强化有机废水厌氧生物转化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了不同浓度抑制剂对厌氧污泥发酵产氢的影响,运用DGGE技术分析了微生物多样性的变化,从而构建起最佳产氢微生物群落。基于动力学模型分析了苯甲酸底物浓度对厌氧发酵产甲烷的影响及其厌氧降解过程。在间歇实验的基础上,研究了如何强化UASB反应器中产氢产乙酸过程。运用FISH技术分析UASB反应器中产氢产乙酸菌的相对丰度并结合SMA的测定表明产氢产乙酸菌群得到富集,主要结论如下:
     (1)利用CHCl3和苯酚可以有效抑制产甲烷菌活性,提高厌氧污泥的发酵产氢能力,且对微生物群落结构具有选择作用。通过控制添加的有机抑制剂浓度,获得最佳产氢微生物群落。最适产氢的CHCl3和C6H5OH浓度分别为0.050%和800mgCOD·L-1。
     (2)以苯甲酸为唯一碳源进行厌氧发酵产甲烷获得的甲烷产率和比产甲烷速率分别在底物浓度为1.Og·L-1和1.2g·L-1时达到最大值。基于Han-Levenspiel模型分析表明产甲烷菌发酵产甲烷的底物浓度上限为2.79g·L-1。苯甲酸浓度在0-2.0g·L-1时,其厌氧降解过程符合一级动力学。
     (3) UASB反应器运行条件设置为:温度(37±1)℃、出水pH=6.8~7.2、水力停留时间30h;通过在进水中添加乙酸钠(进水COD:N:P=300:5:1)可有效强化厌氧反应系统中产氢产乙酸作用。强化后厌氧污泥的SMA及产氢产乙酸菌群的相对丰度较强化前及对照系统均有显著提高。
In this paper, the effects of different concentrations of depressants on anaerobic H2production were investigated and microbial community structure was also examined by using DGGE. Thus the favorable microbial communities for fermentative H2production by anaerobic sludge were obtained. The effects of benzoate concentration on CH4production and benzoate anaerobic degradation were analyzed with kinetic mode. The continuous experiments were conducted to explore how to enhance the activity of H2-producing acetogens in UASB reactor on the basis of the results of batch experiments. The analysis results for relative abundances of H2-producing acetogens using FISH approach along with the SMA determination demonstrated that the bacteria were enriched. The main conclusions are as follows:
     (1) The H2production ability by anaerobic sludge could be improved through repressing methanogenic activity with CHCl3and phenol pretreatment. Correspondingly, the favorable microbial community structures for H2production by anaerobic sludge were formed by controlling organic inhibitors concentration in appropriate level. The optimal concentration of CHCl3and phenol for H2production were0.050%and800mg COD-L-1, respectively.
     (2) With benzoate as the sole carbon source, the maximum CH4yield and specific CH4production rate were achieved at substrate concentration of1.Og-L-1and1.2g-L-1, respectively. The maximum benzoate concentration for CH4production was2.79g·L-1according to Han-Levenspiel model analysis. The benzoate degradation rate was found to be the first order within range of substrate concentration from0-2.Og·L-1.
     (3) The UASB reactors were operated at internal temperature of37±1℃, pH of6.8-7.2, and HRT of30h. The activity of hydrogen-producing acetogens could be effectively enhanced by adding sodium acetate in influent (COD:N:P=300:5:1) of UASB. Both SMA of anaerobic sludge and relative abundances of H2-producing acetogens through augmentation were improved significantly compared to control system.
引文
[1]Hawkes FR, Dinsdale R, Hawkes DL, et al. Sustainable fermentative hydrogen production:challenges for process optimisation[J]. International Journal of Hydrogen Energy,2002,27:1339-1347.
    [2]Huang Z, Ong SL, Ng HY. Feasibility of submerged anaerobic membrane bioreactor (SAMBR) for treatment of low-strength wastewater[J]. Water Science and Technology,2008,58(10):1925-1931.
    [3]Wang JL, Wan W. Factors influencing fermentative hydrogen production:A review[J]. International Journal of Hydrogen Energy,2009,34:799-811.
    [4]McInerney MJ, Bryant MP, Pfennig N. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens[J]. Archives Microbiology, 1979,122(2):129-135.
    [5]赵立军,滕登用,刘金玲,等.废水厌氧生物处理技术综述与研究进展[J].环境污染治理技术与设备,2001,2(5):58-66.
    [6]Chen Y, Cheng JJ. Anaerobic waste treatment processes [J]. Water Environment Research,2007,79(10):1430-1450.
    [7]Mazumder D, Mukherjee S, Ray PK. Treatment of distillery anaerobic effluent in a hybrid biological reactor[J]. International Journal of Environment and Pollution,2008,32:43-56.
    [8]李建政,任南琪,秦智.污染控制微生物生态学[M].哈尔滨工业大学出版社:2005:190.
    [9]张希衡.废水厌氧生物处理工程[M].中国环境科学出版社:1996:10-30.
    [10]Chen CC, Lin CY. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor[J]. Advances in Environmental Research,2003, 7(3):695-699.
    [11]Boone DR, Bryant MP. Propiate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosysteems[J]. Applied and Environmental Microbiology,1980,40:626-632.
    [12]McCarty PL. The development of anaerobic treatment and its future[J]. Water Science and Technology,2001,44(8):149-156.
    [13]Lettinga AG, van Velsen AFM, Hobma SW, et al. Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment[J]. Biotechnology and Bioengineering,1980,22(4):699-734.
    [14]张赛英.常温条件下UASB反应器对苯酚和间甲酚的降解研究[D].湖南大学硕士学位论文:2009.
    [15]Zhao QB, Yu HQ. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values[J]. Bioresource Technology,2008,99(5): 1353-1358.
    [16]Chen Y, Cheng JJ. Anaerobic waste treatment processes[J]. Water Environment Research,2007,79(10):1430-1450.
    [17]Guo W Q, Ren N Q, Wang X J, et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor[J]. International Journal of Hydrogen Energy,2008,33: 4981-4988.
    [18]Lin CY, Jo CH. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process[J]. Journal of Chemical Technology and Biotechnology,2003,78(6):678-684.
    [19]Gallert C, Winter J. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester[J]. Bioresource Technology,2008,99: 170-178.
    [20]McHugh S, Collins C, OFlaherty V. Long-term, high-rate anaerobic biological treatment of whey wastewaters at psychrophilic temperatures[J]. Bioresource Technology,2005,97(14):1669-1678.
    [21]Calli B, Mertoglu B, Inanc B, et al. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia[J]. Environmental Technology,2005,26:85-91.
    [22]Wang J, Zhang Z, Zhang Z, et al. The influence of anaerobic sludge retention time on anaerobic co-digestion of dyeing and printing wastewater and sewage sludge [J]. African Journal of Biotechnology,2007,6 (7):902-907.
    [23]Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, et al. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature[J]. FEMS Microbiology Ecology,2001,38:153-159.
    [24]Ryan P, Forbes C, McHugh S, et al. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions[J]. Water Research,2010,44:4261-4269.
    [25]Teng SX, Tong ZH, Li WW, et al. Electricity generation from mixed volatile fatty acids using microbial fuel cells [J]. Applied Microbiology Biotechnology, 2010,87:2365-2372.
    [26]Elam CC, Padro CEG, Sandrock G, et al. Realizing the hydrogen future:the international energy agency's efforts to advance hydrogen energy technologies[J]. International Journal of Hydrogen Energy,2003,28:601-607.
    [27]Mu Y, Yu HQ, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge [J]. Enzyme and Microbial Technology,2007,40:947-953.
    [28]Baghchehsaraee B, Nakhla G, Karamanev D, et al. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures[J]. International Journal of Hydrogen Energy,2008,33:4064-4073.
    [29]Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen production process[J]. Applied Microbiology Biotechnology,2002,58: 224-228.
    [30]Mohan SV, Babu VL, Sarma PN. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate[J]. Bioresource Technology,2008,99:59-67.
    [31]Zhu H, Beland M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge[J]. International Journal of Hydrogen Energy,2006,31:1980-1988.
    [32]Hu B, Chen SL. Pretreatment of methanogenic granules for immobilized hydrogen fermentation[J]. International Journal of Hydrogen Energy,2007,32: 3266-3273.
    [33]Jiunn J L, Young J L, Tatsuya N. Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J]. Water Research,1999,33(11): 2579-2586.
    [34]APHA. Standard methods for examination of water and wastewater.19th ed. Washington, DC:American Public Health Association; 1995.
    [35]Koeher LH. Differentiation of carbohydrates by anthrone reaction rate and color intensity[J]. Analytical Chemistry,1952,24(1.0):1576-1579.
    [36]Lay JJ, Li YY, Noike T. Influence of pH and moisture content on the methane production in high-solids sludge digestion[J]. Water Research,1997,31(6): 1518-1524.
    [37]Zhou J, Bruns MA, Tiemdje JM. DNA recovery from soils of diverse composition[J]. Applied and Environment Microbiology,1996,62(2):316-322.
    [38]李友发,宋兵,宋亚娜,等.福建省稻田土壤细菌群落的16SrDNA-PCR-DGGE分析[J].微生物学通报,2008,35(11):1715-1720.
    [39]Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology,1990,215(3):403-410.
    [40]Castello E, Santos CG, Iglesias T, et al. Feasibility of biohydrogen production from cheese whey using a UASB reactor:Links between microbial community and reactor performance [J]. International Journal of Hydrogen Energy,2009,34: 5674-5682.
    [41]Juvonen R, Suihko ML. Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus [J]. International Journal of Systematic Evolutionary Microbiology,2006,56(4):695-702.
    [42]Chang JJ, Chou CH, Ho C Y, et al. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production[J]. International Journal of Hydrogen Energy,2008,33:5137-5146.
    [43]Ueno Y, Haruta S, Ishii M, et al. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost[J]. Applied and Environmental Microbiology,2001,57:555-562.
    [44]Akutsu Y, Li YY, Tandukar M, et al. Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch[J]. International Journal of Hydrogen Energy,2008,33: 6541-6548.
    [45]Ho KL, Chen YY, Lee DJ. Biohydrogen production from cellobiose in phenol and cresol-containing medium using Clostridium sp. R1[J]. International Journal of Hydrogen Energy,2010,10239-10244
    [46]Wang XH, Zhang K, Ren NQ, et al. Monitoring microbial community structure and succession of an A/O SBR during start-up period using PCR-DGGE[J]. Journal of Environmental Science,2009,21:223-228.
    [47]Hiroshi Y, Miyoko W, Akifumi O, et al. Hydrogen Fermentation Properties of Undiluted Cow Dung[J]. Journal of Bioscience and Bioengineering, 2007,104(1):82-85.
    [48]Tara J P, Julia MF, Karen B. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures[J]. International Journal of Coal Geology,2010,82:81-93.
    [49]秦炜,王升,梅帆,等.苯甲酸生产废水的处理与资源化[J].环境科学,2004,25(4):78-81.
    [50]李振宇,秦炜,黄焱,等.溶剂萃取法对苯甲酸废水预处理的研究[J].环境科学,2001,22(5):79-82.
    [51]Parsek MR, Shinabarger L, Rothmel RK, et al. Roles of catR and cis, cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida[J]. Journal of Bacteriology,1992,174: 7798-7806.
    [52]Neidle EL, Hartnett C, Ornston LN, et al. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases[J]. Journal of Bacteriology,1991,173:5385-5395.
    [53]张丽,朱晓东,张燕峰,等.微博强化Fenton氧化处理邻氨基苯甲酸废水[J].环境科学研究,2009,5:516-520.
    [54]Harry M, Pylypiw JR, Maureen T, et al. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods[J]. Journal of Chromatography A,2000,883:299-304.
    [55]Han K, Levenspiel O. Extended monod kinetics for substrate, product, and cell inhibition[J]. Biotechnology and Bioengineering,1988,32(4):430-437..
    [56]石先阳,孙庆业.苯酚的厌氧生物处理动力学[J].环境工程学报,2009,3(8):1409-1413.
    [57]Xu KW, Liu H, Du GC, et al. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments[J]. Anaerobe,2009,15(5):204-213.
    [58]Batstone DJ, Picioreanu C, et al. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms[J]. Water Research,2006, 40(16):3099-3108.
    [59]De Book FAM, Plugge CM, Stams AJM. Interspecies electron transfer in methanogenic propionate degrading consortia[J]. Water Research,2004,38: 1368-1375.
    [60]李艳娜,许科伟,堵国城,等.厌氧生境体系中产氢产乙酸细菌的FISH定量解析[J].微生物学报,2007,47(6):1038-1043.
    [61]彭剑锋,宋永会,刘然,等.厌氧污泥颗粒化中微生态形成过程表征[J].环境科学,2011,32(7):2013-2018.
    [62]Harmsen HJM, Akkermans ADL, Stams AJM, et al. Population Dynamics of Propionate-Oxidizing Bacteria under Methanogenic and Sul(?)ogenic Conditions in Anaerobic Granular Sludge[J]. Applied and Environmental Microbiology,1996,62(6):2163-2168.
    [63]Hansen KH, Ahring BK, Raskin L. Quantification of Syntrophic Fatty Acid-(3-Oxidizing Bacteria in a mesophilic Biogas Reactor by oligonucleotide probe hybridization[J]. Applied and Environmental Microbiology,1999,65(11): 4767-4774.
    [64]沈耀良.废水生物处理新技术[M].第一版.北京:中国环境科学出版社,1999.
    [65]韩青青.常温条件下UASB反应器对苯酚的降解研究.湖南大学硕士学位论文.2006.
    [66]马俊科,刘春,吴根,等.工业化UASB厌氧颗粒污泥产氢产乙酸菌群分析[J].浙江大学学报,2011,45(3):576-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700