种植体-基台连接结构的有限元分析及计算机研磨基台的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管种植义齿在临床使用中取得了很高的成功率,但是,早期和晚期失败的情况仍然不可避免。主要原因是由于应力集中导致种植义齿的过度负荷或感染引起。种植体系统无论从选择还是设计上,都应具备良好的生物力学特性,从而保障种植修复的远期成功率。种植体的形态、种植体长度、种植体/基台连接形式、上部结构的设计、材料的选择等诸多因素均会影响应力的分布。其中种植系统的选择是首先需要考虑,也是临床上比较容易控制的。
     目前,国内外市场上种植体系统种类繁多,各系统之间最大区别在于种植体-基台连接结构的不同,分析临床常用的不同种植体-基台连接结构在种植体周围骨组织的应力分布,揭示各种连接方式对种植体及周围骨组织的力学影响,从中寻找出最佳结构的基台与种植体的连接方式,对提高种植义齿的临床成功率有重要意义。已有文献对种植义齿结构生物力学传递特性的研究多为离散的或单因素的比较分析,对临床选择并不具有充分的指导意义。
     本研究采用有限元方法对国际市场上使用最广泛、较典型的七种种植体-基台连接方式进行分析比较,为临床医师提供选择参考;同时使用CAD/CAM技术自主设计开发国产种植体系统的计算机研磨基台,改善国产种植体系统种植体-基台连接的稳定性,实现个性化美学修复的目的,并采用有限元方法分析比较传统角度基台和计算机研磨基台应力分布差异,为国产种植义齿的设计及改进提供理论与实验依据。
     实验一基于逆向工程的种植体系统精确建模
     实物种植体的数字化建模是种植系统有限元分析的重要基础。本研究综合利用三维光栅投影光学测量种植体曲面数据与平面影像测量细节特征相结合的方法,有效获取种植体点云数据。采用基于点云数据的数据处理、区域分析、特征拟合、形态建模的方法,完成七种典型种植体系统实物的精确建模。
     实验二种植体-基台连接结构的有限元分析
     运用ABAQUS软件对已建好的七种国际著名种植体系统种植体-基台连接结构进行有限元分析,对不同连接方式的种植体-基台模型施加相同的实验条件,得到五种垂直、五种水平、五种周期载荷下,七种连接方式的种植体-基台界面的应力分布情况。得出如下结论
     1.莫氏锥度连接种植体系统种植体-基台连接处应力集中,但基台螺丝应力很小。
     2.莫氏锥度式平台转移种植体系统(Ankylos)种植体及基台应力水平高于双六角12边式平台转移种植体系统(3i)。
     3.外六角连接紧固螺丝应力集中,易折断。内六角内圆锥混合式紧固螺丝连接应力水平较内八角、内三瓣、内六角低。
     4.内三瓣式连接种植体凹陷处及基台的三个凸轮处应力集中。
     5.水平载荷作用下种植体-基台连接各部件的应力显著增大,应尽量减少种植义齿的水平载荷。
     实验三种植体-基台整体在齿槽骨内的有限元应力分析
     建立了七种不同结构的种植体系统骨模型,施加递增的五种垂直载荷、五种水平载荷、五种周期性载荷,使用ABAQUS软件进行有限元分析,得到七种不同连接方式的种植体-基台整体在颌骨中的应力分布情况,进行比较分析,得
     出如下结论:
     1.非轴向载荷对种植体周围骨组织应力分布影响显著。
     2. Anklos,3i种植体系统可以减低种植体周围骨组织的应力集中,有利于种植体周围支持骨的保存,延长种植体的使用寿命。
     3. Bego内六角内圆锥混合式结构优于外六角、内三瓣、内六角及内八角结构。
     实验四计算机研磨基台数字化设计研究
     采用数字化设计技术,测量获取患者的愈合基台数字模型,基于特征匹配技术定位种植体,通过提取患者邻牙、牙龈等形态特征,对基台的颈缘、角度、肩台进行个性化设计,完成一例患者的计算机研磨基台的设计过程。实验五计算机研磨基台和传统基台的有限元研究
     通过有限元法分析比较计算机研磨基台和常规20°角度基台的应力分布差异,发现计算机研磨基台应力均匀分布,能较好地抵抗侧向力和剪切力。
     综上所述,本研究在逆向工程精确建模的基础上,使用ABAQUS有限元分析软件,对国际上常用的七种典型种植体系统在15种载荷条件下进行分析比较,揭示各种连接方式对种植体及周围骨组织的力学影响,评判不同结构的优劣,为使用者提供选择参考。同时自主研发设计国产种植体系统的计算机研磨基台,改善国产种植体-基台连接稳定性,实现种植义齿个性化的美学修复。
Given the high success rate of implant denture in clinical application, early and late failure is still unavoidable in some cases. The main causes can be attributed to excessive loading or infection resulted from concentration of stress. The implant system should be selected and designed to have good biomechanical properties, so as to ensure the long-term success rate of implant restorations. The stress distribution is subject to a number of factors, such as the implant shape and length, the implant/abutment connection types, the design of superstructure and the selection of materials. Among them, the selection of implant system should be taken into primary consideration, and is also relatively easy to be controlled clinically.
     At present, there are many implant systems on both domestic and overseas markets, and the greatest difference between them lies in the implant - abutment connection structures. It is of great significance to a higher clinical success rate of implant denture to analyze the stress distribution of different implant-abutment connection structures commonly used clinically in the bone tissues around the implant and to reveal the mechanical effect of different connection designs on the implant and the surrounding bone tissues, so as to find the optimum structure for abutment and implant connection forms. In the available literature, researches on the biomechanical transfer characteristics of implant denture structure are mostly of comparison and analysis of discrete or individual factors, and these results cannot provide full guide in the clinical selection.
     Experiment 1: Digital modeling for implant-abutment structures based on reverse engineering
     Digital modeling for physical implants is an important basis for the FEM analysis of the implant systems. In this chapter, the point cloud data of the implants is obtained by an integrated method, which combines. the optical measurement of implant profile data by 3D optical grating projection with the plane-image measurement of characteristic details. Digital modeling for the seven typical physical implant systems is accomplished by using the method of data processing, region analysis, feature fitting and shape modeling based on the point cloud data.
     Experiment 2: FE stress analysis of implant-abutment connection types
     The ABAQUS was used to perform FE analysis of the models of the implant-abutment connection structures of the seven internationally known implant systems. Identical experiment conditions were applied for the implant-abutment models of different connections, to obtain the stress distribution at the implant-abutment interfaces of the seven models under five vertical loads, five horizontal loads and five cyclic loads. The following conclusions have been obtained:
     1. In the implant system with Morse taper connection, the stress is concentrated at the implant-abutment structure, but the stress on the abutment screw is very small.
     2. The stress level of the implant-abutment in the implant system with Morse taper platform transfer is higher than that of the implant system with dual-hexagon 12-side platform transfer.
     3. The fixation screw in an outer hexagon connection is subject to concentrated stress and is therefore likely to break. The stress level of mixed inner hexagon inner cone fixation screw is lower than that of the inner octagon, inner trivalve and inner hexagon types.
     4. Stress is concentrated at the implant recess and three cams of the abutment in the inner trivalve connection.
     5. Under the action of horizontal load, the stress in components of implant-abutment connection increases substantially, therefore the horizontal load to an implanted denture should be minimized. Experiment 3: FE stress analysis of implant-abutment assemblies in the alveolar bone
     Implant-bone models were established for seven different structures, and five vertical loads, five horizontal loads and five cyclic loads were applied in incremental magnitude. The ABAQUS software was used for FE analysis, to obtain the stress distribution of implant-abutment assemblies of seven different connections in the jaw bone. The following conclusions have been obtained after comparison and analysis:
     1. The non-axial loads produce significant effect on the stress distribution in the one tissues around the implant.
     2. The Anklos and 3i implant systems can reduce the stress concentration in the bone tissues around the implant, favoring the conservation of supporting bone around the implant and extending the service life of the implant.
     3. The Bego mixed inner hexagon and inner cone structure is superior to outer hexagon, inner trivalve, inner hexagon and inner octagon structures.
     Experiment 4: Digital design and experiment analysis for personalized abutment.The digital design technology was applied to measure and obtain the curing digital model of a patient. The implant was positioned based on the feature matching technique. The personalized design of the abutment neck edge, angle and shoulder of the patient are implemented by extracting the morphological characteristics of the corresponding adjacent teeth and gingiva. Finally, the CAD design process is completed for the personalized abutment of a patient.
     Experiment 5:Finite element study of Computer-milled abutment and custom abutment Finite element method was used to compare of difference in computer-milled abtment and custom abutment with 20°angle. The result showed that computer-milled abutment stress uniformly distributed and that can better resist the lateral force and the horizontal load
     In summary, with this research, analysis and comparison was performed for seven typical implant systems in common use internationally under 15 loading conditions, on the basis of reverse engineering and precise modeling and using the powerful ABAQUS FE analysis software, to reveal the mechanical effect of different connection forms on the implant and its surrounding bone tissues and evaluate the advantages and disadvantages of different structures, so as to provide reference for selection by users. In the meantime, a personalized abutment for the China-made implant system has been developed and designed by our own, to enable improving the stability of the China-made implant-abutment connection and realize personalized aesthetic repair of implant denture.
引文
[1] Tang CB, Ma JM, Tong X, Ding C, Li L. [A clinical evaluation of implant dentures over 10 years]. Shanghai Kou Qiang Yi Xue, 2007, 16(5):470-474.
    [2] Lin Y, Li JH, Qiu LX, Di P, Hu XL, Wang X. [A clinical retrospective study of 10 years implant results]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2006, 41(3):131-135.
    [3] Telleman G, Meijer HJ, Raghoebar GM. Long-term evaluation of hollow screw and hollow cylinder dental implants: clinical and radiographic results after 10 years. J Periodontol, 2006, 77(2):203-210.
    [4] Lambrecht JT, Filippi A, Kunzel AR, Schiel HJ. Long-term evaluation of submerged and nonsubmerged ITI solid-screw titanium implants: a 10-year life table analysis of 468 implants. Int J Oral Maxillofac Implants, 2003, 18(6):826-834.
    [5] Jemt T. Single implants in the anterior maxilla after 15 years of follow-up: comparison with central implants in the edentulous maxilla. Int J Prosthodont, 2008, 21(5):400-408.
    [6] Carbone M, Goss E, Borione M, Bava L, Broccoletti R, Carrozzo M, Gandolfo S. Implant supported prostheses with Bone System implant system: a retrospective study with follow-up period up to 13-years about 1021 fixtures. Minerva Stomatol, 2007, 56(10):481-495.
    [7] Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant- supported single crowns. Clin Oral Implants Res, 2008, 19(2):119-130.
    [8] Esposito M, Grusovin MG, Coulthard P, Worthington HV. Interventions for replacing missing teeth: treatment of perimplantitis. Cochrane Database Syst Rev, 2006, 3CD004970.
    [9] Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants, 2000, 15(1):76-94.
    [10]董玉英,董福生.人工种植牙生物力学研究进展.中国口腔种植学杂志,1999, 4(1):39-42.
    [11]李湘霞,韩科.关于牙种植体的有限元研究进展.现代口腔医学杂志, 1999, 13(4):295-297.
    [12]王宗箎,谢培庆,庄国铭,赖森财.仿生种植牙三维有限元模型的建立.山东大学学报(医学版), 2006, 44(1):77-81.
    [13]魏斌.牙颌系统三维有限元建模方法的进展.口腔材料器械杂志, 2002, 11(2):86-87.
    [14]兰红波丁洪,卢秉恒.基于层切法可重构反求测量系统的研究.计算机集成制造系统, 2007, 13(6):110-114.
    [15]黄魁东,张定华,王凯,毛海鹏.基于锥束CT切片图像的复杂零件三维表面重构.中国机械工程, 2006, 17(21).
    [16]樊文有,卢军,曹斌,王人鹏,潘可风.含牙种植体下颌骨三维有限元模型的建立.口腔颌面外科杂志, 2005, 15(1):29-32.
    [17]钱茹,汤春波,卢熹.种植义齿部件有限元建模及试验研究.《南京医科大学学报》自然科学版, 2008, 28(11):1441-1444.
    [18] Rieger MR, Mayberry M, Brose MO. Finite element analysis of six endosseous implants. J Prosthet Dent, 1990, 63(6):671-676.
    [19] Rieger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J Prosthet Dent, 1990, 63(4):457-465.
    [20] Teixeira ER, Sato Y, Akagawa Y, Shindoi N. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil, 1998, 25(4):299-303.
    [21] Pierrisnard L, Hure G, Barquins M, Chappard D. Two dental implants designed for immediate loading: a finite element analysis. Int J Oral Maxillofac Implants, 2002, 17(3):353-362.
    [22] Akca K, Iplikcioglu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants, 2001, 16(5):722-730.
    [23] Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G. Tooth-implantconnection: some biomechanical aspects based on finite element analyses. Clin Oral Implants Res, 2002, 13(3):334-341.
    [24] Hart RT, Hennebel VV, Thongpreda N, Van Buskirk WC, Anderson RC. Modeling the biomechanics of the mandible: a three-dimensional finite element study. J Biomech, 1992, 25(3):261-286.
    [25] Juodzbalys G, Kubilius R, Eidukynas V, Raustia AM. Stress distribution in bone: single-unit implant prostheses veneered with porcelain or a new composite material. Implant Dent, 2005, 14(2):166-175.
    [26]沈山,张国志.加载方向对种植体骨界面上应力分布的影响.暨南大学学报(医学版), 2004, 25(2):198- 201.
    [27] Piermatti J, Yousef H, Luke A, Mahevich R, Weiner S. An in vitro analysis of implant screw torque loss with external hex and internal connection implant systems. Implant Dent, 2006, 15(4):427-435.
    [28] Vela-Nebot X, Rodriguez-Ciurana X, Rodado-Alonso C, Segala-Torres M. Benefits of an implant platform modification technique to reduce crestal bone resorption. Implant Dent, 2006, 15(3):313-320.
    [29] Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants, 2000, 15(4):519-526.
    [30] Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants, 2006, 21(2):195-202.
    [31] Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res, 2004, 15(4):401-412.
    [32] Stegaroiu R, Yamada H, Kusakari H, Miyakawa O. Retention and failure mode after cyclic loading in two post and core systems. J Prosthet Dent, 1996, 75(5):506-511.
    [33] Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensionalFEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol, 1990, 16(1):6-11.
    [34] Kitoh M, Matsuhsita Y, Yamaue S, Ikeda H, Suetsugu T. The stress distribution of the hydroxyapatite implant under the vertical load by the two-dimensional finite element method. J Oral Implantol, 1988, 14(1):65-71.
    [35] Meijer HJ, Starmans FJ, Bosman F, Steen WH. A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehabil, 1993, 20(2):147-157.
    [36] Zhang JK CZ. The study of effect of changes of the elastic modulus of the materials substitute to human hard tissue on the mechanical state in the implant-bone interface by three-dimensionalan isotropic finite element analysis. West China J S tomatol, 1998, 16:274-278.
    [37] Kitagawa T, Tanimoto Y, Odaki M, Nemoto K, Aida M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. J Biomed Mater Res B Appl Biomater, 2005, 75(2):457-463.
    [38] O'Mahony A, Bowles Q, Woolsey G, Robinson SJ, Spencer P. Stress distribution in the single-unit osseointegrated dental implant: finite element analyses of axial and off-axial loading. Implant Dent, 2000, 9(3):207-218.
    [39] Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2007, 22(2):301-309.
    [40] Watanabe F, Hata Y, Komatsu S, Ramos TC, Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution. Odontology, 2003, 91(1):31-36.
    [41] Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin, 2006, 9(4):257-270.
    [42] Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral MaxillofacImplants, 2003, 18(3):357-368.
    [43] Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech, 1993, 26(2):111-119.
    [44]惠光艳,刘宝林,仇敏.牙槽嵴-种植体系列有限元模型的快速构建方法.第二军医大学学报, 2008, 29(11):1320-1323.
    [45]荣起国.口腔种植体中的生物力学.力学与实践, 2004, 26(4):86-87.
    [46]卢军,潘可风,徐晓琳,屈汉廷.不同骨结合率对种植体骨界面应力分布的影响.口腔颌面外科杂志, 2005, 15(3):234-237.
    [47] Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res, 1987, 1(1):64-67.
    [48] Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI Dental Implant System: a consensus report. Clin Oral Implants Res, 2000, 11 Suppl 133-58.
    [49] Kano SC, Binon PP, Bonfante G, Curtis DA. The effect of casting procedures on rotational misfit in castable abutments. Int J Oral Maxillofac Implants, 2007, 22(4):575-579.
    [50] Vafiadis DC. Computer-generated abutments using a coded healing abutment: a two year preliminary report. Pract Proced Aesthet Dent, 2007, 19(7):443-448.
    [51] Adams MW. Computer-designed and milled patient-specific implant abutments. Dent Today, 2005, 24(6):80-83.
    [1] Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants, 2000, 15(1):76-94.
    [2] English CE. Externally hexed implants, abutments, and transfer devices: a comprehensive overview. Implant Dent, 1992, 1(4):273-282.
    [3] Theoharidou A, Petridis HP, Tzannas K, Garefis P. Abutment screw loosening in single-implant restorations: a systematic review. Int J Oral Maxillofac Implants, 2008, 23(4):681-690.
    [4] Tan KB, Nicholls JI. Implant-abutment screw joint preload of 7 hex-top abutment systems. Int J Oral Maxillofac Implants, 2001, 16(3):367-377.
    [5] Ohrnell LO, Hirsch JM, Ericsson I, Branemark PI. Single-tooth rehabilitation using osseointegration. A modified surgical and prosthodontic approach. Quintessence Int, 1988, 19(12):871-876.
    [6] Hoyer SA, Stanford CM, Buranadham S, Fridrich T, Wagner J, Gratton D. Dynamic fatigue properties of the dental implant-abutment interface: jointopening in wide-diameter versus standard-diameter hex-type implants. J Prosthet Dent, 2001, 85(6):599-607.
    [7] Khraisat A, Abu-Hammad O, Al-Kayed AM, Dar-Odeh N. Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review. Clin Implant Dent Relat Res, 2004, 6(4):222-229.
    [8] Dibart S, Warbington M, Su MF, Skobe Z. In vitro evaluation of the implant-abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants, 2005, 20(5):732-737.
    [9] Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent, 2006, 26(1):9-17.
    [10] Kitagawa T, Tanimoto Y, Odaki M, Nemoto K, Aida M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. J Biomed Mater Res B Appl Biomater, 2005, 75(2):457-463.
    [11] Arvidson K, Bystedt H, Frykholm A, von Konow L, Lothigius E. Five-year prospective follow-up report of the Astra Tech Dental Implant System in the treatment of edentulous mandibles. Clin Oral Implants Res, 1998, 9(4):225-234.
    [12] De Bruyn H, Besseler J, Raes F, Vaneker M. Clinical Outcome of Overdenture Treatment on Two Nonsubmerged and Nonsplinted Astra Tech Microthreadtrade mark Implants. Clin Implant Dent Relat Res, 2008.
    [13] Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent, 1999, 81(2):159-166.
    [14] Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent, 1995, 73(1):36-43.
    [15] Steinebrunner L, Wolfart S, Bossmann K, Kern M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int J Oral Maxillofac Implants, 2005, 20(6):875-881.
    [16] Jansen VK, Conrads G, Richter EJ. Microbial leakage and marginal fit of the implant-abutment interface. Int J Oral Maxillofac Implants, 1997, 12(4):527-540.
    [17] Perriard J, Wiskott WA, Mellal A, Scherrer SS, Botsis J, Belser UC. Fatigue resistance of ITI implant-abutment connectors -- a comparison of the standard cone with a novel internally keyed design. Clin Oral Implants Res, 2002, 13(5):542-549.
    [18] Alkan I, Sertgoz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent, 2004, 91(4):319-325.
    [19] Quaresma SE, Cury PR, Sendyk WR, Sendyk C. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol, 2008, 34(1):1-6.
    [20] Akour SN, Fayyad MA, Nayfeh JF. Finite element analyses of two antirotational designs of implant fixtures. Implant Dent, 2005, 14(1):77-81.
    [21] Steinebrunner L, Wolfart S, Ludwig K, Kern M. Implant-abutment interface design affects fatigue and fracture strength of implants. Clin Oral Implants Res, 2008, 19(12):1276-1284.
    [22] Weigl P. New prosthetic restorative features of Ankylos implant system. J Oral Implantol, 2004, 30(3):178-188.
    [23] Maeda Y, Miura J, Taki I, Sogo M. Biomechanical analysis on platform switching: is there any biomechanical rationale? Clin Oral Implants Res, 2007, 18(5):581-584.
    [24] Hansson S. A conical implant-abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone. An axisymmetric finite element analysis. Clin Oral Implants Res, 2003, 14(3):286-293.
    [25] Degidi M, Iezzi G, Scarano A, Piattelli A. Immediately loaded titanium implant with a tissue-stabilizing/maintaining design ('beyond platform switch') retrieved from man after 4 weeks: a histological and histomorphometrical evaluation. A case report. Clin Oral Implants Res, 2008, 19(3):276-282.
    [26] Gardner DM. Platform switching as a means to achieving implant esthetics. N Y State Dent J, 2005, 71(3):34-37.
    [27] Stuker RA, Teixeira ER, Beck JC, da Costa NP. Preload and torque removal evaluation of three different abutment screws for single standing implant restorations. J Appl Oral Sci, 2008, 16(1):55-58.
    [28] Al Jabbari YS, Fournelle R, Ziebert G, Toth J, Iacopino AM. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 3: Preload and tensile fracture load testing. J Prosthodont, 2008, 17(3):192-200.
    [29] Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent, 2001, 86(1):24-32.
    [30] Versluis A, Korioth TW, Cardoso AC. Numerical analysis of a dental implant system preloaded with a washer. Int J Oral Maxillofac Implants, 1999, 14(3):337-341.
    [31] Duret F, Blouin JL, Duret B. CAD-CAM in dentistry. J Am Dent Assoc, 1988, 117(6):715-720.
    [32]吕培军,李彦生,王勇,邹波,赵建江,张震康.国产口腔修复CAD/ CAM系统的研究与开发.中华口腔医学杂志, 2002, 37(5):367 - 370.
    [33]宋雅丽,李佳,黄田,田彬,高平. CAD/ CAM技术在义齿快速成型中的应用与发展.机械设计, 2004, 21(4):8-10.
    [34]吴琳,吕培军,王勇,艾红军,董得义.可摘局部义齿支架铸型的计算机设计与制作.中华口腔医学杂志, 2006, 41(7):432-435.
    [35]焦婷,叶铭,张富强.应用快速原形法(FDM法)制作耳廓模型的基础研究.上海口腔医学, 2002, 11(4):319-321.
    [36]陈万军,宋应亮,马兆峰,李德华,赵铱民,姜惠娟,魏正英.上颌双尖牙区种植体美学牙龈基台设计研究.中国美容医学, 2006, 2(15):175-176.
    [37] Mupparapu M, Singer SR. Implant imaging for the dentist. J Can Dent Assoc, 2004, 70(1):32.
    [38] Tardieu PB, Vrielinck L, Escolano E. Computer-assisted implant placement. A case report: treatment of the mandible. Int J Oral Maxillofac Implants, 2003, 18(4):599-604.
    [39] Casap N, Tarazi E, Wexler A, Sonnenfeld U, Lustmann J. Intraoperative computerized navigation for flapless implant surgery and immediate loading in the edentulous mandible. Int J Oral Maxillofac Implants, 2005, 20(1):92-98.
    [40] Kucey BK, Fraser DC. The Procera abutment--the fifth generation abutment for dental implants. J Can Dent Assoc, 2000, 66(8):445-449.
    [41] Parel SM. The single-piece milled titanium implant bridge. Dent Today, 2003, 22(2):96-99.
    [42] Lang LA, Sierraalta M, Hoffensperger M, Wang RF. Evaluation of the precision of fit between the Procera custom abutment and various implant systems. Int J Oral Maxillofac Implants, 2003, 18(5):652-658.
    [43] Priest G. Virtual-designed and computer-milled implant abutments. J Oral Maxillofac Surg, 2005, 63(9 Suppl 2):22-32.
    [44] Yuzugullu B, Avci M. The implant-abutment interface of alumina and zirconia abutments. Clin Implant Dent Relat Res, 2008, 10(2):113-121.
    [45] Mengel R, Meer C, Flores-de-Jacoby L. The treatment of uncoated and titanium nitride-coated abutments with different instruments. Int J Oral Maxillofac Implants, 2004, 19(2):232-238.
    [46] Drago CJ. Two new clinical/laboratory protocols for CAD/CAM implant restorations. J Am Dent Assoc, 2006, 137(6):794-800.
    [47] Ganz SD, Desai N, Weiner S. Marginal integrity of direct and indirect castings for implant abutments. Int J Oral Maxillofac Implants, 2006, 21(4):593-599.
    [48] Grossmann Y, Pasciuta M, Finger IM. A novel technique using a coded healing abutment for the fabrication of a CAD/CAM titanium abutment for an implant-supported restoration. J Prosthet Dent, 2006, 95(3):258-261.
    [49] Marchack CB, Vidjak FM, Futatsuki V. A simplified technique to fabricate a custom milled abutment. J Prosthet Dent, 2007, 98(5):416-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700