阿特拉津生物强化处理及土著降解细菌定向进化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以阿特拉津为目标污染物,通过实验室小试MBR和CAS反应器的运行,考察了MBR和CAS反应器中基因工程菌生物强化对阿特拉津去除效果以及常规污染物处理能力的影响;通过FISH技术分析了阿特拉津降解基因atzA基因在基因工程菌和土著菌株之间的转移情况;并通过PCR-DGGE分析了反应器不同运行阶段污泥微生物群落的变化。
     结果表明,基因工程菌生物强化实现了阿特拉津的高效生物去除,MBR和CAS阿特拉津平均去除率分别可高达88.6%和85.3%。阿特拉津生物强化去除有助于反应器保持较高的污泥生物活性。阿特拉津对常规污染物COD和氨氮的生物去除活性具有一定的抑制作用;基因工程菌生物强化后,COD及氨氮的去除效率得到恢复。在MBR和CAS反应器中,COD去除效率分别可高达96.0%和91.5%,氨氮去除效率分别可高达98.6%和95.7%。MBR对污染物的去除性能优于CAS。接种基因工程菌后,MBR和CAS反应器中基因工程菌密度快速下降后,逐渐保持稳定,稳定细胞密度分别为2.1×10~3CFU/mL和1.7×103CFU/mL。atzA基因平均相对丰度先减小而后增加,说明经过长期适应,atzA基因不仅存在于基因工程菌中,也转移至土著细菌细胞中。MBR和CAS反应器不同运行阶段污泥微生物群落具有一定差异。阿特拉津的存在降低污泥微生物群落的种群多样性和稳定性,而阿特拉津生物强化去除使得污泥微生物群落的种群多样性和稳定性有所恢复。MBR对于保持污泥微生物群落的种群多样性和稳定性具有一定的工艺优势。
Atrazine and conventional pollutants removal bioaugmented by genetically engineered microorganism (GEM) were investigated in this study in both membrane bioreactor (MBR) and conventional activated sludge reactor (CAS). Fluorescence in situ hybridization (FISH) was used to analyze the transfer of atzA gene between GEM and indigenous strains. The polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) were used to analyze the microbial community variation of both reactors in different running stages.
     The results indicated that high removal efficiency of atrazine was obtained in both bioreactors bioaugmented by GEM. The average removal efficiencies of atrazine in MBR and CAS bioreactors reached up to 88.6% and 85.3%, respectively. Atrazine removal bioaugmented by GEM would be helpful to maintain high sludge bioactivity in both bioreactors. The removal activities of COD and ammonia nitrogen were inhibited a little by atrazine and recovered after bioaugmentation by inoculated GEM. In MBR and CAS bioreactors, the removal efficiencies of COD reached up to 96.0% and 91.5% respectively and the removal efficiencies of ammonia nitrogen reached up to 98.6% and 95.7%, respectively. The performance of MBR was better than CAS.
     The GEM density decreased quickly in both bioreactors after GEM inoculation and then became stable. The stable GEM densities in MBR and CAS were 2.1×10~3 CFU/mL and 1.7×103 CFU/mL, respectively. The average relative abundances of atzA gene decreased initially and increased subsequently, indicating that the atzA gene transferred into the indigenous strains after a long-term adaptation. Microbial community varied in different running stages of two bioreactors. The biodiversity and stability of microbial community decreased in the presence of atrazine and recovered after efficient atrazine removal was realized. MBR was better than CAS to maintain biodiversity and stability of microbial community.
引文
[1]中国化工产品大全(下卷):除草剂(第一版).北京:化学工业出版社, 1994
    [2] B. GRUESSNER. Patters of Herbicide Contamination in Selected Vermont Stream Detected by Enzyme Immunoassay and Gas Chromatography/mass Spectrometry. Environmental Science and Technology, 1995, 29: 2806-2813
    [3]李清波,黄国宏,王颜红,等.阿特拉津生态风险及其检测和修复技术研究进展.应用生态学报, 2002, 13(5): 625-628
    [4]弓爱君,叶常明.除草剂阿特拉津(Atrazine)的环境行为综述.环境科学发展, 1997, 5(2): 37-47
    [5]孟顺龙,胡庚东,瞿建宏,等.阿特拉津在水环境中的残留及其毒理效应研究进展.环境污染与防治, 2009,31(6): 64-68
    [6]王英.除草剂阿特拉津的生物降解研究现状.中学生物学, 2007, 23(7), 7-8
    [7]万年升,顾继东,段舜山.阿特拉津生态度向与生物降解的研究.环境科学学报, 2006, 26(4): 552-560
    [8]乔雄梧,马利平, H. E.HUMMEL,等.阿特拉津在土壤中的降解途径及其对持留性的影响.农村生态环境, 1995, 11(4): 5-8
    [9]王辉,赵春燕,李宝明,等.微生物降解阿特拉津的研究进展.土壤通报, 2005, 36(5): 791-794
    [10]董春香,姜桂兰.除草剂阿特拉津生物降解研究进展.环境污染治理技术与设备, 2001, 2(3): 1-6
    [11]刘春,黄霞,王慧.基因工程菌对阿特拉津的生物转化及其影响因素.微生物学通报, 2007,34(1): 10-14
    [12]梁立伟,赵兴龙,林李娟.生物强化技术在污水处理中的应用.油气田环境保护, 2006,16(4): 1-3
    [13] N. C. MECLURE, A. J. WEIGHTMAN, J. C. FRY. Survival of Pseudomonas Putida UWC1 Containing Cloned Catabolic Genes in a Model Activated Sludge Unit. Applied and Environmental Microbiology, 1989, 55: 2627-2634
    [14] M. FUJITA, M. IKE, T. KAMIYA. Accelerated Phenol Removal by Amplifying the Gene Expression with a Recombinant Plasmid Encoding Catechol-2,3-oxygenase. Water Research, 1993, 27(1): 9-13
    [15] M. FUJITA, M. IKE, S.HASHIMOTO. Feasibility of Wastewater Treatment Using Genetically Engineered Microorganisms. Water Research, 1991, 25(8): 979-984
    [16] D. B. JAMES, R. S. ROBERT. Retention and Expression of Recombinant Plasmids in Suspended and Biofilm Bound Bacteria Degrading Trichloroethene(TCE). Water Science and Technology, 1997, 36(10): 1-8
    [17] R. W. ERB, C. A. EICHNER, D. I. WAGNER, et al. Bioprotection of Microbial Communities from Toxic Phenol Mixtures by a Genetically Designed Pseudomonas. Nature Biotechnology, 1997, 15(4): 378-382
    [18] S. SODA, M. IKE, M. FUJITA. Effects of Inoculation of a Genetically Engineered Bacterium on Performance and Indigenous Bacteria of a Sequencing Batch Activated Sludge Process Treating Phenol. Fermentation and Bioengineering, 1998, 86(1): 90-96
    [19] C. A. EICHNER, R. W. ERB, K. N. TIMMIS, et al. Thermal Gradient Gel Electrophoresis Analysis of Bioprotection from Pollutant Shocks in the Activated Sludge Microbial Community. Applied and Environmental Microbiology, 1999, 65(1): 102-109
    [20] B. NICO, M. T. EVA, V. WIILY, et al. Bioaugmentation as a Tool to Protect the Structure and Function of an Activated Sludge Microbial Community against a 3-chloroaniline Shock Load. Applied and Environmental Microbiology, 2003 , 69(3): 1511-1520
    [21]王艳芬,王海磊,刘国生.序批式反应器生物强化处理苯酚废水的研究.环境污染与防治, 2008, 30(5): 42-46
    [22]丁华,金若菲,周集体.基因工程菌在厌氧膜生物反应器中对偶氮染料废水的脱色.环境工程学报, 2007, 1(3): 26-29
    [23]刘春.基因工程菌生物强化膜-生物反应器去除阿特拉津研究[清华大学工学博士论文], 2006
    [24] D. A. FRIELLO, J. R. MYLROIE, A. M. CHAKRABARTY. Use of Genetically Engineered Multi-plasmids Microorganisms for Rapid Degradation of Fuel Hydrocarbons. International Biodeterioration and Biodegradation, 2001, 48: 233-242
    [25] S. BATHE. Conjugal Transfer of Plasmid pNB2 to Activated Sludge Bacteria Leads to 3-chloroaniline Degradation in Enrichment Cultures. Letters in Applied Microbiology, 2004, 38: 527-531
    [26] S. L. CHEN, D. B. WILSON. Construction and Characterization of Escherichia Coli Genetically Engineered for Bioremediation of Hg2+-contaminated Environments. Applied and Environmental Microbiology, 1997, 63: 2442-2445
    [27] R. KRISHNASWAWY, D. B. WILSON. Construction and Characterization of an Escherichia Coli Strain Genetically Engineered for Ni (Ⅱ) Bioaccumulation. Applied and Environmental Microbiology, 2000, 66: 5383-5386
    [28] X. DENG, D. B. WILSON. Bioaccumulation of Mercury from Wastewater by Genetically Engineered Escherichia Coli. Applied and Microbiological Biotechnology, 2001, 56: 276-279
    [29] T. UEKI, Y. SAKAMOTO, N. YAMAGUCHI, et al. Bioaccumulation of Copper Ions byEscherichia Coli Expressing Vanabin Genes from the Vanadium-rich Ascidian Ascidia Sydneiensis Samea. Applied and Environmental Microbiology, 2003, 69: 6442-6446
    [30]闫艳春,乔传令,周晓涛.一种工程菌的高酶活及其固定化细胞对农药的降解.中国环境科学, 1999, 19(5): 461-465
    [31] S. BATHE, N. SCHWARZENBECK, M. HAUSNER. Plasmid-mediated Bioaugmentation of Activated Sludge Bacteria in a Sequencing Batch Moving Bed Reactor Using pNB2. Letters in Applied Microbiology, 2005, 41: 242-247
    [32] I. P. THOMPSON, C. J. VAN DER GAST, L. CORIC, et al. Bioaugmentation for Bioremediation: the Challenge of Strain Selection. Environmental Microbiology, 2005, 7(7): 909-915
    [33] T. J. GENTRY, C. RENSING, I. L. PEPPER. New Approaches for Bioaugmentation as a Remediation Technology. Critical Reviews in Environmental Science and Technology, 2004, 34: 447-494
    [34] J. DAVISON. Genetic Exchange between Bacteria in the Environment. Plasmid, 1999, 42: 73-91
    [35] K. SMALLA, P. A. SOBECKY. The Prevalence and Diversity of Mobile Genetic Elements in Bacterial Communities of Different Environmental Habitats: Insights Gained from Different Methodological Approaches. FEMS Microbiology Ecology, 2002, 42: 165-175
    [36] J. D. VAN ELSAS, M. J. BAILEY. The Ecology of Transfer of Mobile Genetic Elements. FEMS Microbiology Ecology, 2002, 42: 187-197
    [37] C. RENSING, D. T. NEWBY, I. L. PEPPER. The Role of Selective Pressure and Selfish DNA in Horizontal Gene Transfer and Soil Microbial Community Adaptation. Soil Biology and Biochemistry, 2002, 34: 285-296
    [38] M. L. DE SOUZA, J. SEFFERNICK, B. MARTINEZ, et al. The Atrazine Catabolism Genes AtzABC are Widespread and Highly Conserved. Journal of Bacteriology, 1998, 180: 1951-1954
    [39] C. BARBERIO, L PAGLIAI, D CAVALIERI, et al. Biodiversity and Horizontal Gene Transfer in Culturable Bacteria Isolated from Activated Sludge Enriched in Nonylphenol Ethoxylates. Research in Microbiology, 2001, 152: 105-112
    [40] J. A. J. HAAGENSEN, S. K. HANSEN, T. JOHANSEN, et al. In Situ Detection of Horizontal Transfer of Mobile Genetic Elements. FEMS Microbiology Ecology, 2002, 42: 261-268
    [41] K. E. HILL, A. J. WEIGHTMAN. Horizontal Transfer of Dehalogenase Genes on IncP1L Plasmids during Bacterial Adaptation to Degrade K-halocarboxylic Acids. FEMS Microbiology Ecology, 2003, 45: 273-282
    [42] E. M. TOP, D. SPRINGAEL. The Role of Mobile Genetic Elements in Bacterial Adaptation to Xenobiotic Organic Compounds. Current Opinion in Biotechnology, 2003, 14: 262-269
    [43]董玉玮.荧光原位杂交技术研究现状.科技资讯, 2008, 32: 6-8
    [44]李华芝,李秀艳,徐亚同.荧光原位杂交技术在微生物群落结构研究中的应用.净水技术, 2006, 25(1): 16-20
    [45]孙寓姣,王勇,黄霞.荧光原位杂交技术在环境微生物生态学解析中的应用研究.环境污染治理技术与设备, 2004, 5(11), 14-20
    [46]马俊科.工业化UASB处理阿维菌素废水厌氧颗粒污泥功能菌群研究[河北科技大学工学硕士论文], 2010
    [47] J. L. STEPHENS, S. E. BROWN, N. L. V. LAPITAN, et al. Physical Mapping of Barley Genes Using an Ultrasensitive Fluorescence in Situ Hybridization Technique. Genome, 2004, 47: 179-189
    [48]陈成忠,于洪芹.荧光原位杂交技术及其应用.生物学教学, 2007, 1: 2-3
    [49]郭玉莲. PCR技术的原理及其应用. Intelligence, 2008, 18: 230
    [50]李怀,关卫省,欧阳二明,等. DGGE技术及其在环境微生物中的应用.环境科学与管理, 2008, 33(10), 93-99
    [51]徐敏娟,王志跃.变性梯度凝胶电泳及其在微生态领域应用的研究进展.家畜生态学报, 2008, 29(6): 147-150
    [52] T. ZHANG, H. P. FANG. Digitization of DGGE (Denaturant Gradient Gel Electrophoresis) Profile and Cluster Analysis of Microbial Communities. Biotechnology Letters, 2000, 22: 399-405
    [53] G. MUYZER, E. C. WAAL, A. G.UITTERLINDEN. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction Amplified Genes Encoding for 16SrRNA. Applied and Environmental Microbiology, 1993, 59: 695-700
    [54] M. A. TANNER, B. M. GOEBEL, M. A. DOJKA, et al. Specific Ribosomal DNA Sequence from Diverse Environmental Settings Correlate with Experimental Contaminant. Applied and Environmental Microbiology, 1998, 8: 3110-3113
    [55] M. KEYSER, R. C. WITTHUHN, C. LAMPRECHT, et al. PCR-based DGGE Fingerprinting and Identification of Methanogens Detected in three Different Types of UASB Granules. Systematic and Applied Microbiology, 2006, 29: 77-84
    [56]梁慧珍,崔丽华,张春辉,等. PCR-DGGE技术及其在食品行业中的应用.酿酒科技, 2008, 10: 89-91
    [57]刘琳,刘洋,宋未. PCR-DGGE技术及其在植物微生态研究中的应用.生物技术通报, 2009, 3: 54-56
    [58]张苏.工业化抗生素废水处理厌氧颗粒污泥种群分析研究[河北科技大学工学硕士论文], 2009
    [59]包建龙.活性污泥法污水处理厂的运转管理.中国环境科学出版社, 1992
    [60] K. H. AHN, J. H. SONG, H. Y. CHA. Application of Tubular Ceramic Membranes for Reuse of Wastewater from Buildings. Water Science and Technology, 1998, 38(4): 373-382
    [61] B. GUNDER, K. KRAUTH. Replacement of Secondary Clarification by Membrane Separate on Results with Plate and Hollow Fibermodules. Water Science and Technology. 1998, 38(4/5): 383-393
    [62] W. GHYOOT, D SPRINGAEL, Q DONG. Bioaugmentation with the clc-element carrying Pseudomonas putida BN210 in a membrane separation bioreactor. Water Science and Technology, 2000(41): 279-286
    [63]王盛勇,孙宝盛,田鹏飞.在线超声清洗对膜生物反应器污泥混合液特性的影响.环境工程, 2009, 29(9): 44-47
    [64] S. C. LISA, M. T. HUGH, S. J. MICHAEL, et al. Field-scale Remediation of Atrazine-contaminated Soil using Recombinant Escherichia Coli Expressing Atrazine Chlorohydrolase. Environmental Microbiology, 2000, 2(1): 91-98
    [65] X. HUANG, R. LIU, Y. QIAN. Behavior of Soluble Microbial Products in a Membrane Bioreactor. Process Biochemistry, 2000, 36: 401-406
    [66] D. MARION, S. GUY, M. L. FABRICE. Real-time Reverse Transcription PCR Analysis of Expression of Atrazine Catabolism Genes in two Bacterial Strains Isolated from Soil. Journal of Microbiological Methods, 2004(56): 3-15
    [67]张苏,刘春,杨景亮,等.工业化废水处理反应器污泥总DNA提取方法.微生物学通报, 2008, 35(10): 1659-1663
    [68]欧阳科,刘俊新.膜生物反应器与传统活性污泥反应器内生物群落特征.环境科学, 2009, 34(2): 499-503
    [69]郭渊明,刘春,郭亚楠,等.不同生物反应器中基因工程菌生物强化处理阿特拉津研究.环境科学, 2011, 32(2): 554-559
    [70]石晶.活性污泥生物相的作用.辽宁化工, 2008, 37(12): 829-830
    [71]任琳.沉降比与污泥浓度及污泥指数的关系分析.山西建筑, 2008, 34(35): 200-201
    [72]宋志伟,杨帆,赵楠楠.污泥浓度对膜生物反应器的影响.黑龙江科技学院学报, 2006, 16(4), 209-212
    [73]管位农,朱晓玫.活性污泥沉降性能的改善.石油技术与应用, 2000, 18(3), 182-184
    [74]刑传宏,钱易.超滤膜-生物反应器处理生活污水及其水力学学研究.环境科学, 1997, 18(5): 19-22
    [75] C. CHIEMCHAISRI, K. YAMAMOTO, S VIGNESWARAN. Household Membrane Bioreactor in Domestic Wastewater Treatment. Water Science and Technology, 1993, 27(1): 171-178
    [76] L. VAN DIJK, G. C. G. RONCKEN. Membrane Bioreactors for Wastewater Treatment: the State of the Art and New Developments. Water Science and Technology, 1997, 35(10): 35-41
    [77]邢传宏, E TARDIEU,钱易.无机膜-生物反应器处理生活污水试验研究.环境科学, 1997, 18(3): 1-4
    [78]顾志明,赵军,王连军.一体式膜生物反应器膜污染研究.水处理技术, 2005, 31(11): 43-45
    [79]蒋波,王丽萍,华素兰,等. MBR膜污染形成机理及控制.环境科学与管理, 2006, 31(1): 110-112
    [80]刘春,黄霞,孙炜,等.基因工程菌生物强化MBR工艺处理阿特拉津试验研究.环境科学, 2007, 28(2), 417-421
    [81] C. LIU, X. HUANG. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism. Frontiers of Environmental Science and Engineering in China, 2008, 2(4): 452-460
    [82] C. LIU, J. L. YANG, S. ZHANG, et al. Bacterial Diversity Comparison of Anaerobic Sludge from Fullscale Wastewater Treatment Bioreactors. Journal of Biotechnology, 2008, 136:S610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700