非均匀波的反射与透射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在每层的厚度足够小而层数足够多的情况下,折射率连续改变的介质实质上相当于由许多层折射率均匀的薄膜堆积而成,可以采用解析转移矩阵方法代替数值计算来精确确定非均匀介质的反射系数。通过定义总波数,其包括了在折射率连续变化的介质中传播的主波和子波的累计贡献,最终在没有引入任何近似的情况下得到了非常简洁的常规形式的公式,且具有清晰的物理意义。
     所得公式表明,除了环境与该介质的上下表面之间的折射率之外,反射系数只依赖于主波和子波所累计的总的位相贡献。
     与传统的WKBJ比较,由于WKBJ忽略了子波反射,所以是近似的结果而本文得到的结果是精确结果。
     根据所得的公式,本文研究了光波在单层介质、双层介质、三层介质、折射率分别呈指数分布、高斯分布、正弦分布的介质的反射和透射情况并对结果进行了讨论。实际上本文的结果可以计算任意折射率分布的介质。
     本文对光的反射与透射的研究结果具有广泛的应用前景,如各种具有很高的灵敏度和精确度的传感器或者测量装置。其中最引人注目的应当是可以根据其来指导薄膜工艺中的厚度控制或材料选择,只要厚度的改变或者折射率的改变满足所推导出条件,则反射率与透射率保持不变。这些结果对诸如红外薄膜、太阳能薄膜等热点具有重要意义。
     在分析物质波在非均匀势场中的反射及透射几率时,由于薛定谔方程与光波导方程的近似性,含时薛定谔方程类似于菲涅尔方程而与时间无关的薛定谔方程则类似于亥姆霍兹方程,势场分布类似于折射率分布,能量本征值对应于光波的传播常数,高折射率区域相当于势阱而低折射率区域相当于势垒,因此将分析光波导中所应用的解析转移矩阵方法应用于分析薛定谔方程中。最终在没有求解薛定谔方程,而且没有引入任何近似的情况下,通过定义总波数,得到了非常简洁的表达式且物理意义清晰。
     在所得公式中,整个的反射与透射几率除了环境、势垒的开始点和结束点的参数外,只依赖于主波和子波总的累积相移。同时公式不受德布罗意波长和能量范围大小的局限。
     本文得到的结果可以广泛地应用于许多基本的量子现象,例如,量子隧道效应、量子反射、量子粒子和隧道共振等。利用该结果分别研究了抛物线型单势垒情况、方型双势垒情况、抛物线型双势垒情况以及置于外场中的双势垒情况。
     从光波反射系数公式和物质波的反射系数公式来看,两者一个统一的形式,这样就将光波、物质波在非均匀介质中的反射及透射问题统一起来,理所当然具有十分重要的意义。
Since a continuous varying index profile is nothing more than a stack of thin layers which have homogeneous refractive indeices when the thickness of layers is very very small while the number of layers is very very large, in the present investigation, instead of the numerical calculations with transfer matrix approach, the analytical transfer matrix method is employed to determine the reflection coefficient from an inhomogeneous stratified media. With the help of the definition of general wavenumber, which contains both the main waves and the subwaves propagated in the structure with continuously varying index profile, an explicit and exact expression with clear physical insight is obtained without introducing any approximation.
     The result shows that, besides the ambience and the refraction indices of both front-surface and back-surface of the structure, the unique dependence of the reflection coefficient is the total phase shift accumulated by the main wave and the subwaves.
     The tranditional WKBJ approach is an approximation in which the subwaves refrected from the interior of the structure are neglected while the result presented here is exact.
     The reflection from one-layer planar structure, two-layer planaer structure and three-layer structure is studied using the expression. Even more, the refractive index profile is an exponential function, or Gauss function, or periodi sine functions is calculated and the results are discussed. In fact the expression obtained in the paper can be applied to arbitrary refractive index profile.
     The study on the refrection and transmission of lights can be adopted in many application, such as high sensitive sensor or measurement instructions. Especially it can be used in the control of thickness of materials selection in the thin film process, the reflection coefficient will keep unchange only if the change in the thickness or refractive index satisfied the derived condition presented here. The conclusions are very useful for the hot application in the infra-red thin film or solar thin film today.
     In the alaysis of reflection and transmission probability of the particle wave from inhomogeneous potential field, since the Shrodinger equation is similar with the light waveguide equation, such as the time-dependent Schrodinger equation is similar with Fresnel equation while the time-independent Schrodinger equation is similar with Helmhoz equation, it can be regarded that the potential filed equates to refractive index profile, energy eigenvalues equates to light propagation constant, high refractive index section to potential well while low refractive index section to potential barrier. So the analytical transfer matrix method can be also applied to analyzing the Schrodinger equation. Without solving the Schrodinger equation, and with the help of defining the general wavenumber, an exact and general expression for the transmission and reflection probabilities are presented in a very explicit way.
     Different from the WKB method and its refined versions, subwaves, which inherently exist in a inhomogeneous systemand is always neglected in the semiclassical approaches, is taken into account, results in the total phase shift of a quantum particle across an arbitrary potential barrier. Moreever, it is not subject to the requirement of the de Broglie wavelength and the range of the particle energy.
     As a consequence, the expression obtained here may extensively be applied to many basic quantum phenomena, such as, quantum tunneling, quantum reflection, the time related to a tunneling particle and the resonant tunneling. The parabolic barrier, double barrier with a rectangular well, double barrier with a parabolic well structure and the potential barrier placed in an external field are discussed here.
     The reflection and the transmission of light and quantum particle are unified in the expressions, obviously it is very important in physics.
引文
[1]. Berning P H, Turner A F., J. Opt. Soc., 47, 230 (1957)
    [2]. Yasicc A. Optics of Thin Film, North Holland, Ansterdam, 1960
    [3]. Anders H, Dumner Schichiem fur die Optik, Stuttgart, 1965
    [4]. H. A. Macleod, Thin-Film Optical Filters, 1st ed. Macmillan, New York, 1969
    [5]. Hermingway D J, Lissberger P H, Optica Acta, 20(2), 85 (1973)
    [6]. Knittl, Z., Optics of Thin Films, London, New York, Sydney, Toronto, John Wiley ad Sons, 1985
    [7]. H. A. Macleod, Thin-Film Opticcal Filters, 2nd ed. Macmillan, New York, 1986
    [8]. Balic D I, Corzine S W, IEEE Quantum Electron., 28, 514 (1992)
    [9]. Szipocs R, Ferencz K, Spielmann C, et al., Opt. Lett., 19, 201 (1994)
    [10]. Takada H, Kakehata M, Torizuka K, Appl. Phys. B, 70, S189 (2000)
    [11]. Matuschek N, Kartuer F X, Keller V, IEEE J. Quantum. Electron., 35, 129 (1999)
    [12]. Katsidis C C, Siaplcas D I, Appl. Opt. 41, 3978 (2002)
    [13]. G. Wenzel, Z. Phys., 38, 518 (1926)
    [14]. H. M. Kramers, Z. Phys., 39, 828 (1926)
    [15]. L. Brillouin, J. de Physique et le Rad. 7 (1926)
    [16].曾谨言,量子力学卷II,科学出版社,2000年
    [17]. M. V. Berry and K. E. Mount, Rep. Prog. Phys., 35, 315 (1972)
    [18]. S. C. Miller and R. H. Good,, Phys. Rev., 51, 174 (1953)
    [19]. J. B. Keller, Ann. Phys. (N.Y.) 4, 180 (1958)
    [20]. V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximations in Quantum Mechanics (Dordrecht) (1981)
    [21]. F. Xiang and G. L. Yip, J. Lightwave Tech., 12, 443 (1994)
    [22]. H. Friedrich and J. Trost, Phys. Rev. A, 54, 1136 (1996)
    [23]. H. Friedrich and J. Trost, Phys. Rev. Lett., 76, 4869 (1996)
    [24]. H. Friedrich and J. Trost, Phys. Rev. A, 59, 1683 (1999)
    [25]. H. Friedrich and J. Trost, Phys. Rep., 397, 359 (2004)
    [26]. J. B. Bronzan, Phys. Rev. A, 54, 41 (1996)
    [27]. M. Hruska, W. Keung, U. Sukhatme, Phys. Rev. A, 55, 3345 (1997)
    [28]. K. M. Cheng, P. T. Leung, and C. S. Pang, J. Phys. A, 36, 5045 (2003)
    [29]. M. A. F. Gomez, S. Adhikari, J. Phys. B, 30, 5987 (1997)
    [30]. V. B. Mandelzweig, J. Math. Phys., 40, 6266 (1999)
    [31]. L. M. Walpita, J. Opt. Soc. Amer. A, 2, 595 (1985)
    [32]. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, J. Lightwave Technol., LT-5, 660 (1987)
    [33]. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, IEEE J. Quantum Electron., 24, 1524 (1988)
    [34]. T. Makino and J. Glinski, IEEE J. Quantum Electron., 24, 1507 (1988)
    [35]. K. E. Brennan and C. J. Summers, J. Appl. Phys., 61, 614 (1987)
    [36]. B. Jonsson and S. T. Eng, IEEE J. Quantum Electron., 26, 2025 (1990)
    [37]. F. Abeles, Ann. D. Phys., 5, 596 (1950)
    [38]. Z. Cao et al., J. Opt.Soc. Am. A, 16, 2209 (1999)
    [39]. Z. Cao, L. Qiu and Q. Shen et al., Chin. Phys. Lett., 16, 413 (1999)
    [40]. Q. Liu, Z. Cao, and Q. Shen et al., Chin. Phys. Lett., 17, 349 (2000)
    [41]. Q. Liu, Z. Cao, and Q. Shen et al, Optical and Quantum Electron., 33, 675 (2001)
    [42]. Z. Cao et al., Phys. Rev. A, 63, 054103 (2001)
    [43]. Feng Zhou, Z. Cao et al., Phys. Rev. A, 67, 062112 (2003)
    [44]. He Ying, Z. Cao et al., Chin. Phys. Lett., 21, 2089 (2004)
    [45]. Liang Zheng, Z. Cao et al., Chin. Phys. Lett., 22, 2465 (2005)
    [46]. Xu Tian, Z. Cao et al., Chin. Phys. Lett., 22, 2746 (2005)
    [47]. SU Peng-yi, CHEN Kai-sheng, CAO Zhuang-qi, ODA software verification, Electronic Product Reliability and Environmental Testing, 23, 134 (2005)
    [48]. SU Peng-yi, CHEN Kai-sheng, CAO Zhuang-qi, Computer Simulation for photomask pattern processing, Micronanoelectronic Technology,41, 11(2004)
    [49]. SU Peng-yi, CHEN Kai-sheng, CAO Zhuang-qi, Design and manufacture for 63.5mmX127mm UT 1X reticle, Semicondutor Technology, 29, 6(2004)
    [50]. SU Peng-yi, CHEN Kai-sheng, CAO Zhuang-qi, Computer Simulation of Photomask Pattern Placement based on FSM, Semiconductor Technology,28, 10 (2003)
    [51]. SU Peng-yi, CHEN Kai-sheng, CAO Zhuang-qi, Sizing issue in the photomask processing, Semiconductor Technology, 28, 7 (2003)
    [1]. M.波恩, E.沃耳夫著,《光学原理》,(科学出版社,北京,1978年)
    [2]. A. Yariv, Quantum Electronics, 2ed. (Wiley&Sons, New York, 1975)
    [3]. K. Hayata, M. Koshiba, K. Nakamura, and A. Shimizu, Electron. Lett., 24, 614 (1988)
    [4]. K. Nakamura, A. Shimizu, M. Koshiba and K. Hayata, IEEE J. Quantum Electro., 25, 889 (1989)
    [5]. F. Goos and H. H?nchen, Ann. Phys., 1, 333, (1947)
    [6]. F. Goos and H. H?nchen, Ann. Phys., 2, 87, (1949)
    [7]. R. Jacobsson, Prog. In Opt., (ed by E. Wolf, Wiley&Sons, Sweden, 1965)
    [1]. R. Jacobsson,“Light reflection from films of continuously varying refractive index,”in Progress in Optics, E. Wolf, ed. (Elsevier North-Holland, Amsterdam, 1966), 5, 247-286.
    [2]. F. Abeles,“Optical properties of inhomogeneous films,”Natl. Bur. Stand. (U.S.) Misc. Publ. 256, 41-58 (1964).
    [3]. P. Yeh and S. Sari,“Optical properties of stratified media with exponentially graded refractive index,”Appl. Opt., 22, 4142-4145 (1983).
    [4]. M. Kildemo, O. Hunderi, and B. Drevillon,“Approximation of the reflection coefficient for rapid real time calculation of inhomogeneous films,”J. Opt. Soc. Am. A 14, 931-939 (1997)
    [5]. J. F. Hall,“Reflection coefficient of optically inhomogeneous layers,”J. Opt. Soc. Am., 48, 654-657 (1958).
    [6]. M. Kildemo,“Real-time monitoring and growth control of Si-gradient-index structures by multiwavelength ellipsometry,”Appl. Opt., 37, 113-124 (1998)
    [7]. J. M. Vigoureux,“Polynomial formulation of reflection and transmission by stratified planar structures,”J. Opt. Soc. Am. A 8, 1697-1701 (1991)
    [8]. J. M. Vigoureux,“Use of Einstein’s addition law in studies of reflection by stratified planar structures,”J. Opt. Soc. Am. A 9, 1313-1319 (1992)
    [9]. J. M. Vigoureux,“The reflection of light by planar stratified media: the grupoid of amplitudes and a phase‘Thomas precession,’”J. Phys. A 26, 385-393 (1993)
    [10]. Z. Cao, Y. Jiang, and Q. Shen, X. Dou, and Y. Chen,“Exact analytical method for planar optical waveguides with arbitrary index profile,”J. Opt. Soc. Am. A 16, 2209-2212 (1999)
    [11]. Z. Cao, Q. Liu, Y. Jiang, Q. Shen, and X.Dou,“Phase shift at a turning point in a planar optical waveguide,”J. Opt. Soc. Am. A 18, 2161-2163 (2001)
    [12]. Y. C. Ou, Z. Cao, and Q. Shen,“Formally exact quantization condition for nonrelativistic quantum systems,”J. Chem. Phys. 121, 8175-8178 (2004)
    [13]. I. S. Gradshteyn, and I. M. Ryzhik, Tables of Integrals, Series and Products, (New York, Academic Press, 1965)
    [14]. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (North-Amsterdam, Holland,1977)
    [15]. J. Chilwell, and I. Hodgkinson,“Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,”J. Opt. Soc. Am. A 1, 742-753 (1984)
    [16]. Pengyi Su, Zhuangqi Cao, Kaisheng Chen, Xiaoxu Deng, Chunxiang Liu and Qishun Shen, Explicit expression of light reflection from inhomogeneous planar structures, J. Opt. Soc. Am. B 24, 3077-3080 (2007)
    [17]. E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley, New York, 1970), Chap. 7
    [1]. D.K. Ferry, S. M. Goodnick 1997, Transport in Nanostructures (Cambridge University Press, United Kingdom)
    [2]. J. Leo, and G.A. Toombs 1991, Phys. Rev. B 43, 9944
    [3]. S. Roy, A.K. Ghatak, I.C. Goyal, and R.L. Gallawa 1993, IEEE J Quant. Electron., 29, 340
    [4]. A.M. Steinberg 1995, Phys. Rev. Lett. 27, 2405
    [5]. K. Hagino, and A.B. Balantekin 2004, Phys. Rev. A 70, 032106
    [6]. L.V. Chebotarev 1998, Phys. Stat. Sol. B 208, 69
    [7]. J. A. Stovneng, E. H. Hauge 1991, Phys. Rev. B 44, 13582
    [8]. S. L. Konsek, T. P. Pearsall 2003, Phys. Rev. B 67, 045306
    [9]. G. Garcla-CalderOn, A. Rubio 1997, Phys. Rev. A 55, 3361
    [10]. N. Yamada, G. Garcla-CalderOn and J. Villavicencio 2005, Phys. Rev. A 72, 012106
    [11]. U. Wulf, V. V. Skalozub 2005, Phys. Rev. B 72, 165331
    [12]. J. Villavicencio, R. Romo and E. Cruz 2007, Phys. Rev. A 75, 012111
    [13]. M.V. Berry, and K.E. Mount 1972, Rep. Prog. Phys. 35, 315
    [14]. L.D. Landau, and E.M. Lifshitz 1965, Quantum Mechanics (Non-Relativistic Theory) (Pergamon, Oxford).
    [15]. D. Sokolovski, S. Brouard, and J.N.L. Connor 1994, Phys. Rev. A 50, 1240
    [16]. B.R. Holstein 1996, Am. J. Phys. 64, 1061
    [17]. L.V. Chebotarev 1997, Eur. J. Phys. 18, 188
    [18]. Z. Cao, Q. Liu, Q. Shen, X. Dou, and Y. Chen 2001, Phys. Rev. A 63, 054103
    [19]. F. Zhou, Z. Cao, and Q. Shen 2003, Phys. Rev. A 67, 062112
    [20]. Y.C. Ou, Z. Cao, and Q. Shen 2004, J. Chem. Phys. 121, 1
    [21]. H.M. James 1949, Phys. Rev. B 76, 1602
    [22]. P.A. Mello, P. Pereyra and N. Kumar 1988, Ann. Phys. NY 181, 290
    [23]. P. Pereyra, E. Castillo 2002, Phys. Rev. B 65, 205120
    [24]. G.. Garcla-CalderOn, R. Romo and A. Rubio, 1993, Phys. Rev. B 47, 9572
    [25]. G.. Garcla-CalderOn, R. Romo and A. Rubio, 1997, Phys. Rev. B 56, 4845
    [26]. R.M.A. Azzam, and N.M. Bashara 1977, Ellipsometry and Polarized Light (North-Holland).
    [27]. R. C. Miller, D. A. Kleinman and A. C. Gossard, 1984, Phys. Rev. B 29, 7085
    [28]. K. Nakamura et al., 1991, IEEE J. Quantum Electron., 27, 1189
    [29]. Pengyi Su, Zhuangqi Cao, Kaisheng Chen, Cheng Yin and Qishun Shen, Explicit expression for the reflection and transmission probabilities through an arbitrary potential barrier, J. Phys. A: Math. Theor. 41 (2008) 465301
    [1]. Z. Cao et al., J. Opt.Soc. Am. A, 16, 2209 (1999)
    [2]. Z. Cao, L. Qiu and Q. Shen et al., Chin. Phys. Lett., 16, 413 (1999)
    [3]. Q. Liu, Z. Cao, and Q. Shen et al., Chin. Phys. Lett., 17, 349 (2000)
    [4]. Q. Liu, Z. Cao, and Q. Shen et al, Optical and Quantum Electron., 33, 675 (2001)
    [5]. Z. Cao et al., Phys. Rev. A, 63, 054103 (2001)
    [6]. Z. Cao et al., J. Opt.Soc. Am. A, 16, 2209 (1999)
    [7]. Z. Cao, L. Qiu and Q. Shen et al., Chin. Phys. Lett., 16, 413 (1999)
    [8]. Q. Liu, Z. Cao, and Q. Shen et al., Chin. Phys. Lett., 17, 349 (2000)
    [9]. Q. Liu, Z. Cao, and Q. Shen et al, Optical and Quantum Electron., 33, 675 (2001)
    [10]. Z. Cao et al., Phys. Rev. A, 63, 054103 (2001)
    [11]. R. Jacobsson, Progress in Optics, E. Wolf, ed. (Elsevier North-Holland, Amsterdam, 5, 247 (1966)
    [12]. F. Abeles, Natl. Bur. Stand. (U.S.) Misc. Publ. 256, 41 (1964).
    [13]. P. Yeh and S. Sari, Appl. Opt., 22, 4142 (1983).
    [14]. M. Kildemo, O. Hunderi, and B. Drevillon, J. Opt. Soc. Am. A 14, 931 (1997)
    [15]. D.K. Ferry, S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, United Kingdom) (1997)
    [16]. J. Leo, and G.A. Toombs, Phys. Rev. B 43, 9944 (1991)
    [17]. S. Roy, A.K. Ghatak, I.C. Goyal, and R.L. Gallawa, IEEE J Quant. Electron., 29, 340 (1993)
    [18]. A.M. Steinberg , Phys. Rev. Lett. 27, 2405 (1995)
    [19]. K. Hagino, and A.B. Balantekin, Phys. Rev. A 70, 032106 (2004)
    [20]. F. Zhou, Z. Cao, and Q. Shen, Phys. Rev. A 67, 062112 (2003)
    [21]. Y.C. Ou, Z. Cao, and Q. Shen 2004, J. Chem. Phys. 121, 1 (2004)
    [22]. H.M. James, Phys. Rev. B 76, 1602 (1949)
    [23]. P.A. Mello, P. Pereyra and N. Kumar, Ann. Phys. NY 181, 290 (1988)
    [24]. P. Pereyra, E. Castillo, Phys. Rev. B 65, 205120 (2002)
    [25]. G.. Garcla-CalderOn, R. Romo and A. Rubio, Phys. Rev. B 47, 9572 (1993)
    [26]. G.. Garcla-CalderOn, R. Romo and A. Rubio, Phys. Rev. B 56, 4845 (1997)
    [27].王立无,红外薄膜系统的设计和制备,四川大学博士学位论文(2007)
    [28].马全宝,透明的高导电近红外反射ZnO:Ga薄膜的制备及特性研究,浙江大学博士学位论文(2007)
    [29].于化丛,氢化纳米硅(na-Si:H)薄膜太阳电池研究,上海交通大学博士学位论文(2005)
    [30].张榕,氢化纳米硅薄膜光电导性质研究,上海交通大学博士学位论文(2008)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700