星间/星内无线通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速响应空间技术是目前我国空间技术的重要发展方向,星间/星内通信系统是快速响应卫星平台的重要组成部分。传统的星内通信一般采用点对点或总线等有线连接方式,但有线连接的方式不能实现即插即用,不利于系统的快速集成和快速测试,不能满足快速响应的需要。为此本文提出了支持即插即用的基于无线体制的星内通信系统,针对星内无线通信的特殊性,从系统结构、电磁兼容、软件协议等方面进行了理论研究和试验分析。针对星间通信及编队的任务特点,提出了变速率的通信方法,并对其进行了仿真和试验验证。
     本文提出了基于无线体制的星内通信系统体系结构,针对各单机/部件的要求将其划分为无线通信单元以及专用功能单元两部分,通过无线通信单元实现卫星平台各专用功能单元的信息交互。针对星内无线通信体系结构以及星内通信多径、遮挡等问题,深入研究了不同通信体制下星内通信的主要性能及技术指标。通过优化设计确定了FSK/GFSK的调制解调方式,建立了无线通信基本单元的理论模型。采用SOC及RFIC作为核心部件,实现了无线通信的基本单元,并通过无线通信基本单元在星内环境下的通信试验,验证了星内无线通信体系结构的合理性和可行性,为星内无线通信的应用提供了理论依据。
     针对星内无线通信存在的遮挡及多路径问题,提出了多元环形天线射频耦合通信的新方法。基于天线设计理论建立了近场射频通信模型,通过了仿真和试验验证,表明该方法可以实现可靠的射频通信,解决了遮挡及多路径问题。针对无线通信的特点,研究了星内/星外无线通信电磁环境的作用机理,得出了星表为导体的情况下,星内通信和外部射频信号互不干扰的结论,并通过实际的无线通信基本单元验证了该结论的正确性,为星内/星外无线通信的信道及信息路径设计提供了理论支持。
     在星内通信系统体系结构的基础上,针对卫星平台即插即用的需求,提出了基于动态时隙分配的无线网络通信协议。通信协议中采用了主从的工作方式,由上位机节点根据网络内节点的工作时序为下位机分配应答时隙,实现系统中各单机部件统一调度和单机部件的即插即用。对无线网络通信协议进行了仿真和试验验证,测试表明,基于动态时隙分配的无线网络通信协议较好的解决了无线通信时碰撞的问题,满足系统实时性的要求。协议允许节点的自由地加入及退出网络,实现了即插即用的要求。通过试验卫星三号的在轨试验,实现星内无线通信技术的验证。
     针对卫星编队过程中的执行任务期间卫星距离近、通信数据量大,而非任务期间距离远、通信数据量小的特点,再根据通信链路方程,在发射功率及信噪比不变的条件下,可实现通信速率损耗和通信距离损耗之间的交换,提出了星间变速率通信方法。针对变速率通信中射频信号检测、同步的难题,提出了视频信号积累检测方法,利用通用的射频信道解决了变速率的通信问题,简化了系统设计。变速率通信方法通过试验三号卫星进行了在轨验证,实现了400bps到250kbps的变速率通信试验验证。
Operationally responsive space technology was an important developmentdirection of space technology. Inter-satellite/intra-satellite communication systemis an important part of the operationally responsive space satellite platform. Thewired way of point-to-point or bus was usually used in traditional intra-satellitecommunication commonly. But this way was not able to realize plug-and-playproach, and was not suited to the rapid integration and quick testing to realize therapid responsive. In this paper, intra-satellite communication system based on thewireless network was put forward. For the special property of intra-satellitecommunication system, the system structure, electromagnetic compatibility and thesoftware protocol were researched in this paper. For inter-satellite communicationand the formation flying, variable rate communication was proposed, and wassimulated and experimented.
     Firstly, intra-satellite communication system architecture based on the wirelessnetwork was put forward. For requirements of single machine/components, thearchitecture concluded wireless communication unit and special module unit. Theinformation exchange between special module units was realized through wirelesscommunication unit. In order to improve the intra-satellite communication systemarchitecture, multipath, occlusion and so on, main performance and technical indexwith different communication system were deeply studied. FSK/GFSK modulationand demodulation technique was taken. The theoretical model of wirelesscommunication unit was established. SOC and RFIC were as core component tocompose the wireless communication basic unit. The rationality and feasibility ofintra-satellite communication system architecture was verified, through the in-orbittest. This result provides a theoretical basis for the wireless communicationapplication.
     For the occlusion and multipath problems of wireless communications, a newmethod of multi-loop antenna RF coupling communication was put forward. Anear-field RF communication model based on the theory of antenna design wasbuilt. The simulation and experimental results shows that this method can achievereliable RF communications. At the same time, the problem of occlusion andmultipath were solved. The mechanism of intra-satellite/out-satellite wirelesscommunication under electromagnetic environment was also researched. Theconclusion that intra-satellite communication and external RF signal was notaffected each other. This result was verified correctly by actual wireless communication unit. The characteristic of intra-satellite communication providestheoretical support for communication channels and information path design.
     Based on intra-satellite communication system architecture, a wireless networkcommunication protocol with dynamic time slot allocation was proposed forPlug-and-Play demand. The communication protocol used the work of themaster-slave. The lower computer node new entrants to the system request responsetime slot according to the network. The host computer node assigns response timeslot for the lower computer according to the working timing of network nodes.Then complete unified control of stand-alone components and plug-and-play ofstand-alone components. Through the simulation and in-orbit experimental, thewireless network communication protocols based on dynamic slot allocation cansolve the collision problem, and can achieve accuracy real-time requirement.Protocol allowed nodes joining and withdrawing from the network freely to realizeplug-and-play. The method of wireless inter-satellite communication technologyhad been verified by in-orbit test through SY-3.
     Because the status is short-distance between satellites, a great amount of datafor exchange during the satellite formation flying task. Otherwise, the status isopposite. According to the communication link equation, under the same conditionsin the transmit power and SNR. Put forward a method of inter-satellite variable ratecommunication. So as to achieve exchanging between the loss of communicationrate and communication distance loss. Accumulation of the video signal detectionmethod was to solve the difficult problem of RF signal detection andsynchronization. Using a common RF channel to solve the problem of variable ratecommunication, and simplify system design. The method of variable ratecommunication had been verified by in-orbit test through SY-3. The variable ratecommunication can reach from400bps to250kbps formation exchanging.
引文
[1]谭维炽,胡金刚.航天系统工程[M].北京:中国科学技术出版社,2009:602-609.
    [2]熊华钢,王中华.先进航空电子综合技术[M].北京:国防工业出版社,2009:15-34.
    [3]李孝同,施思寒,李冠群.微小卫星综合电子系统设计[J].航天器工程,2008,17(1):30-35.
    [4] T Schetter, M Campbell, D Surka. Multiple Agent-Based Autonomy forSatellite Constellations[J]. Artificial Intrespoelligence,2003,145(1):147-180.
    [5] W D Ivancic. Architecture Study of Space-Based Satellite Networks for NASAMissions[C]//IEEE Aerospace Conference Proceedings,2003(3):1179-1186.
    [6] G Krieger, A Moreira. Multistate SAR Satellite Formations: Potentials andChanllenges[C]//IEEE International Geoscience and Remote SensingSymposium(IGARSS),2005(4):2680-2684.
    [7]王九龙.卫星综合电子系统现状和发展建议[J].航天器工程,2007,16(5):68-73.
    [8]朱振才,杨根庆,余金培等.微小卫星组网与编队技术的发展[J].上海航天,2004(6):46-49.
    [9]马涛,郝云彩,马骏,周胜利.编队飞行卫星的星间跟踪与测量技术综述[J].航天控制,2005,23(3):91-97.
    [10]F Bauer, J Bristow, D Folta. Satellite Formation Flying Using an InnovativeAutonomous Control System Environment[C]//AIAA/AAS AstrodynamicsSpecialists Conference,1997:657-666.
    [11]R Strunce, F Eckert, C Eddy. Responsive Space’s Spacecraft Design Tool[M].New York,2006:24-27.
    [12]R C Blue, G S Bolotin. X2000Advanced Avionics Project: Development of aNew Generation of Avionics for Space Applications[C]//2003IEEE,2003:156-172.
    [13]张国强.星载并行处理计算机系统容错技术研究[D].长沙:国防科学技术大学计算机科学与技术学科硕士学位论文,2006:3-9.
    [14]陈宇.高可靠容错实时系统的支撑技术研究[D].成都:电子科技大学计算机应用学科博士学位论文,2002:99-107.
    [15]C Underwood, G Richardson, J Savignol. SNAP-1: A low cost modularCOTS-based nano-satellite-Design, construction, launch and early operationsphase[C]//2001IEEE,2001:56-72.
    [16]王海涛,杨聪伟.卫星综合电子系统研究与展望[C]//第2届中国卫星导航学术年会CSNC2011,2011:1-6.
    [17]A Crop, C Collingwood, S Dussy. The Characterization and Testing of MEMSGyros for GIOVE-A. AIAA Guidance[C]//Navigation and Control Conferenceand Exhibit, Keystone Colorado,2006:21-24.
    [18]曾毅,崔波,汪洋海.伽利略导航试验卫星电子系统设计概述[J].航天器工程,2009(1):89-94.
    [19]田贺祥.微小卫星综合电子系统及其关键技术研究[D].北京:清华大学仪器科学与技术学科博士学位论文,2009:1-8.
    [20]曲峰,崔刚.TS-1小卫星星务计算机系统设计[J].计算机工程与科学,2002,24(2):96-98.
    [21]Brown and P Eremenko. Fractionated Space Architectures: A Vision forResponsive Space[C]//4th Responsive Space Conference essay collection.LosAngeles, CA,2006:24-27.
    [22]C Ran, X Cai, C Jie. Intrasatellite wireless optical network communicationtechnologies and implementation[J]. Acta Photonica Sinica,2005,34:263-266.
    [23]M Kavehrad, S Jivkova. Indoor Broadband Optical Wire Less communications:Optical Subsystems Designs and Their Impact on ChannelCharacteristics[C]//Wireless Communications, IEEE,2003,10(2):30-35.
    [24]P Pelissou, A Santamaria, and F J. Lopez-Hernandez, et al. Validation of aWireless Optical Layer for Onboard Data Communications[C]//Disruption inSpace Symposium, France,2005:54-62.
    [25]G Baister, P Gatenby and B Laurent. Applications for optical free space links ininter-satellite and intra-satellite communications[C]//Optical Free SpaceCommunication Link s, IEE Colloquium,1996,19:1-6.
    [26]R Cai, Y Hu, C Xue. Routing control mating with the topology get broadbandwireless optical network high transfer efficiency[J]. Proc of SPIE,2003,5282(2):978-987.
    [27]达争尚,陈良益.光电系统的匹配设计[J].光子学报,2003,32(6):669-671.
    [28]I Arruego, H Guerrero, S Rodr′guez. OWLS: A Ten-Year History in OpticalWireless[J]. IEEE Journal on Selected Areas in Commuinications,2009,9(27):1599~1611
    [29]H Guerrero. Trends and evolution of Micro sensors: towards the21st centurytransducing principles[C]//20thInternational Astronautical Comgress, USA.1999:21-29.
    [30]蔡然,薛蔡,曹捷,傅劲,胡渝.卫星内无线光网络通信技术及其实现[J].光子学报,2005,34(2):263-266.
    [31]R Magness, P Planeke and I Hernandez. Current Activities and Status of theESA/ESTEC-Industry Wireless Onboard Spaeeeraft Working Group[C]//the4thSpace Internet Workshop SIW-4, USA,2004:41-47.
    [32]王树斌.无线局域网技术概述[J].中国科技信息,2006,23(4):2-4.
    [33]M Feriencik, K Wehrle and A. Hutter. RF intra-satellite communicationdemonstrator in Wireless for space applications workshop[J]. Networking andMobile Computing,2006:1-15.
    [34]J Rash, R Parise, K Hogie. OMNI phase III-latsat demonstrations, April15,2002. Available from .
    [35]Rouzbeh Amini, Eberhard Gill, Georgi Gaydadjiev. The Challenges ofIntra-Spacecraft Wireless Data Interfacing[C]//58th International AstronauticalCongress,2007:56-63.
    [36]M Dunbar, C Technol, C Jose. Plug-and-play Sensors in Wireless Networks.IEEE Instrumentation&Measurement Magazine,2001,4(1):19-23.
    [37]J Lyke, S Cannon, D Fronterhouse. A Plug-and-play System for SpacecraftComponents Based on the USB Standard[C]//proceedings of the19th AnnualAIAA/USU Conference on Small Satellites. Logan,2005:8-11.
    [38]K de Boom, J Leytens, N Heiden. Micro-Digital-Sun-Sensor; a matchboxmiracle[C]//6th International ESA conference on Guidance, Navigation andControl Systems, Greece,2005:126-133.
    [39]J Bouwme F Keulen. Micro Ned project plan[C]//Internal Document,2005:1-35.
    [40]M Khonsari. nRF24L01single chip2.4GHz Transceiver ProductSpecification[J]. Nordic Semiconductor,2007,12:55-61.
    [41]P Pelissou, A Santamaria, F J. Validation of a Wireless Optical Layer forOn-board Data Communications[C]//Disruption in Space Symposium. France,2005:4-6.
    [42]罗续成.编队飞行航天器的测量通信一体化系统——射频收发器[J].飞行器测控学报,2006,25(2):1-8.
    [43]蔡然,薛蔡,曹捷,卫星内无线光网络通信技术及其实现[J].光子学报,2005,2(34),264~266.
    [44]A Santamaria, F J. Wireless Infra-Red Links for Intra-SatelliteCommunications[J]. ESASP,2003:532-540.
    [45]G Ester, T Aalbers, W J. Ubbels. Preliminary Mission Results and ProjectEvaluation[C]//Delfi-C3Nano-Satellite,2007:25-36.
    [46]M Martin, D Fronterhouse, J Lyke. The Implementation of a Plug-and-PlaySatellite Bus[C]//Proceedings of the22nd Annual Conference on SmallSatellites,2008:11-14.
    [47]R Amini, G Aalbers, R Hamann. New Generations of Spacecraft Data HandlingSystems: Less Harness, More Reliability[C]//57th International AstronauticallyCongress,2006:19-29.
    [48]M Vladimirova, Bridges, Rodger. Characterizing Wireless Sensor Motes forSpace Applications, Adaptive Hardware and Systems[C]//Second NASA/ESAConference on Adaptive Hardware and Systems,2007:43-50.
    [49]Z Jian, Z Fei, and W Bin. Cluster Based Routing in Bluetooth Ad-hoc networkin Wireless Communications[J]. Networking and Mobile Computing,2005:747–752.
    [50]Morrow, Robert.Bluetooth Operation and Use[C]//McGraw-Hill,2002:23-35.
    [51]J G Castano, J Andreasson, M Ekstrom. Wireless Industrial Sensor MonitoringBased on Bluetooth[J]. Sensor System,2003(8):65-72.
    [52]王权平,王莉. Zig Bee技术及应用[J].2004(1):33-37.
    [53]L Ruiz-Garcia, P Barreiro, J Robla. Performance of ZigBee-Based WirelessSensor Nodes[J]. Computer Network,2007(38):393-422.
    [54]Ye Mao, Zhou Yumei, Wu Bin and Jiang Jianhua. An Optimized Analog toDigital Converter for WLAN Snalog Front End[J]. Journal of Semiconductors,2012,33(4):1-5.
    [55]J Lonnblad, J G Castano, M Ekstrom. Optimization of Wireless Bluetooth/spyTrade/sensor systems[J]. Sensor System,2004(5):1-10.
    [56]黄展,李陆,弥宪梅,顾学迈.空间通信协议(SCPS)及其应用:现状、问题与展望[J].电讯技术,2007,47(6):7-11.
    [57]CCSDS. Recommendation for Space Data System Standards: AOS SPACEDATA LINK PROTOCOL[C]//CCSDS,2006:732.
    [58]A Roy-Chowdhury, M Hadjitheodosiou, S. Baras. Security Issues in HybridSatellite Networks[R]. The Center for Satellite and Hybrid CommunicationNetworks.2004:8.
    [59]A Ephremides, O A Mowafi. Analysis of a hybrid access scheme for bufferedusers-probabilistic time division[J]. IEEE Transactions on SoftwareEngineering,2002,1(8):52-61.
    [60]B Sharp, E Grindrond, D Camm. Hybrid TDMA/CSMA protocol for selfmanaging packet radio networks[C]//In Proceedings of the IEEE InternationalConference on Universal Personal Communications,2005(11):929-933.
    [61]I Chlamtac, A Faragó, A Syrotiuk. ADAPT: A dynamically self-adjusting mediaaccess control protocol for adhoc networks[C]//Proc. IEEE GLOBECOM,1999(5):11-15.
    [62]N Rhee, A Warrier. Z-MAC: A hybrid MAC for wireless sensornetworks[C]//roc.of the3rd ACM Conf. on Embedded Networked SensorSystems,2005(12):90-101.
    [63]A GS, E Miluzzo. Funneling-MAC: A localized, sink-oriented MAC forboosting fidelity in sensor networks[C]//Proc. of the4th ACM Conf. onEmbedded Networked Sensor Systems,2006(8):293-306.
    [64]K Luu, H Schlossberg. University nano-satellite distributed satellite capabilitiesto support techs at21[C]//13thAIAA/USU Conference on Small Satellites,USA, Utah: Utah State University,1999:1-9.
    [65]Wernerm, Jahna, Lutz. Analysis of system parameters for LEO/ICO satellitecommunication networks[J]. IEEE Communications,1995(2):1-11.
    [66]杨宁虎,陈力.卫星导航系统星间链路空间参数与覆盖分析[J].飞行器测控学报,2007,26(1):34-37.
    [67]王永华.卫星通信系统电子对抗方法研究[J].电子对抗技术,2001,16(11):15-19.
    [68]B Mounir, V V Nikulin, V A Skormin, et al. Model reference control of a laserbeam steering system for laser communication applications[J]. SPIE Proc,2001,4(272):93-103.
    [69]杨宁虎,陈力.卫星导航系统星间链路分析[J].全球定位系统,2007,32(2):17-20.
    [70]C Dorlemann, M Schugt, R Uhlenbrock. New high speed current controlledamplifier for PZT multiplayer stack actuators[J]. Actuator Proc,2002(3):294-297.
    [71]P Spanoudakis, L Zago. Extremely high-resolution tip-tilt-piston mirrormechanism for the VLT-NAOS field selector[J]. SPIE Symposium onAstronomical Telescopes&Instrumentation2000,4(48):408-415.
    [72]惠卫华,吴海,边玉敬.卫星星座时间同步中星间链路的设计和性能分析[J].时间频率学报,2006,29(1):19-26.
    [73]Bernard Sklar.徐平平,宋铁成译.数字通信-基础与应用(第二版)[M].北京:电子工业出版社,2002:25-40.
    [74]M Weener, A Jahn, E Lutz. Analysis of System Parameters for LEO/ICOSatellite Communication Networks[C]//IEEE Communications,1995,2:1-11.
    [75]M Sabatini, D Izzo. Special Inclinations Allowing Minimal Drift Orbits forFormation Flying Satellites[J]. Journal of Guidance, Control, and Dynamics,2008,31(1):94-100.
    [76]潘科炎.航天器编队飞行及其关键技术的开发[J].遥控遥测,2003,24(5):9-15.
    [77]C Ward, T Phillips, T Chang, A Khan. LEO Satellite Constellation PerformanceAnalysis[C]//Millitary Communications Conference,1993,10:742-747.
    [78]G John. Proakis, Masoud. Communication System Engineering(SecondEdition)[C]//Publishing House of Electronics Industry,2001:134-137.
    [79]I Ali. Doppler Characterization for LEO Satellites[J]. IEEE. Trans. Commu.March.1998,46(3):309-313.
    [80]闻新,刘恒军.小卫星和通信卫星星座技术特征分析[J].上海航天,2001,6:9-14.
    [81]Ar Abbasfa, D Divsalar and K Yao. Accumulate Repeat Accumulate Codes[J].IEEE Trans. Commun,2007,55(4):692-697.
    [82]吴国强.编队小卫星星间通信系统设计方法研究[D].哈尔滨:哈尔滨工业大学飞行器学科博士学位论文,3-10.
    [83]J Leitner, F Bauer, D Folta. Formation Flying in Space-Distributed SpacecraftSystems Develop New GPS Capabilities[J]. GPS World,2002(2):22-31.
    [84]王世练,路军.小卫星群通信低层协议的初步研究[J].飞行器测控学报,2002,4:53-57.
    [85]王世练,张尔扬. CCSDS Proximity-1及其在编队飞行小卫星群中的应用[J].遥测遥控,2003,(3):10-14.
    [86]李赞,张乃通.卫星移动通信系统星间链路空间参数分析[J].通信学报,2000,21(6):92-96.
    [87]李赞,孙国滨,张乃通.卫星移动通信系统星间链路几何参数分析[J].高技术通信,1998(12):40-44.
    [88]李赞,张乃通.卫星移动通信系统星间链路设计.光通信技术.2000,24(3):231-235.
    [89]李健杰,易先清,罗雪山,唐曙,于凯. COMPASS系统MEO星间链路特性与建立策略分析[C]//第二届中国卫星导航学术年会CSNC2011,2011:1-6.
    [90]J K. Network Configuration Analysis for Formation Flying Satellites[C]//IEEEAerospace Conference Proceedings. Big Sky, MT, United States,2001,5:991-1000.
    [91]熊群力,姜康林等.航天编队飞行星座的星间通信[J].无线电通信技术,2004,30(1):1-5
    [92]马凯学,陈明章,管仲成.星间通信技术发展及共性问题研究[J].空间电子技术,2002,(3):18-23.
    [93]林益明,何善宝,郑晋军,初海彬.全球导航星座星间链路技术发展建议[J].航天器工程,2010,19(6):1-7.
    [94]H Cheng, S C Chan. Robust Multiuser Detection for Wireless MC-DMASystems under Narrowband Interference[C]//Proceeding of2005InternationalSymposium on Intelligent Signal Processing and Communication Systems,2005:501-504.
    [95]Y B Li, N Brent, W Michael. Synchronization techniques for crossing multipleclock domains in FPGA-based TMR circuits[C]//IEEE Transactions on NuclearScience,2010,57(6):3506-3514.
    [96]S Abiri, S Sahebdel. A method for implementation of the DC-balanced8B/10Bcoding used in super speed USB[C]//2010First International Conference onIntegrated Intelligent Computing,2010:68-72.
    [97]C Robert, C Michael. Standard spacecraft data system on a chip. NASAGoddard Space Flight Center’s Essential Services Node[C]//Proceedings of the1997IEEE Aerospace Conference,1997:56-74.
    [98]T PRATT, C BOSTIAN, J ALLNUTT.卫星通信(第2版)[M].北京:电子工业出版社,2005:101-112.
    [99]N TANABE, K AOKI, T FURUKAWA. Adaptive Communications QualityControl for Wireless LANs[C]//ISPACS2007, Inter-national Symposium onIntelligent Signal Processing and Communication Systems, Washington, DC:IEEE,2007:534-537.
    [100] Maurice Martin, Pete Klupar, Steve Kilberg. Techsat-21andRevolutionizing Space Missions Using Microsatellites[C]//15th AnnualAIAA/USU Conference on Small Satellites,2001:1021-1035.
    [101] WEBB W T, STEELE R. Variable Rate QAM for Mobile Radio[J]. IEEETransactions on Communications,1995,43(7):2223-2230.
    [102] S Mcdermott, A Jacobovits. Automotive Electronics in Space: Combiningthe Advantages of High Reliability Components with High ProductionVolume[J]. Aerospace Conference Proceedings,2002(4):1857-1869.
    [103]刘海燕,蔡飞,潘成胜,蔡睿妍.基于星地通信系统的变速率通信质量控制方法[J].计算机应用,2011,31(4):904-906.
    [104] Summers. Plug and play testbed to enable responsive spacemissions[C]//IEEE Aerospace Conference Proceedings.2005(6):557-563.
    [105] G Proakis, M Salehi.数字通信(第五版)[M].北京:电子工业出版社,2011:575-582.
    [106] N Aoki, K Shirakawa, Y Tozawa. New method of analyzing BERperformance of GFSK with postdetection filtering[J]. Communications, IEEETransactions on,1997,4(45):429~436.
    [107]林迪,沙学军,张乃通.多径环境下脉冲超宽带系统的传输性能分析[J].中国工程科学.2009,2(11):75~81.
    [108]陈道明. VSAT卫星通信链路的计算[J].中国空间科学技术.1996,8(4):50~59.
    [109] John D. Kraus, Ronald J. Marhefka.天线(第三版)[M].北京:电子工业出版社.2006:70~71.
    [110] Ngoc Do Minh, Tan Phan Anh, Lee Jong Soo. Improvement of IEEE802.11for multimedia traffic in wireless LAN[C]//2007Wireless TelecommunicationsSymposium.2007,11:1~4.
    [111]L. Pollini, F. Giulietti, M. Innocenti. Robustness to communication failureswithin formation flight[C]//Proceedings of the American Control Conference.2002,4:2860~2866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700