66]W JUPRAPUTTASRI, N BOONAPATCHAROEN, S CHEEVADHANARAK, et al. Use of an alternative archaea-specific probe for methanogen detection. Journal of Microbiology Methods.2005. 61:95-104.
    [67]刘春,马俊科,吴根,等.阿维菌素废水工业化UASB颗粒污泥产甲烷菌群分析[J].环境科学.2010.31(3):175-180.
    [68]N.FERNANDEZ, R.S.ALVAREZ. J.A.FIELD, et al. Microbial Community Dynamics in a Chemolithothotrophic Denitrification Reactor Inoculated with Methanogenic Granular Sludge Chemosphere,2008,70:462-474.
    [69]JUPRAPUTTASRI. N.BOONAPATCHAROEN.S. CHEEVADHANARAK, et al. Use of an Alternative Archaea Specific Probe for Methanogen Detection. Journal of Microbiological Methods. 2005.61:95-104.
    [70]Y.YOUNGSEOB. L.CHANGSOO. K.JAAI. et al. Group Specific Primer and Probe sets to Detect Methanogenic Communities using Quantitative real time Polymerase Chain Reaction. Biotechnology and bioengineering.2005.89(6):670-679.
    [71]邢德峰,任南琪.宫曼丽. PCR-DGGE技术解析生物制氢反应器微生物多样性.环境科学.2005,26(2):172-177.
    [72]M.SONG. S.G.SHIN. S.HWANG. Methanogenic Population Dynamics Assessed by Real-time Quantitative PCR in Sludge Granule in Upflow Anaerobic Sludge Blanket Treating Swine Wasterwater. Bioresource Technology.2010.101:523-528
    [73]T. LIENARD. G. GOTTSCHALK. Cloning, sequencing and expression of the genes encoding the sodium translocating N5-methyltetraliydromethanopterin:coenzyme M methyltransferase of the methylotrophic archaeon Methanosarcina mazei Goel. FEBS Letters.1998.425:204-208.
    [74]B. HOLGER. K RUDOLF. THAUER. F420H::NADP oxidoreductase from Methanobacterium thermoautotrophicum:identiccation of the encoding gene via functional overexpression in Escherichia coli. FEBS Letters.1998,425:124-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700