316L不锈钢表面电镀钯合金膜层工艺及其在非氧化性介质中耐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢表面的钝化膜使得不锈钢在很多介质中有着良好的耐蚀性,但是在非氧化性介质,比如高温稀硫酸、高温醋酸中,不锈钢表面的钝化膜会发生溶解,且无法再自修复,使得不锈钢发生腐蚀。对于不锈钢在醋酸中的腐蚀行为,前人进行了大量的研究,但是对于不锈钢在PTA(对苯二甲酸)浆料中的腐蚀行为尚不明确。对不锈钢表面电沉积钯或者钯合金膜层能够提高不锈钢在非氧化性介质中的耐蚀性,但是,如何进一步提高钯膜合金膜层在高温醋酸中的耐蚀性,以及钯合金膜层在高温醋酸、高温稀硫酸中的耐蚀机制前人研究较少。
     本文基于316L不锈钢在高温含溴离子醋酸中的腐蚀行为规律,模拟了PTA浆料(PTA粉末+含溴离子醋酸)干燥过程中浆料湿度对不锈钢腐蚀行为的影响,研究发现,加热不锈钢能够降低界面湿度,显著减小腐蚀速率。在温度恒定的条件下,不锈钢在PTA浆料中的腐蚀速率随湿度的变化呈抛物线变化,在PTA浆料的固液比为25:4时,不锈钢的腐蚀速率最大,在过湿或者过干的PTA浆料中的腐蚀速率均较小。
     为了进一步提高钯合金膜层在醋酸中耐蚀性,本文采用了在钯膜层中添加Cu、Ni、Mo合金元素,对纯Pd膜层进行热处理,在不锈钢表面制备Pd-Ni/Pd-Cu复合膜层三种改进方法,并研究了以上三种工艺制备的膜层在还原性介质中的耐蚀性。
     通过电沉积的方法能够在304L不锈钢表面沉积一层钯铜镍钼合金膜层,膜层均匀致密,结合力良好,硬度较高。钯铜镍钼膜层性能与沉积电流密切相关,沉积电流密度越小,膜层越平整致密,硬度越高,耐蚀性能也越好。当沉积电流密度为1.2A/dm~2时,膜层在含溴离子沸腾醋酸中的腐蚀速率为0.61g·m~(-2)·h~(-1),而当沉积电流密度降低至0.8A/dm~2时,膜层在含溴离子醋酸中的腐蚀速率降低至0.05g·m~(-2)·h~(-1)。铜含量对膜层的耐蚀性能有较大的影响,当膜层中铜含量为5.03wt%时,膜层耐蚀性达到最佳,为0.02g·m~(-2)·h~(-1)。
     对不锈钢表面镀钯试样进行热处理,可以除去钯膜层中的氢,使膜层的电化学性能可以得到较大程度的恢复,提高了膜层的自腐蚀电位,从而增强膜层耐蚀性。200℃/4h、400℃/4h的热处理条件对膜层元素百分含量以及晶格结构没有明显影响,200℃/4h热处理镀钯膜层中的钯是金属态,400℃/4h热处理镀钯膜层中的钯是氧化态。热处理后,镀钯试样表面的显微硬度明显提高。
     通过电沉积能够在316L不锈钢表面制备约3μm的Pd-Ni/Pd-Cu复合膜层。与单层Pd-Cu膜层相比较,该膜层具有更高的硬度,弹性模量和附着力。膜层的孔隙率也明显降低。Pd-Ni/Pd-Cu复合膜层较低的孔隙率可以阻止氯离子渗透膜层到达不锈钢基体。同时复合膜层高硬度、高弹性模量以及更好的附着力的特点,可以提高膜层的耐冲蚀能力,以上因素使得Pd-Ni/Pd-Cu复合膜层能够明显地提高316L不锈钢的耐蚀性能。特别是在既有冲刷腐蚀又有氯离子的复杂环境中,复合膜层表现出了优异的耐蚀性能。在搅拌速率为900r/min并含有0.005mol/LCl~-的沸腾甲乙混合酸中,表面镀有Pd-Ni/Pd-Cu复合膜层的不锈钢试样的腐蚀速率比表面镀有单层Pd-Cu膜层不锈钢试样小了一个数量级。
     在80℃0.5mol L-1H_2SO_4+2ppm F-溶液中,在316L不锈钢表面电镀钯能够促进不锈钢基体自发钝化。当316L不锈钢与钯连接之后,在试样表面形成了一层钝化膜,比不锈钢本身的空气氧化膜相比,钝化膜的耐蚀性能明显提高。这可能是因为钝化膜中含有更多的Cr,更高含量的Cr(OH)_3与Fe_3O_4,并且钝化膜有着更小的点缺陷浓度。
     最后,本文研究了在316L不锈钢表面沉积Pd,Cr-Pd膜层在PEM燃料电池双极板上的应用。与316L不锈钢相比,电镀钯或者Cr-Pd试样的腐蚀速率降低了三个数量级;电镀钯或者Cr-Pd试样的表面接触电阻同样也显著降低。
Due to the passive film on the surface of stainless steel, stainlesssteel have excellent corrosion resistance in lots of corrosive mediums.However, in reductive corrosion mediums such as boiling dilute sulfuricacid solutions or boiling acetic and formic acids, passive film can notremain stable and active corrosion may happen. The corrosion behaviourof stainless steel in acetic acid with or without halide ions has beenstudied by many authors. However, few researches were focused on thecorrosion behaviour of stainless steel in purified terephthalic acid (PTA)slurry which is important to industrial production. Different techniqueswere reported for palladium deposition on316L stainless steel, and Pdand Pd alloy films show good corrosion resistant in boiling dilute sulfuricacid solutions or boiling acetic and formic acids. However, to improve thecorrosion resistance of the film, and understand the mechanism of theanti-corrosion rensistance in reductive corrosion mediums, it is necessaryto carry on further reaserch on Pd alloy film deposition technology andcorrosion behavior of Pd alloy film.
     In this research, the corrosion behaviour of316L stainless steel insimulated drying process of PTA slurry was studied. Pd film, Cr-Pd film,PdCuNiMo film and Pd-Ni/Pd-Cu double coating were deposited onstainless steel, and corrosion behavior of the films were investigated. Themechanism of anti-corrosion resistance for Pd film in0.5mol L-1H_2SO_4+2ppm F-solution at80℃was studied.
     The corrosion behaviour of316L stainless steel in acetic-10%formicacid mixture containing Br-and in simulated PTA slurry was investigated,to understand the corrosion mechanism of316L stainless steel in dryingprocess of PTA slurry. The results show that in acetic-10%formic acidmixture containing Br-, corrosion rate of316L stainless steel increaseswith the increase of Br-concentration and temperature. In PTA slurry, thecorrosion rate of316L stainless steel changes in a parabolic form withincrease of the solid to liquid ratio of the slurry. The slurry has thestrongest corrosivity when the solid to liquid ratio of the slurry reachesabout6.25. In a half dry-half wet PTA slurry, when the316L steel surfaceis remained at a suitable temperature to avoid continuous liquid film onthe surface, corrosion rate of the steel will be greatly reduced.
     PdCuNiMo alloy film can be deposited on304L stainless steel byelectroplating. The property of film closely related to deposition current.With smaller deposition current, the film is more smooth and dense, andthe hardness of film is higher. So correspondingly, the property of corrosion resistance is better. As the deposite current density decreases, Inboling acetic and formic acids containing200ppm Br-, the corrosion rateof the films prepared with1.2A/dm~2current density is0.61g·m~(-2)·h~(-1). Butthe corrosion rate of film drops to0.05g·m~(-2)·h~(-1)once the current densityreduce to0.8A/dm~2. The influence of Cu content was also investigated.When the content of CuSO_4is1.5g/L, the film prepared with0.8A/dm~2current density has the best corrosion resintance, and the corrosion rate isonly0.02g·m~(-2)·h~(-1).
     The codeposition hydrogen in the film can be removed by heattreatment, hence the electrochemical performance can be greatlyrecovered, which leads to higher corrosion potential and better corrosionresistance. After heat treatment, the micro-hardness is obviouslyimproved, in addition, the lattice structure and element content remain thesame. XPS analysis indicated that Pd is metallic state after200℃treatment, However, after treating at400℃,oxidation reaction happenedto Pd.
     A Pd-Ni/Pd-Cu double coating with a thickness of about3μm wasdeposited on stainless steel surface by electroplating. The double coatingshows obviously higher hardness, modulus of elasticity and adhesivestrength to the substrate in contrast to single Pd-Cu coating. The porosityof the deposited coating also decreased evidently. The lower porosity ofthe double coating may reduce chloride migration through the deposited film. The higher hardness, modulus and adhesive strength would increasethe erosion resistance. All these factors result in better corrosionresistance. The Pd-Ni/Pd-Cu double coating significantly improved thecorrosion resistance of316L stainless steel in strong corrosive medium.Particularly, the double coating exhibits better resistance in complicatedcorrosive environment including erosion and chloride ions. In boilingacetic and formic acids mixture containing0.005mol/L Cl~-with900r/min stir, the corrosion rate of the double coating coated316L stainlesssteel is about one order of magnitude lower than that of Pd-Cu coatedsamples.
     A thin layer of Pd deposition on the surface significantly improves thecorrosion resistance of316L stainless steel in0.5mol L-1H_2SO_4+2ppmF-solution at80℃. The Pd film promotes spontaneous passivition andthe corrosion rate of the Pd plated specimen decreases by three orders ofmagnitude in contrast to that of the original316L specimens. When316Lstainless steel specimen is coupled with Pd electrode, the passive filmformed on stainless steel shows much better corrosion resistance than theair-formed passive film. After the disconnection of the stainless/Pd couple,the stainless steel specimen still remains passivated for a relatively longtime. The Mott-Schottky measurements show that compared with theair-formed passive films, there are less point defects in the passive filmon the specimens coupled with Pd. XPS measurements show that the main difference between the compositions of the two films is theenrichment of Cr and the presence of Cr(OH)_3and Fe_3O_4in the passivefilms coupled with palladium. These differences lead to the bettercorrosion resistance of the passive film formed under the effect ofpalladium film.
     Last but important, As a potential material for bipolar plates in protonexchange membrane (PEM) fuel cells, Pd and Cr-Pd film was depositedon316L stainless steel. Corrosion resistance and interface contactresistance were studued. Comared with original316L stainless steel, thecorrosion rate of specimen with Pd or Cr-Pd film decrease by three ordersof magnitude, and the interface contact resistance is also obviouslydecreased. Adding Cr in Pd film can further improve the corrosionresistance for Cr(OH)_3exsits in Cr-Pd film as a beneficial component. Inaddition, adding Cr can lower the cost of the films.
引文
[1]陆世英.不锈钢[M],北京:原子能出版社,1995, p8.
    [2]高翔.不锈钢表面电镀Pd-Cu合金膜及其在甲乙混合酸中的耐蚀性能研究[D].北京化工大学.北京.2009.
    [3] Schmuki P, Bohni H J. Electronic properties and their local resolution of passive film onstainless steels[J]. Journal of the Electrochemical Society,1992,119:1908
    [4]林玉华,杜荣归,胡融刚.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报,2005,21:740.
    [5]程学群,李晓刚,杜翠薇.316L不锈钢在含氯高温醋酸溶液中的自钝化行为[J].北京科技大学学报,2006,28:840.
    [6]胡艳玲,胡融刚,邵敏华,等.不锈钢钝化膜表面微观形貌特征的ECSTM研究[J].电子显微学报,2001,20:631.
    [7]胡肆福,许川壁,陈祖秋.不锈钢钝化膜在醛化液中自钝能力的研究[J].电化学,1999,5:332.
    [8]蔡文婷. HP13Cr不锈钢油管材料在高含氯离子环境中的抗腐蚀性能[D].西安石油大学.西安.2011.
    [9] Hakiki N B, Da Cunha M B. Electronic structure of passive films formed on molybdenumcontaining ferritic stainless steels[J]. Journal of the Electrochemical Society,1996,143:3088.
    [10]程学群,李晓刚,杜翠薇,杨丽霞.316L不锈钢在醋酸溶液中的钝化膜电化学性质[J].北京科技大学学报,2007,29:911-915.
    [11]唐子龙,宋诗哲,郭英凯.321不锈钢钝化膜孔蚀破坏的原子吸收光谱研究[J].金属学报,1996,32:443.
    [12] Turnbull A, Ryan M, Willet t s A. Corrosion and electrochemical behavior of316Lstainless steel in acetic acid solutions[J]. Corrosion Science,2003,45:1051.
    [13] Kraytsberg A, Auinat M, Ein-Eli Y. Reduced contact resistance of PEM fuel cell’s bipolarplates via surface texturing[J]. Journal of Power Sources.2007,164:697–703.
    [14]冯凯.离子注入提高不锈钢耐腐蚀和表面导电性能的研究[D].上海交通大学.上海.2011.
    [15] Hermas AA,Morad MS. A comparative study on the corrosion behaviour of304austeniticstainless steel in sulfamic and sulfuric acid solution[J]. Corrosion Science.2008,50:2710–2717.
    [16] Davies D. P., Adcock P. L., Turpin M., and Rowen S. J., Bipolar Plate Materials for SolidPolymer Fuel Cells, Journal of Applied Electrochemistry.2000,30:101–105.
    [17] Wang H., Turner J.A., Ferritic stainless steels as bipolar plate material for polymerelectrolyte membrane fuel cells [J]. Journal of Power Sources.2004,128:193–200.
    [18] Sekine I., Hatakeyama S., Nakazawa Y.. Corrosion behaviour of Type430stainless steelin formic and acetic acids[J]. Corrosion Science.1987,27:275-288.
    [19] Sekine I., Hatakeyama S., Nakazawa Y.. Effect of water content on the corrosionbehaviour of type430stainless steel in formic and acetic acids[J]. Electrochimica Acta,1987,32:915-920.
    [20] Sekine I., Senoo K.. The corrosion behaviour of SS41steel in formic and acetic acids[J].Corrosion Science.1984,24:439-448.
    [21] Sekine I., Kawase T., Kobayashi M., Yuasa M.. The effects of chromium and molybdenumon the corrosion behaviour of ferritic stainless steels in boiling acetic acid solutions[J].Corrosion Science.1991,32:815-825.
    [22] Alan T., Mary Ryan R., Anthony W., Zhou S. Q.. Corrosion and electrochemical behaviourof316L stainless steel in acetic acid solutions[J]. Corrosion Science.2003,45:1051-1072.
    [23] Veloz M. A., González G.. Electrochemical study of carbon steel corrosion in bufferedacetic acid solutions with chlorides and H2S[J]. Electrochimica Acta,2002,48:135-144.
    [24] Cheng X. Q., Li X. G., Dong C. F.. Study on the passive film formed on2205stainlesssteel in acetic acid by AAS and XPS[J]. International Journal of Minerals.2009,16:170-176.
    [25] Lennartz G., Kiesheyer H., DEW Tech. Ber.[J],1976,2:14.
    [26]张国礼.世界不锈钢发展概况[J].山西冶金,2000,3:1.
    [27]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2002, p248-258.
    [28]黄永昌.电化学保护技术及其应用第十讲阳极保护的现状及前景[D],2000,12:569.
    [29] W. V.贝克曼.阴极保护简明手册[M].北京:石油工业出版社,1987.
    [30] Streicher M.A., Development of Pitting Resistant Fe-Cr-Mo Alloys[J], Corrosion,1974,30:77.
    [31] Teeple H.O., Corrosion by Some Organic Acids and Related Compounds[J], Corrosion,1952,8:14.
    [32] DeBold T.A., Martin J.W., and Tverberg J.C., Duplex Stainless Offers Strength andCorrosion Resistance, R.A. Lula, Ed., American Society for Metals,1983, p169-189.
    [33] Morris L.A., D. Peckner and I.M. Bernstein, Handbook of Stainless Steels, Ed.,McGraw-Hill,1977, p17.
    [34]徐亮.不锈钢电镀Cr-Pd合金膜的工艺、结构及耐蚀性能研究[D].北京化工大学.北京.2010.
    [35] Lee S.J, Lai J.J, Huang C.H. Stainless steel bipolar plates[J]. Journal of Power Sources.2005,145:362–368.
    [36] Cho K.H, Lee W.G, Lee S.B, Jang H. Corrosion resistance of chromized316L stainlesssteel for PEMFC bipolar plates[J]. Journal of Power Sources.2008,178:671–676.
    [37] Wang L.X., Sun J.C., Li P.B. et al. Molybdenum nitride modified AISI304stainless steelbipolar plate for proton exchange membrane fuel cell [J]. International Journal ofHydrogen Energy.2012,27:5876–5883.
    [38] Cao Y, Ernst F, Michal G.M. Colossal carbon supersaturation in austenitic stainless steelscarburized at low temperature[J]. Acta Materialia.2003,51:4171–4181.
    [39] Wang H, Brady M.P, Teeter G, Turner J.A. Thermally nitride stainless steels for polymerelectrolyte membrane fuel cell bipolar plates Part1: model Ni–50Cr and austenitic349TMalloys[J]. Journal of Power Sources.2004,138:86–93.
    [40] Wang H.L., Turner J.A. Electrochemical nitridation of a stainless steel for PEMFC bipolarplates[J]. International Journal of Hydrogen Energy.2011,36:13008-13013.
    [41] Lee K.H, Lee S.H, Kim J.H et al. Effects of thermal oxi-nitridation on the corrosionresistance and electrical conductivity of446M stainless steel for PEMFC bipolar plates[J].International Journal of Hydrogen Energy.2009,34:1515–1521.
    [42] Lee S.H., Yang T.H., Hyunl S.H. et al. Corrosion behavior of pre-oxidized and thermallynitrided stainless steel for polymer electrolyte membrane fuel cell bipolar plates[J].Corrosion Science.2012,58:79-85.
    [43] Brady M.P., Abd Elhamid M., Dadheech G., et al. Manufacturing and performanceassessment of stamped, laser welded, and nitrided FeCrV stainless steel bipolar plates forproton exchange membrane fuel cells [J]. International Journal of Hydrogen Energy.2013,38:4734–4739.
    [44] Wang L. Surface modification of AISI304austenitic stainless steel by plasma nitriding[J].Applied Surface Science.2003,211:308–314.
    [45] Han D.H, Hong W.H, Choi H.S, Lee J.J. Inductively coupled plasma nitriding ofchromium electroplated AISI316L stainless steel for PEMFC bipolar plate[J].International Journal of Hydrogen Energy.2009,34:2387–2395.
    [46] Wang J.L., Sun J.C., Li S. et al. Surface diffusion modification AISI304SS stainless steelas bipolar plate material for proton exchange membrane fuel cell[J]. International Journalof Hydrogen Energy.2012,37:1140-1144.
    [47] Feng K., Li Z.G., Cai X.. Silver implanted316L stainless steel as bipolar plates in polymerelectrolyte membrane fuel cells[J]. Materials Chemistry and Physics.2011,126:6–11.
    [48] Feng K., Wu G.S., Hu T., et al. Dual Ti and C ion-implanted stainless steel bipolar platesin polymer electrolyte membrane fuel cells[J]. Surface and Coatings Technology.2012,206:2914-1921.
    [49] Tian R.J., Sun J.C.. Corrosion resistance and interfacial contact resistance of TiN coated316L bipolar plates for proton exchange membrane fuel cell [J]. International Journal ofHydrogen Energy.2011,36:6788–6794.
    [50] Omrani M., Habibi M., Amrollahi R... Improvement of corrosion and electricalconductivity of316L stainless steel as bipolar plate by TiN nanoparticle implantationusing plasma focus [J]. International Journal of Hydrogen Energy.2012,37:14676-14686.
    [51] Lee S.H., Kakati N., Maiti J., Jee S.H., et al. Corrosion and electrical properties of CrN-and TiN-coated316L stainless steel used as bipolar plates for polymer electrolytemembrane fuel cells[J]. Thin Solid Fims.2013,529:374-379.
    [52] Elsener B, Rota A, Bo¨hni H. Impedance study on the corrosion of PVD and CVDtitanium nitride coatings[J]. Materials Science Forum.1989,44–45:29–38.
    [53] Zhang M., Wu B., Lin G.Q., Shao Z.G., et al. Arc ion plated Cr/CrN/Cr multilayers on316L stainless steel as bipolar plates for polymer electrolyte membrane fuel cells [J].Journal of Power Sources.2011,196:3249–3254.
    [54] Zhang D.M., Guo L., Duan L.T., ea al. Preparation of Cr-based multilayer coating onstainless steel as bipolar plate for PEMFCs by magnetron sputtering[J]. InternationalJournal of Hydrogen Energy.2011,36:2184-2189.
    [55] Zhang M., Lin G.Q., Wu B., et al. Composition optimization of arc ion plated CrNx filmson316L stainless steel as bipolar plates for polymer electrolyte membrane fuel cells [J].Journal of Power Sources.2012,205:318–323.
    [56] Zhang H.B., Lin G.Q., Hou M., et al. CrN/Cr multilayer coating on316L stainless steel asbipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources.2012,198:176–181.
    [57] Yi P.Y., Peng L.F., Zhou T., et al. Composition optimization of multilayeredchromium-nitride–carbon film on316L stainless steel as bipolar plates for protonexchange membrane fuel cells[J]. Journal of Power Sources.2013,236:47-53.
    [58] Yi P.Y., Peng L.F., Zhou T., et al. Cr–N–C multilayer film on316L stainless steel asbipolar plates for proton exchange membrane fuel cells using closed field unbalancedmagnetron sputter ion plating [J]. International Journal of Hydrogen Energy.2013,38:1535–1543.
    [59] Tian R.J. Chromium nitride/Cr coated316L stainless steel as bipolar plate for protonexchange membrane fuel cell [J]. Journal of Power Sources.2011,196:1258-1263.
    [60] Park Y.C., Lee S.H., Kim S.K., Seongyop Lim et al. Corrosion properties and cellperformance of CrN/Cr-coated stainless steel316L as a metal bipolar plate for a directmethanol fuel cell[J]. Electrochimica Acta.2011,56:7602-7609.
    [61] Larijani M.M., Yar M.i, Afshar A., et al. A comparison of carbon coated and uncoated316L stainless steel for using as bipolar plates in PEMFCs[J]. Journal of Alloys andCompounds.2011,509:7400–7404.
    [62] Jin W.H., Feng K., Li Z.G., et al. Improvement of corrosion resistance and electricalconductivity of304stainless steel using close field unbalanced magnetron sputteredcarbon film [J]. Journal of Power Sources.2011,196:10032–10037.
    [63] Fu Y, Lin G, Hou M, Wu B, et al. Carbon-based films coated316L stainless steel asbipolar plate for proton exchange membrane fuel cells[J]. International Journal ofHydrogen Energy.2009,34:405–409.
    [64] Feng K, Shen Y, Sun H, Liu D, An Q, Cai X, et al. Conductive amorphous carbon-coated316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells[J].International Journal of Hydrogen Energy.2009,34:6771–6777.
    [65] Zhong L, Xiao S.H., Hu J., et al.. Application of polyaniline to galvanic anodic protectionon stainless steel in H2SO4solutions [J]. Corrosion Science.2006,48:3960–3968.
    [66] Lee Y.B., Lee C.H., Kim K.M., Lim D.S.. Preparation and properties on thegraphite/polypropylene composite bipolar plates with a304stainless steel by compressionmolding for PEM fuel cell [J]. International Journal of Hydrogen Energy.2011,36:7621-7627.
    [67] Yoshiyuki S., Kenta T.. Stainless steel bipolar plate coated with carbon nanotube(CNT)/polytetrafluoroethylene (PTFE) composite film for proton exchange membranefuel cell (PEMFC)[J]. Journal of Power Sources.2009,190:322–325.
    [68] Ren Y.J., Chen J., Zeng C.L., Corrosion protection of type304stainless steel bipolarplates of proton-exchange membrane fuel cells by doped polyaniline coating [J]. Journalof Power Sources.2010,195:1914–1919.
    [69] Ren Y.J., Zeng C.L.. Effect of conducting composite polypyrrole/polyaniline coatings onthe corrosion resistance of type304stainless steel for bipolar plates of proton-exchangemembrane fuel cells[J]. Journal of Power Sources.2008,182:524-530.
    [70] Wang T., He J.P., Sun D.. Synthesis of mesoporous carbon-silica-polyaniline andnitrogen-containing carbon-silica films and their corrosion behavior in simulated protonexchange membrane fuel cells environment[J]. Journal of Power Sources.2011,196:9552-9560.
    [71] Ganash A.A., Al-Nowaiser F.M., Al-Thabaiti S.A. et al. Comparison study for passivationof stainless steel by coating with polyaniline from two different acids[J]. Progress inOrganic Coatings.2011,72:480-485.
    [72] Lu H.B., Zhou Y.Z., Vongehr S. et al. Electropolymerization of PANI coating in nitric acidfor corrosion protection of430SS[J]. Synthetic Metals.2011,161:1368-1376.
    [73] González M.B., Saidman S.B.. Electrodeposition of polypyrrole on316L stainless steel forcorrosion prevention[J]. Corrosion Science.2011,53:276-282.
    [74] Gopi D., Ramya S., Rajeswari D., Kavitha L.. Corrosion protection performance of porousstrontium hydroxyapatite coating on polypyrrole coated316L stainless steel[J]. Colloidsand Surfaces B: Biointerfaces.2013,107:130-136.
    [75] María B. González, Silvana B. Saidman. Corrosion protection properties of polypyrroleelectropolymerized onto steel in the presence of salicylate[J]. Progress in OrganicCoatings.2012,75:178-183.
    [76] Herrasti P., Kulak A.N., Bavykin D.V., et al. Electrodeposition of polypyrrole–titanatenanotube composites coatings and their corrosion resistance[J]. Electrochimica Acta.2011,56:1323-1328.
    [77] Joseph S., McClure J.C., Chianelli R., et al. Conducting polymer-coated stainless steelbipolar plates for proton exchange membrane fuel cells (PEMFC)[J]. International Journalof Hydrogen Energy.2005,30:1339-1344.
    [78] Johnson Matthey, Platinum[M].1996.
    [79]施莱辛格.现代电镀[M].化学工业出版社.北京.2006.
    [80] Shu J., Grandjean B.P.A., Van Neste A.,. Kaliaguine S, Catalytic palladium-basedmembrane reactors: A review [J]. The Canadian Journal of Chemical Engineering.1991,69:1036-1060.
    [81] Barrer R.M., Diffusion In and Through Solids[M], Cambridge University Press,Cambridge,1941.
    [82] Connor H., Palladium Alloy Diffusion Cells [J]. Platinum Metals Review.,1962,4:130-135.
    [83] Philpott J.E., Hydrogen diffusion technology: commercial applications of palladiummembranes [J]. Platinum Metals Review,1985,29:12-16.
    [84] Cicero D.C., Jarr L.A., Application of Ceramic Membranes in Advanced Coal-basedPower Generation Systems [J]. Separation Science and Technology.1990,25:1455-1472.
    [85] Bhave R.R., Inorganic Membranes: Synthesis, Characteristics and Applications, VanNostrand Reinhold[M], New York,1991.
    [86] Farris T.S., J.N. Liquid-phase catalytic hydrogenation using palladium alloymembranes[J]. Applied Catalysis A: General.,1993,96:25-32.
    [87] Karavanov, Mischenko A.P., Orekhova N.V., Preparation and catalysis over palladiumcomposite membranes [J]. Applied Catalysis A: General,1993, A96:15-23.
    [88] Itoh N., A membrane reactor using palladium[J]. AIChE Journal,1987(33):1576-1578.
    [89] Saracco G., Specchia V., Catalytic Inorganic-Membrane Reactors: Present Experience andFuture Opportunities [J]. Catalysis Reviews: Science and Engineering.1994,36:305-384.
    [90] Chernova, G. P.; Fedoseeva, T. A.; Kornienko, L. P.; Tomashov, N. D. Increasing thepassivation ability and corrosion resistance of chromium steel by surface alloying withpalladium[J]. Surface Technology.1981,2:241-256.
    [91]唐鋆磊.不锈钢表面高耐蚀性钯系膜层的制备与应用研究[D].北京,北京化工大学.2010.
    [92] Tang. J.L., Zuo Y., Study on Corrosion Resistance of Palladium Films on316L StainlessSteel by Electroplating and Electroless Plating[J], Corrosion Science,2008,50:2873–2878.
    [93] Zuo Y., Tang J.L., Fan C.Z., Tang Y.M., Xiong J.P., An Electroless Plating Film ofPalladium on304Stainless Steel and Its Excellent Corrosion Resistance[J]. Thin SolidFilms.2008,516:7565–7570.
    [94] Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Preparation of Corrosion ResistantPalladium Films on316L Stainless Steel by Brush Plating[J]. Surface and CoatingsTechnology,2010,204:1637–1645.
    [95] Gao X., Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Electroplated Palladium-CopperAlloy Film on316L Stainless Steel and Its Corrosion Resistance in Mixture of Acetic andFormic Acids[J], Corrosion Science.2009,51:1822–1827.
    [96] J.L. Tang, Zuo Y., Tang Y.M., Xiong J.P.. The Composition and Corrosion Resistance ofPalladium Film on316L Stainless Steel by Brush Plating[J]. Materials chemistry andphysics. Under review.
    [97] Xu L., Zuo Y., Tang J.L., Tang Y.M., Ju P.F., Chromium–palladium films on316L stainlesssteel by pulse electrodeposition and their corrosion resistance in hot sulfuric acidsolutions[J], Corrosion Science.2011,53:3788-3795.
    [98]徐亮,唐鋆磊,左禹.不锈钢表面Cr-Pd合金电沉积及镀层在强还原性介质中的耐蚀性[J].金属学报.2011,47:209-213.
    [99] Atkinson R. H., Raper A.R., J. Electrodepositors Tech. Soc.,8(10),1(1993).
    [100] Geduld H., Zinc plating, ASM International,1998,203.
    [101] Hedric h H. D., Raud C. J., Metalloberflache,1977,331:512-520,1977.
    [102] Schuster H. J., Heppner K. D., Ammonia free palladium deposition using aminoacetic acid
    [P]. U.S. Patent4,144,141(Mar.13,1979)
    [103] USSR Patent519,497(June30,1976)
    [104] Abys J. A.,―A Unique Palladium Electrochemistry-Characteristics and Film properties,‖Second America Electroplaters Society Symp on Economic Use of and Substitution forPrecious Metals in the Electronics Industry, Sept.,1980, Danvers, MA.
    [105] Abys J. A., Palladium plating prodedure [P]. U.S. Patent4,486,274(Dec.4,1984)
    [106] Baldouf M., Kolb D. M., A hydrogen adsorption and absorption study with ultrathin Pdoverlayers on Au(111) and Au(100)[J]. Electrochimica Acta.1993,38:2145-2153..
    [107] Hedrich H. D., Raub C. J., Untersuchungen zur galvanischen palladium-abscheidung auszusatzfreien, ammoniakalischen elektrolyten[J]. Surface Technology,1979,8:347-362.
    [108] Keitel W., Zschiegner H., Trans. Electrochem. Soc.,1931,59:273.
    [109] Lowenheim F. A., Electroplating, McGraw-Hill, NewYork,1978, p.299.
    [110] Stevens J. M., Trans. Inst. Met. Fin.,1968,46:26.
    [111] Davis T. F., High efficiency palladium electroplating process, bath and compositiontherefor [P]. U.S. Patent4,092,225(May30,1978)
    [112] Edmund M. W., Westfield N. J. et al. Palladium Plating[P]. U.S. Patent2,457,021(1948)
    [113] Hedrich H. D., Raub C. J., Galvanotechnik,1979,70:934-939.
    [114] Simon F., Zilske W,, Plating Surf. Finish.,1982,69:86.
    [115] Abys J. A., Straschil H. K., Acidic palladium strike bath[P]. U.S. Patent5,178,745(Jan.12,1993)
    [116] Reid F. H., Plating,1965,52:531.
    [117] Morrisey R. J., Metal Finishing Guidebook-Directory97, p.288.
    [118] Caricchio J.J., York E. R., Method and composition for plating palladium[P]. U.S. Patent4,076,599(Feb.28.1978)
    [119] Deuber J. M., Bright palladium electroplating bath[P]. U.S. Patent4.098,656(July4,1978)
    [120] Abys J.A., Chinchanka r V., Eckert V. T., et al, Electrodeposition of palladium films[P].U.S. Patent4,911,799(Mar.27,1990).
    [121] Hedrich H. P., Raub Ch. J., Metalloberflache,33(1979),308-315.
    [122] Wise E. M., Palladium Recovery, Projection and Use, Academy Press, New York,1968, p.187.
    [123] Walz D., Raub Ch. J., Metalloberflache,1986,40:239-241.
    [124] Boguslavsky I., Abys J. A., Straschil H. K., et al, Proc. Annual Conference AmericanElectroplaters and Surface Finishers Society, June1997, Detroit, MI.
    [125] Kume M.,76thTechnical Conf. of the Metal Finishing Society of Japan, Paper30C-7,1987.
    [126] Long R., Bradform K. F., Proc.8thInternational Conf. on Electrical Contact Phenomena,Tokyo, Japan(1970)
    [127] Crossland W. A., Knight E., Proc. Seminar on Electrical Contacts, p.247Chicago,1973.
    [128] Cohen U., Sard R., Electroplating of silver-palladium alloys and resulting product[P]. U.S. Patent4,269,671.
    [129] Cohen U., Kohn F., Sard R., Electroplating of Cyclic Multilayered Alloy (CMA)Coating[J].Journal of the Electrochemical Society.1983,130:1987-1995.
    [130] Cohen U., Walton K. R., Sard R., Development of Silver‐Palladium Alloy Plating forElectrical Contact Applications[J]. Journal of the Electrochemical Society.1984,131:2489-2495.
    [131] Nobel F. I., IEEE Trans. Components, Hybrids Manuf. Technol.,1985,8.
    [132] Nobel F. I., Plating Surf. Finish.,1986,73:88.
    [133]徐明丽,张正富,杨显万,杨勇彪,马全宝.钯及其合金电镀的研究现状[J].材料保护,2003(10):4.
    [1] Pophali G. R., Khan R., Dhodapkar R. S., Nandy T., Devotta S.. Anaerobic aerobictreatment of purified terephthalic acid (PTA) effluent: a techno-economic alternative totwo-stage aerobic process[J]. Journal of Environmental Management.2007,85:1024-1033.
    [2] Mu S. Q., Su H. Y., Jia T., Gu Y., Chu J.. Scalable multi-objective optimization ofindustrial purified terephthalic acid (PTA) oxidation process[J]. Computers&ChemicalEngineering.2004,28:2219-2231.
    [3] Sekine I., Hatakeyama S., Nakazawa Y.. Corrosion behaviour of Type430stainless steelin formic and acetic acids[J]. Corrosion Science.1987,27:275-288.
    [4] Sekine I., Hatakeyama S., Nakazawa Y.. Effect of water content on the corrosionbehaviour of type430stainless steel in formic and acetic acids[J]. Electrochimica Acta,1987,32:915-920.
    [5] Sekine I., Senoo K.. The corrosion behaviour of SS41steel in formic and acetic acids[J].Corrosion Science.1984,24:439-448.
    [6] Sekine I., Kawase T., Kobayashi M., Yuasa M.. The effects of chromium and molybdenumon the corrosion behaviour of ferritic stainless steels in boiling acetic acid solutions[J].Corrosion Science.1991,32:815-825.
    [7] Alan T., Mary Ryan R., Anthony W., Zhou S. Q.. Corrosion and electrochemical behaviourof316L stainless steel in acetic acid solutions[J]. Corrosion Science.2003,45:1051-1072.
    [8] Veloz M. A., González G.. Electrochemical study of carbon steel corrosion in bufferedacetic acid solutions with chlorides and H2S[J]. Electrochimica Acta,2002,48:135-144.
    [9] Cheng X. Q., Li X. G., Dong C. F.. Study on the passive film formed on2205stainlesssteel in acetic acid by AAS and XPS[J]. International Journal of Minerals.2009,16:170-176.
    [10]刘国强,朱自勇,柯伟.不锈钢和镍基合金在含溴醋酸中的腐蚀行为[J].腐蚀科学与防护技术.2000,12:296-299.
    [11] Bogaerts W., Van Hanute A., Brabers M. J.:'Localized corrosion'.31;1981, Houston:NACE。
    [12] Suter T., Bohni H.. A new microelectrochemical method to study pit initiation on stainlesssteels[J]. Electrochimica Acta.1997,42:3275-3280.
    [13]薛嘉日. PTA装置溶剂脱水塔D1-601腐蚀与控制[J].石油化工腐蚀与防护.2008,25:59-52.
    [1] Tang J.L., Zuo Y., Study on Corrosion Resistance of Palladium Films on316L StainlessSteel by Electroplating and Electroless Plating[J], Corrosion Science,2008,50:2873–2878.
    [2] Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Preparation of Corrosion ResistantPalladium Films on316L Stainless Steel by Brush Plating[J]. Surface and CoatingsTechnology,2010,204:1637–1645.
    [3] Gao X., Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Electroplated Palladium-CopperAlloy Film on316L Stainless Steel and Its Corrosion Resistance in Mixture of Aceticand Formic Acids[J], Corrosion Science.2009,51:1822–1827.
    [4] Moulder J.F., Handbook of X-ray Photoelectron Spectroscopy, Physical ElectronicsDivision, Perkin-Elmer Corp.,1992.
    [5] Shobha T., Aravinda C.L., Parthasarathi Bera, Gomathi L., Mayanna S.M.,Character-ization of Ni Pd alloy as anode for methanol oxidative fuel cell[J]. MaterialsChemistry and Physics.2003,80:656-661..
    [6] Ryia S.K., Parkb J.S., Kim S.H. et al. Characterization of Pd–Cu–Ni ternary alloymembrane prepared by magnetron sputtering and Cu-reflow on porous nickel support forhydrogen separation[J]. Separation and Purification Technology.2006,50:82-91.
    [7] Xiong Y.L., Weng L.T., Bertrand P., Ladrière J., Daza L., Ruiz P., Delmon B., Synergybetween-Sb2O4and Fe2(MoO4)3during the first hours of the catalytic oxidation ofisonbutence to methacrolein[J], Journal of Molecular Catalysis A: Chemical.2000,155:59–71.
    [8] Huang Y., Cong L.Y., Yu J., Eloy P., Ruiz P., The surface evolution of a catalyst jointlyinfluenced by thermal spreading and solid-state reaction: a case study with anFe2O3-MoO3system[J], Journal of Molecular Catalysis A: Chemical.302(2009)48–53.
    [9]高翔.不锈钢表面电镀Pd-Cu合金膜及其在甲乙混合酸中的耐蚀性能研究[D].北京化工大学.北京.2009.
    [1]唐鋆磊.不锈钢表面高耐蚀性钯系膜层的制备与应用研究[D].北京,北京化工大学.2010.
    [2] Moulder J., W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray PhotoelectronSpectroscopy, Perkin Elmer Co.,1992.
    [3] Brun M., Berthet A., Bertolini J. C., XPS, AES and Auger parameter of Pd and PdO[J].Journal of Electron Spectroscopy and Related Phenomena.1999,104:55-60.
    [4] Hedrich H. D., Raub C. J.. Metalloberflache,1977(311):512.
    [5] Flis J., Smialowski M.. Hydrogen embrittlement of polycrysstalline iron whiskers[J].Scripta Metallurgica.1979,13:641-643.
    [6] Yen S. K., Huang I. B.. Critical hydrogen concentration for hydrogen-induced blistering onAISI430stainless steel[J]. Materials Chemistry and Physics.2003,80:662-666.
    [7] Ueda Y., Funabiki T., Shimada T., Fukumoto K., Kurishita H., Nishikawa M.. Hydrogenblister formation and cracking behavior for various tungsten materials[J]. Journal ofNuclear Materials.2005,337–339:1010-1014.
    [8] Aleksandrov P. A., Baranova E. K., Baranova I. V., et al. Behavior of implanted hydrogenin thermally stimulated blistering in silicon[J]. Radiation Effects and Defects in Solids,2003,158:771-781.
    [9] Zang D., Maroevic P., McLellan R.B.. Hydrogen-induced vacancies on metal surfaces[J].Journal of Physics and Chemistry of Solids.1999,60:1649-1654.
    [10] Fukai Y., Okuma N.. Evidence of copious vacancy formation in Ni and Pd under a highhydrogen pressure[J]. Japanese Journal of Applied Physics. Part2(Lett.)1993,32:L1256-L1259.
    [11] Fukai Y., Okuma N.. Formation of Superabundant Vacancies in Pd Hydride under HighHydrogen Pressures[J]. Physical Review Letters.1994,73:1640-1643.
    [12] Fukai Y., Kurokawa Y., Hiraoka H.. Superabundant Vacancy Formation and ItsConsequences in Metal-Hydrogen Alloys[J]. Journal of The Japan Institute of Metals1997,61:663.
    [13] Fukai Y., Ishii Y., Goto Y., Watanabe K.. Formation of superabundant vacancies in Pd-Halloys[J]. Journal of Alloys and Compounds.2000,313:121.
    [1] Moreira R.M., Franco C.V., Joia C.J.M.B., Giordana S., Mattos O.R., CorrosionScience.2004,46:2987-3003.
    [2] Tang J.L., Zuo Y., Study on Corrosion Resistance of Palladium Films on316L StainlessSteel by Electroplating and Electroless Plating[J], Corrosion Science,2008,50:2873–2878.
    [3] Gao X., Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Electroplated Palladium-CopperAlloy Film on316L Stainless Steel and Its Corrosion Resistance in Mixture of Aceticand Formic Acids[J], Corrosion Science.2009,51:1822–1827.
    [4] Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Preparation of Corrosion ResistantPalladium Films on316L Stainless Steel by Brush Plating[J]. Surface and CoatingsTechnology,2010,204:1637–1645.
    [5] Moulder J.F., Handbook of X-ray Photoelectron Spectroscopy, Physical ElectronicsDivision, Perkin-Elmer Corp.,1992.
    [6]王怀明邓景发董树忠邱岳明,氧在银钯合金表面上的吸附[J].化学物理学报,1991,4:59-64.
    [7] Rochefort A., Abon M., Delichre P., Bertolini J.C., Alloying effect on the adsorptionproperties of Pd50Cu50{111} single crystal surface[J]. Surface Science.1993,294:43-52.
    [8] Shobha T., Aravinda C.L., Parthasarathi Bera, Gomathi L., Mayanna S.M.,Character-ization of Ni Pd alloy as anode for methanol oxidative fuel cell[J]. MaterialsChemistry and Physics.2003,80:656-661.
    [9] Shioyama H., Min X., Preparation of palladium–iron alloy in the graphite matrix[J].Carbon.2004:42,2127-2129.
    [10] Wang T., Chen L.Q., Liu Z.K., First-principles calculations and phenomenologicalmodeling of lattice misfit in Ni-base superalloys[J]. Materials Science and Engineering:A.2006,431:196-200.
    [11]胡荣宗,赵雄超,翁玉华,林昌建,醋酸介质中溶解氧对不锈钢和磷脱氧铜腐蚀行为影响[J].电化学.2002,8:409-414.
    [12] Sourisseau T., Chauveau E., Baroux B., Mechanism of copper action on pittingphenomena observed on stainless steels in chloride media[J]. Corrosion Science.2005,47:1097-1117.
    [13] Pardo A., Merino M.C., Carboneras M., Viejo F., Arrabal R., Mu oz J., Influence of Cuand Sn content in the corrosion of AISI304and316stainless steels in H2SO4[J].Corrosion Science.2006,48:1075-1092.
    [14] Pardo A., Merino M.C., Carboneras M., Coy A.E., Arrabal R., Pitting corrosionbehaviour of austenitic stainless steels with Cu and Sn additions[J]. Corrosion Science.2007,49:510-525.
    [15] Sun C., Xu J., Wang F.H., Yu C.K.. Effect of sulfate reducing bacteria on corrosion ofstainless steel1Cr18Ni9Ti in soils containing chloride ions[J]. Materials Chemistry andPhysics.2011,126:330-336.
    [16] Hastuty S., Nishikata A., Tsuru T.. Pitting corrosion of Type430stainless steel underchloride solution droplet[J]. Corrosion Science.2010,52:2035-2043.
    [17] Krawiec H., Vignal V., Heintz O., Oltra R., Influence of the dissolution of MnSinclusions under free corrosion and potentiostatic conditions on the composition ofpassive films and the electrochemical behaviour of stainless steels[J]. ElectrochimicaActa.2006,51:3235-3243.
    [18] Lang G., Ujvari M., Horanyi G., On the reduction of ClO-4ions in the course of metaldissolution in HClO4solutions[J]. Corrosion Science.2003,45:1.
    [19] He W., Knudsen O.., Diplas S.. Corrosion of stainless steel316L in simulatedformation water environment with CO-2-H2S-Cl[J]. Corrosion Science.2009,51:2811-2819.
    [20] Marcus P., Maurice V., Strehblow H.-H.. Localized corrosion (pitting): A model ofpassivity breakdown including the role of the oxide layer nanostructure[J]. CorrosionScience.2008,50:2698-2704.
    [21] Zha Q.X., Introduction to kinetics of electrode process, Science Press, Beijing,2002,pp.84-88.
    [22] Kwok C.T., Man H.C., Cheng F.T., Cavitation erosion-corrosion behaviour of lasersurface alloyed AISI1050mild steel using NiCrSiB[J]. Materials Science andEngineering: A.2001,303:250-261.
    [23] Bregliozzi G., Di Schino A., Ahmed S.I.U., Kenny J.M., Haefke H., Cavitation wearbehaviour of austenitic stainless steels with different grain sizes[J]. Wear.2005,258:503-510.
    [24] Barik R.C., Wharton J.A., Wood R.J.K., Stokes K.P.. Electro-mechanical interactionsduring erosion-corrosion[J]. Wear.2009,267:1900-1908.
    [25] Hutchings I.M., The Erosion of Materials by Liquid Flow, MTI Publication No.25,Materials Technology Institute of the Chemical Process Industries Inc.,1986.
    [26] Madsen B.W., Measurement of erosion-corrosion synergism with a slurry wear testapparatus[J]. Wear.1988,123:127-142.
    [27] Heitz E., Chemo-mechanical effects of flow on corrosion[J]. Corrosion.1991,47:135-145.
    [28] Lima M.M., Godoy C., Modenesi P.J., Avelar-Batista J.C., Davison A., Matthews A.,Coating fracture toughness determined by Vickers indentation: an important parameterin cavitation erosion resistance of WC–Co thermally sprayed coatings[J]. Surface andCoatings Technology.2004,177-178:489-496.
    [1] Dean M.H., Stimming U., The electronic properties of disordered passive films[J],Corrosion Science,1989,29:199–211.
    [2] Hakiki N.E., Montemor M.F., Ferreira M.G.S., Belo M. da C., Semiconducting propertiesof thermally grown oxide films on AISI304stainless steel[J], Corrosion Science,2000,42:687–702.
    [3] Sim es A.M.P., Ferreira M.G.S., Rondot B., Belo M. da C., Study of Passive Films Formedon AISI304Stainless Steel by Impedance Measurements and Photoelectrochemistry[J],Journal of Electrochemical Society.1990,137:82–87.
    [4] Sunseri C., Piazza S., Quarto F. D., Photocurrent Spectroscopic Investigations of PassiveFilms on Chromium[J], Journal of Electrochemical Society.1990,137:2411–2417.
    [5] Craig (Ed.) B.G., Fundamental Aspects of Corrosion Films in Corrosion Science, PlenumPress, New York,1991, pp.57-58.
    [6] Antunes R.A., Oliveira M.C.L., Ett G., Ett V., Corrosion of metal bipolar plates for PEMfuel cells[J], International Journal of Hydrogen Energy.2010,35:3632–3647.
    [7] Kraytsberg A., Auinat M., Ein-Eli Y., Reduced contact resistance of PEM fuel cell’s bipolarplates via surface texturing[J], Journal of Power Sources.2007,164:697–703.
    [8] Tang. J.L., Zuo Y., Study on Corrosion Resistance of Palladium Films on316L StainlessSteel by Electroplating and Electroless Plating[J], Corrosion Science,2008,50:2873–2878.
    [9] Zuo Y., Tang J.L., Fan C.Z., Tang Y.M., Xiong J.P., An Electroless Plating Film ofPalladium on304Stainless Steel and Its Excellent Corrosion Resistance[J]. Thin SolidFilms.2008,516:7565–7570.
    [10] Tang J.L., Zuo Y.,. Tang Y.M, Xiong J.P., The Preparation of Corrosion Resistant PalladiumFilms on316L Stainless Steel by Brush Plating[J]. Surface and Coatings Technology,2010,204:1637–1645.
    [11] Gao X., Tang J.L., Zuo Y., Tang Y.M., Xiong J.P., The Electroplated Palladium-CopperAlloy Film on316L Stainless Steel and Its Corrosion Resistance in Mixture of Acetic andFormic Acids[J], Corrosion Science.2009,51:1822–1827.
    [12] Xu L., Zuo Y., Tang J.L., Tang Y.M., Ju P.F., Chromium–palladium films on316L stainlesssteel by pulse electrodeposition and their corrosion resistance in hot sulfuric acidsolutions[J], Corrosion Science.2011,53:3788-3795.
    [13] Wang H., Turner J.A., Ferritic stainless steels as bipolar plate material for polymerelectrolyte membrane fuel cells[J]. Journal of Power Sources.2004,128:193-200.
    [14] Le D. P., Yoo Y. H., Kim J. G.,. Cho S. M, Son Y. K.. Corrosion characteristics ofpolyaniline-coated316L stainless steel in sulphuric acid containing fluoride[J]. CorrosionScience.2009,51:330-338.
    [15] Fattah-alhosseini A., Passivity of AISI321stainless steel in0.5M H2SO4solution studiedby Mott-Schottky analysis in conjunction with the point defect model[J], Arabian Journal ofChemistry, http://dx.doi.org/doi:10.1016/j.arabjc.2012.02.015.
    [16] Valéria A. A., Christopher M.A. B., Characterisation of passive films formed on mild steelsin bicarbonate solution by EIS[J], Electrochimica Acta.2002,47:2081–2091.
    [17] Ningshen S., Kamachi M.U., Mittal V.K., Khatak H.S., Semiconducting and passive filmproperties of nitrogen-containing type316LN stainless steels[J], Corrosion Science.2007,49:481–496.
    [18] Sato N., Passivity of Metals, in: R.P. Frankenthal (Eds.), The Electrochemical Society, NewJersey,1978, pp.479-480.
    [19] Brooks A.R., Clayton C.R., Doss K., Lu Y.C., On the role of Cr in the passivity of stainlesssteel[J], Journal of Electrochemical Society.1986,133:2459–2464.
    [20] Carmezim M.J., Sim es A.M., Figueiredo M.O., Belo M. da C., Electrochemical behaviourof thermally treated Cr-oxide films deposited on stainless steel[J], Corrosion Science.2002,44:451–465.
    [21] Goodlet G., Faty S., Cardoso S., Freitas P.P., Sim es A.M.P., Ferreira M.G.S., Belo M. daC., The electronic properties of sputtered chromium and iron oxide films[J], CorrosionScience.2004,46:1479–1499.
    [22] Olsson C.-O.A., Landolt D., Passive films on stainless steels—chemistry, structure andgrowth[J], Electrochimica Acta.2003,48:1093–1104.
    [23] Shirley D.A., High-resolution X-ray photoemission spectrum of the valence bands ofgold[J], Physical Review B.1972,5:4709–4714.
    [24] Moulder J.F., William F.S., Peter E.S.. Handbook of X-ray Photoelectron Spectroscopy.Perkin-Elmer Corporation, USA,1992.
    [25] I. Olefjord, L. Wegrelius, The influence of nitrogen on the passivation of stainless steels[J],Corrosion Science.1996,38:1203–1220.
    [26] Lu Y.C., Ives M.B., Clayton C.R., Synergism of alloying elements and pitting corrosionresistance of stainless steels[J], Corrosion Science.1993,35:89–96.
    [27] Belo M. da C., Hakiki N.E., Ferreira M.G.S., Semiconducting properties of passive filmsformed on nickel–base alloys type Alloy600: influence of the alloying elements[J],Electrochimica Acta.1999,44:2473–2481.
    [28] Xiong Y.L., Weng L.T., Bertrand P., Ladrière J., Daza L., Ruiz P., Delmon B., Synergybetween-Sb2O4and Fe2(MoO4)3during the first hours of the catalytic oxidation ofisonbutence to methacrolein[J], Journal of Molecular Catalysis A: Chemical.2000,155:59–71.
    [29] Huang Y., Cong L.Y., Yu J., Eloy P., Ruiz P., The surface evolution of a catalyst jointlyinfluenced by thermal spreading and solid-state reaction: a case study with an Fe2O3-MoO3system[J], Journal of Molecular Catalysis A: Chemical.302(2009)48–53.
    [30] Cheng X.Q., Feng Z.C., Li C.T., Dong C.F., Li X.G., Investigation of oxide film formationon316L stainless steel in high-temperature aqueous environments[J]. Electrochimica Acta2011,56:5860–5865.
    [31] Stoychev D., Stefanov P., Nicolov D., Valov I., Marinova T., Chemical composition andcorrosion resistance of passive chromate films formed on stainless steels316L and1.4301[J], Materials Chemistry and Physics.2002,73:252–258.
    [32] Feng Z.C., Cheng X.Q., Li C.T., Dong C.F., Li X.G., Passivity of316L stainless steel inborate buffer solution studied by Mott–Schottky analysis, atomic absorption spectrometryand X-ray photoelectron spectroscopy[J], Corrosion Science.2010,52:3646–3653.
    [33] Bautista A., Blanco G., V elasco F., Gutiérrez A., Soriano L., Palomares F.J., Takenouti H.,Changes in the passive layer of corrugated austenitic stainless steel of low nickel contentdue to exposure to simulated pore solutions[J], Corrosion Science.2009,51:785–792.
    [34] Yang L., Yu H., Jiang L., Zhu L., Jian X., Wang Z., Improved anticorrosion properties andelectrical conductivity of316L stainless steel as bipolar plate for proton exchangemembrane fuel cell by lower temperature chromizing treatment[J], Journal of PowerSources.2010,195:2810–2814.
    [1] Cho KH, Lee WG, Lee SB, Jang H. Corrosion resistance of chromized316L stainless steelfor PEMFC bipolar plates[J]. Journal of Power Sources.2008,178:671–676.
    [2] Brady M.P., Abd Elhamid M., Dadheech G., et al. Manufacturing and performanceassessment of stamped, laser welded, and nitrided FeCrV stainless steel bipolar plates forproton exchange membrane fuel cells [J]. International Journal of Hydrogen Energy.2013,38:4734–4739.
    [3] Wang J.L., Sun J.C., Li S. et al. Surface diffusion modification AISI304SS stainless steelas bipolar plate material for proton exchange membrane fuel cell[J]. International Journal ofHydrogen Energy.2012,37:1140-1144.
    [4] Tian R.J., Sun J.C.. Corrosion resistance and interfacial contact resistance of TiN coated316L bipolar plates for proton exchange membrane fuel cell [J]. International Journal ofHydrogen Energy.2011,36:6788–6794.
    [5] Elsener B, Rota A, Bo¨hni H. Impedance study on the corrosion of PVD and CVD titaniumnitride coatings[J]. Materials Science Forum.1989,44–45:29–38.
    [6] Zhang M., Wu B., Lin G.Q., Shao Z.G., et al. Arc ion plated Cr/CrN/Cr multilayers on316Lstainless steel as bipolar plates for polymer electrolyte membrane fuel cells [J]. Journal ofPower Sources.2011,196:3249–3254.
    [7] Tian R.J.. Chromium nitride/Cr coated316L stainless steel as bipolar plate for protonexchange membrane fuel cell [J]. Journal of Power Sources.2011,196:1258-1263.
    [8] Fu Y, Lin G, Hou M, Wu B, Shao Z, Yi B. Carbon-based films coated316L stainless steel asbipolar plate for proton exchange membrane fuel cells[J]. International Journal ofHydrogen Energy.2009,34:405–409.
    [9] Zhong L., Xiao S.H., Hu J., et al. Application of polyaniline to galvanic anodic protectionon stainless steel in H2SO4solutions [J]. Corrosion Science.2006,48:3960–3968.
    [10] Lee Y.B., Lee C.H., Kim K.M., et al. Preparation and properties on thegraphite/polypropylene composite bipolar plates with a304stainless steel by compressionmolding for PEM fuel cell [J]. International Journal of Hydrogen Energy.2011,36:7621-7627.
    [11] Tang J.L., Zuo Y.. Study on Corrosion Resistance of Palladium Films on316L StainlessSteel by Electroplating and Electroless Plating. Corrosion Science.50(2008)2873-2878
    [12] Xu L., Zuo Y., Tang J.L., et al. Chromium–Palladium films on316L stainless steel by pulseelectrodeposition and their corrosion resistance in hot sulfuric acid solutions. CorrosionScience.53(2011). p3788-3795.
    [13] Hoflund G.B., Hagelin A.E., ELS and XPS study of Pd/PdO methane oxidation catalysts,Appl. Surf. Sci.205(2003)102-112.
    [14] AricoáA.S., Shukla A.K., Kim H., et al, A XPS study on oxidation states of Pt and itsalloys with Co and Cr and its relevance to electroreduction of oxygen, Appl. Surf. Sci.172(2001)33-40.
    [15] Keller P., Strehblow H.H., XPS investigations of electrochemically formed passive layerson Fe/Cr-alloys in0.5M H2SO4, Corros. Sci.46(2004)1939-1952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700