温控相转移钴配合物催化水—有机两相高碳烯烃氢甲酰化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高碳醇是一种重要的化工原料,高碳烯烃氢甲酰化法是生产高碳醇的主要方法之一。目前,高碳烯烃氢甲酰化主要采用均相的羰基钴或膦改性羰基钴为催化剂,存在钻催化剂分离和回收困难的问题。因此,开发易分离且可循环使用的钴催化剂具有重要的意义。
     水-有机两相催化体系以廉价无毒的水为反应介质,是重要的均相催化多相化方法。但多数有机底物不溶于水或水溶性差,导致反应速率缓慢。本课题组金子林等基于温控配体浊点的特性,提出了“温控相转移催化”的概念,为从根本上解决了水-有机两相催化体系的应用范围受底物水溶性限制的问题开创了一条新途径。温控相转移催化已成功用于铑配合物催化的水-有机两相高碳烯烃氢甲酰化反应,但尚未用于钴配合物催化水-有机两相的相关反应。
     本论文将温控相转移催化拓展至钴配合物催化的水-有机两相高碳烯烃的氢甲酰化反应,以温控相转移钴配合物为催化剂,考察其在水-有机两相高碳烯烃氢甲酰化反应中的催化性能及循环使用情况。
     根据均相钴膦配合物催化剂中膦配体的特点,本论文合成了含有聚乙氧基链的温控膦配体L1,并基于L1设计合成了两个新的温控膦配体L2和L3(结构见图2.1)。采用原位合成的方法制备了温控相转移钴配合物催化剂(分别记作Co2(CO)8/L、Co2(CO)8/L2和Co2(CO)8/L3)。分别考察了三个温控相转移钴配合物催化1-辛烯氢甲酰化反应的催化性能,不同反应条件的影响及催化剂的循环使用性能。实验结果表明,采用温控相转移钴配合物催化剂的水-有机两相体系可获得与采用钻膦配合物催化剂的均相体系相近的催化活性和选择性,壬醛和壬醇收率可达93%,产物直链率可达85%,氢甲酰化反应没有受到底物1-辛烯水溶性差的限制。反应结束后,含有温控相转移钴配合物催化剂的水相可不经处理直接用于循环反应,经过5次循环使用,催化剂总的TON可达365。本论文还考察了CO2(CO)8/L,和Co2(CO)8/L2催化C11-12混合烯烃的催化性能。实验结果表明,由于催化剂具有异构化活性,均可得到以直链C12-13醛和醇为主的产物,直链率可达69%,C12-13醛和醇的收率可达86%。经过5次循环使用,催化剂总的TON可达187。
     本论文探索了由廉价钻化合物与温控膦配体直接生成温控相转移钻配合物催化剂。研究发现,醋酸钴或乙酰丙酮钴在氢甲酰化条件下与温控膦配体L1生成的钴配合物催化剂与Co2(CO)8/L1催化性能相当。初步证实了醋酸钴和乙酰丙酮钴与温控膦配体L1在氢甲酰化反应条件下均可形成与Co2(CO)8为前体时相同的羰基钴膦配合物。
Higher alcohols are important industrial chemicals. Hydroformylation of higher olefins is one of the main routes to produce higher alcohols. At present, homogeneous cobalt carbonyl or its phosphine complex is used as the catalyst in the hydroformylation plants of higher olefins, even though the difficult separation and recovery of the cobalt catalyst is still a problem. So it is of great importance to develop a cobalt catalyst which can be easily separated and recycled.
     Aqueous-organic biphasic catalysis with cheap nontoxic water as the reaction medium is a method for the heterogenization of homogeneous catalysis. But the insolubility or poor solubility of most organic substrates results in rather low reaction rate. Base on the cloud point of thermoregulated ligands, a concept of the thermoregulated phase-transfer catalysis (TRPTC) has been developed by Jin and co-workers. The TRPTC has been successfully applied in the aqueous-organic biphasic hydroformylation of higher olefins catalyzed by the rhodium complexes. But so far no publication has been referred to the cobalt catalyst in the TRPTC system.
     In this dissertation, the TRPTC was applied in the hydroformylation of higher olefins catalyzed by the cobalt complex. The thermoregulated phase-transfer cobalt complexes were used as the catalyst. The catalytic performance and the reusability of the catalysts in the aqueous-organic biphasic hydroformylation of higher olefins were investigated.
     The thermoregulated phosphine ligand L1, containing a polyoxyethylene chain was prepared, as well as two new thermoregulated phosphine ligands L2and L3were designed and prepared according to the feature of phosphines in the homogeneous cobalt-phosphine catalysts (see Fig.2.1). And three thermoregulated phase-transfer cobalt complexes (Co2(CO)8/Li, Co2(CO)8/L2, Co2(CO)8/L3) were generated in situ. The catalytic performance of the three thermoregulated phase-transfer cobalt complexes, the effects of different reaction conditions and the reusability of the catalysts were investigated. The results showed that the activity and the selectivity of the thermoregulated phase-transfer cobalt complex catalysts in the aqueous-organic biphasic system were as high as those of the homogeneous phosphine modified cobalt carbonyl catalysts, and the yield of nonanals and nonanols was up to93%and the linearity reached85%. The hydrofromylation reaction was not influenced by the poor solubility of1-octene. After reaction, the aqueous phase containing the thermoregulated phase-transfer cobalt complex catalyst was reused directly without treatment in the recycling experiment. And after5cycles of the catalysts, the total TON reached365. And the catalytic performance of Co2(CO)8/L1and Co2(CO)8/L2catalysts were also investigated in the hydroformylation of C11-12mixed olefins. The results showed the linear C12-13aldehydes and alcohols were obtained predominately because of the isomerization activity of the catalysts, and the linearity reached69%and the yield of C12-13aldehydes and alcohols was up to86%. After5cycles of the catalysts, the total TON reached187.
     The formation of the thermoregulated phase-transfer cobalt complex catalyst from the cheap cobalt compounds and the thermoregulated phosphine ligand was explored. It was found that the catalytic activity of the cobalt complex catalysts, formed from cobalt acetate or cobalt acetylacetonate under the hydroformylation conditions, was equal to that of Co2(CO)8/Li catalyst. The preliminary study confirmed that the cobalt carbonyl complexes formed from the thermoregulated phosphine ligand L1and cobalt acetate or cobalt acetylacetonate under the hydroformylation conditions were the same as that from the thermoregulated phosphine ligand L1and Co2(CO)8.
引文
[1]Hebrard F, Kalck P. Cobalt-catalyzed hydroformylation of alkenes:generation and recycling of the carbonyl species, and catalytic cycle [J].Chem.Rev.,2009,109:4273-4282.
    [2]Bohnen H W, Comils B. Hydroformylation of alkenes:an industrial view of the status and importance [J].Adv. Catal.,2002,47:1-64.
    [3]Wiese K D, Obst D. Hydroformylation [J].Top.Organomet.Chem.,2006,18:1-33.
    [4]Fell B. Recent development in the field of hydroformylation of olefins of higher molecular weight into oxo-alcohols [J].Tenside Surf.Det.,1998,35(5):326-337.
    [5]Dwyer C, Assumption H, Coetzee J, et al. Hydroformylation studies using high pressure NMR spectroscopy[J].Coord.Chem.Rev.,2004,248:653-669.
    [6]刘春,梅建庭,金子林.铑催化高碳烯烃氢甲酰化合成高碳醇进展[J].化工进展,2000,(1):28-31.
    [7]Ungvary F. Apllication of transition metals in hydroformylation annual survey covering the year 2006 [J].Coord.Chem.Rev.,2007,251:2087-2102.
    [8]Botteghi C,Ganzerla R, Lenadra M, et al. Advances in the hydroformylation of olefins containing functional groups [J].J.Mol.Catal.,1987,40:129-182.
    [9]Beller M, Comils B, Frohning C D, et al. Progress in hydroformylation and carbonylation [J].J.Mol. Catal.A,1995,104:17-85.
    [10]Agbossou F, Carpentier J F, Mortreux A. Asymmetric Hydroformylation [J].Chem.Rev.,1995,95: 2485-2506.
    [11]王锦惠,王蕴林,刘光宏,等.羰基合成[M].北京:化学工业出版社,1987.
    [12]Heck R F, Breslow D. The reaction of cobalt hydrotetracarbonyl with olefins [J].J.Am.Chem.Soc., 1961,83:4023-4027.
    [13]陈寿山,张正之,王序昆,等.金属有机化合物合成手册[M].北京:化学工业出版社,1986.
    [14]白雪峰,双静媛,王焕民.八羰基二钴的合成[J].化学与粘合,1994,(3):154-156.
    [15]李光兴,朱治良,蔡晓红,等.四羰基钴钠合成及红外光谱研究[J].分子催化,1995,9:303-308.
    [16]宋伟红.四羰基钴钠的制备研究[J].工业催化,2004,12:48-50.
    [17]胡鹏,郭魁,董建勋,等.钻基催化剂催化环己烯氢甲酰化研究[J].有机化学,2010,30:528-533.
    [18]魏岚,贺德华,董国利.反应条件对钴催化混合辛烯氢甲酰化反应的影响[J].石油化工,2004,33(6):512-515.
    [19]Slaugh L H, Mullineaux R D. Novel hydroformylation catalysis [J].J.Organometal.Chem.,1968,13: 469-477.
    [20]Tucci E R. Hydroformylation of 1-olefins in tertiary organophosphine-cobalt hydrocarbonyl catalyst system [J].Ind.Eng.Chem.Prod.Res.Develop.,1968,7(1):32-38.
    [21]Tucci E R. Hydroformylating terminal olefins [J].Ind.Eng.Chem.Prod.Res.Develop.,1970,9(4):516-521.
    [22]Shell Oil Company. Hydroformylation of olefins:US,3239569[P].1966-03-08.
    [23]Shell Oil Company. Single stage hydroformylation of olefins to alcohols:US,3420898[P].1969-01-07.
    [24]Shell Oil Company. Hydroformylation of olefins:US,3448157[P].1969-06-03.
    [25]Shell Oil Company. OXO alcohols using catalysts comprising ditertiary phosphines:US,3527818 [P].1970-09-08.
    [26]Bungu P N, Otto S. Steric electronic properties in bicyclic phosphines. Crystal and molecular structure of Se=Phoban-Q(Q=C2,C3Ph,Cy and Ph) [J].J.Organometal.Chem.,2007,692:3370-3379.
    [27]Bungu P N, Otto S. Bicyclic phosphines as ligands for cobalt catalysed hydroformylation crystal structures of [Co(Phoban[3.3.1]-Q)(CO)3]2 (Q=C2H5,C5H11,C3H6NMe2,C6H11) [J].Dalton Trans., 2007,2876-2884.
    [28]Bungu P N, Otto S. Evaluation of ligand effects in the modified cobalt hydrofromylation of 1-octene. Crystal structure of [Co(L)(CO)3]2(L=PA-C5,PCy3 and PCyp3) [J].Dalton Trans.,2011,40: 9238-9249.
    [29]Robertson A,Bradaric C, Frampton C S, et al. Novel chiral phosphines derived from limonene:the synthesis and structure of 4,8-dimethyl-2-phosphabicyclo[3.3.1]nonane [J].Tetradedron Lett.,2001, 42:2609-2612.
    [30]Polas A, Wilton-Ely J D E T, Slawin A M Z, et al. Limonene-derived phosphines in the cobalt-catalysed hydroformylation of alkenes [J].Dalton Trans.,2003,4669-4677.
    [31]Crause C, Bennie L, Damoense L, et al. Bicyclic Phosphines as ligands for cobalt-catalysed hydroformylation[J].Dalton Trans.,2003,2036-2042.
    [32]Haumann M, Meijboom R, Moss J R, et al. Synthesis,crystal structure and hydroformylation activity of triphenylphosphite modified cobalt catalysts [J].Dalton Trans.,2004,1679-1686.
    [33]Matsuda A, Shin S, Nakayama J, et al. A new catalyst for the low temperature oxo process with the characteristic of easy separation [J].Bull.Chem.Soc.Japan,1978,51(10):3016-3021.
    [34]Rosi L, Bini A, Frediani P, et al. Functionalized phosphine substituted cobalt carbonyls. Synthesis, characterization and catalytic activity in the hydroformylation of olefins[J].J.Mol.Catal.A,1996, 112:367-383.
    [35]Jenck J. Procede de preparation d'aldehydes a partir d'olefines par reaction d'hydroformylation en presence d'un catalyseur au cobalt:FR,2473504[P].1979-10-31.
    [36]Bartik T, Bartik B, Hanson B E. Reactions of trisulfonated triphenylphosphine,TPPTS with cobalt carbonyls in water [J].Inorg.Chem.,1993,32:5833-5837.
    [37]Beller M, Krauter J G E. Cobalt-catalyzed biphasic hydroformylation of internal shot chain olefins [J]. J.Mol.Catal. A,1999,143:31-39.
    [38]Haumann M, Koch H, Schomacker R. Hydroformylation in micromulsions:conversion of an internal long chain alkene into a linear aldehyde using a water soluble cobalt catalyst [J].Catal. Today,2003,79-80:43-49.
    [39]Parmar D U, Bajaj H C, Jasra R V, et al. Hydroformylation of 1-hexene catalyzed by water soluble CoCl2(TPPTS)2 in biphasic medium [J].J.Mol.Catal.A,2004,211:83-87.
    [40]Dabbawala A A, Parmar D U, Bajaj H C, et al. CoCl2(TPPTS)2 catalyzed hydroformylation of 1-octene and 1-decene in the presence of surfactant and co-solvents in a biphasic medium [J].J.Mol. Catal.A,2008,282:99-106.
    [41]Dabbawala A A, Parmar J N, Jasra R V, et al. Cobalt catalyzed hydroformylation of higher olefins in the presence of chemically modified cyclodextrins [J].Catal.Commun.,2009,10:1808-1812.
    [42]Dabbawala A A, Bajaj H C, Bricout H, et al. Biphasic hydroformylation of 1-octene catalyzed by cobalt complex of trisulfonated tris(biphenyl)phosphine [J].Appl.Catal.A,2012,413-414:273-279.
    [43]Kant M, Martin A, Giuffrida G, et al. Hydroformylation of long-chain internal olefins with water-soluble cobalt-phosphinecomplexes[J].Chemi.Ing.Tech.,2006,78(7):913-921.
    [44]Ritter U, Winkhofer N, Schmidt H G, et al. New cobalt catalysts for hydroformylations in two-phase systems [J].Angew.Chem.Int.Ed.1996,35(5):524-526.
    [45]Magna L, Harry S, Proriol D, et al. Hydroformylation of 1-hexene with a cobalt catalyst in ionic liquids:a new efficient approach for generation and recycling of the catalyst [J].Oil Gas Sci.Tech., 2007,62(6):775-780.
    [46]H6brard F, Kalck P, Saussine L, et al. Unexpected reduction pathway of a Co2+ salt to [HCo(CO)4] via [Co2(CO)8] in an ionic liquid [J].Dalton Trans.,2007,190-191.
    [47]Chen M J, Klingler R J, Rathke J W, et al. In situ high-pressure NMR studies of Co2(CO)6[P(p-CF3C6H4)3]2 in supercritical carbon dioxide:ligand substitution, hydrogenation, and hydroformylation reactions [J].Organometallics,2004,23:2701-2707.
    [48]Patcas F, Maniut C, Ionescu C, et al. Supercritical carbon dioxide as an alternative reaction medium for hydroformylation with integrated catalyst recycling [J].Appl.Catal.B,2007,70:630-636.
    [49]Kainulainen T A, NiemelS M K, Krause A O I. Hydroformylation of 1-hexene on Rh/C and Co/SiO2 catalysts [J].J.Mol.Catal.A,1997,122:39-49.
    [50]Kainulainen T A, Niemela M K, Krause A O I. Ethene hydroformylation on Co/SiO2 catalysts [J]. Catal.Lett.,1998,53:97-101.
    [51]Qiu X, Tsubaki N, Fujimoto K. Hydroformylation of 1-hexene over Co/SiO2 catalysts:influence of pore size of support [J].J.Chem.Eng.Japan,2001,34(11):1366-1372.
    [52]Qiu X, Tsubaki N, Sun S, et al. Influence of noble metals on the performance of Co/SiO2 catalyst for 1-hexene hydroformylation [J].Fuel,2002,81:1625-1630.
    [53]Shinoda M, Zhang Y, Shiki Y, et al. Low-pressure oxygenate synthesis via hydroformylation on promoted cobalt/active carbon catalysts [J].Catal.Commun.,2003,4:423-427.
    [54]Qiu X, Tsubaki N, Fujimoto K, et al. Oxygenates synthesis from 1-hexene and syngas over supported cobalt catalysts [J].Fuel Process.Technol.,2004,85:1193-1200.
    [55]Zhang Y, Nagasaka K, Qiu X, et al. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts [J].Appl.Catal.A,2004,276:103-111.
    [56]Zhang Y, Nagasaka K, Qiu X, et al. Hydroformylation of 1-hexene for oxygenate fuels on supported cobalt catalysts [J].Catal.Today,2005,104:48-54.
    [57]Li B, Li X, Asami K, et al. Hydroformylation of 1-hexene over cobalt-based solid catalysts at low pressure [J].J.Chem.Eng.Japan,2003,36(8):932-939.
    [58]Peng Q, He D. Hydroformylation of mixed octenes over immobilized Co-Ph3PO/PDMS/SiO2 catalyst [J].Catal.Lett.,2007,115(1-2):19-22.
    [59]Qiu J, Zhang H, Liang C, et al. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs:preparation and catalytic properties [J].Chem.Eur.J.,2006,12:2147-2151.
    [60]Li X, Zhang Y, Meng F, et al. Hydroformylation of 1-hexene on silicalite-1 zeolite membrane coated Pd-Co/A.C. catalyst [J].Top.Catal.,2010,53:608-614.
    [61]马兰,彭庆蓉,葛少辉,等.高碳烯烃氢甲酰化负载型Co基催化剂的研究[C].第五届全国环境催化 与环境材料学术会议,烟台,2007:236-237.
    [62]Cai Z, Wang H, Xiao C, et al. Hydroformylation of 1-hexene over ultrafine cobalt nanoparticle catalysts [J].J.Mol.Catal.A,2010,330:94-98.
    [63]Jee Y K, Ji H P, Ok-Sang J, et al. Heterogenized catalysts containing cobalt-rhodium heterobimetallic nanoparticles for olefin hydroformylation [J].Catal.Lett.,2009,128:483-486.
    [64]孔凡志,田建华,金子林.液/液两相催化进展[J].石油化工,2002,31(5):387-392.
    [65]付海燕,袁茂林,陈华,等.水溶性铑膦配合物催化烯烃氢甲酰化反应研究进展[J].催化学报,2010,31(3):251-260.
    [66]Wang Y, Jiang J, Jin Z. Thermoregulated liquid/liquid biphasic catalysis and its application [J]. Catal.Surv.Asia,2004,8(2):119-126.
    [67]Behr A, Henze G, Schomacker R. Thermoregulated liquid/liquid catalyst separation and recycling [J].Adv.Synth.Catal.,2006,348:1485-1495.
    [68]金子林,刘宁,刘春.温控液/液两相催化进展[J].化学进展,2010,22(7):1295-1309.
    [69]Jin Z, Zheng X, Fell B. Thermoregulated phase transfer ligands and catalysis.I.Synthesis of novel polyether-substituted triphenylphosphines and application of their rhodium complexes in two-phase hydroformylation [J].J.Mol.Catal.A,1997,116:55-58.
    [70]吕东梅,杨玉川,蒋景阳,等.新型温控配体及其铑配合物在水/有机两相1-辛烯氢甲酰化中的催化性能研究[J].石油化工,2004,33(增):1563-1564.
    [71]Jin Z, Jiang J, Wang Y. A novel thermoregulated phosphine ligand used for the Rh-catalyzed hydroformylation of mixed C11-12 olefins in aqueous/organic biphasic system [J].Chin.Chem.Lett., 2010,21:515-518.
    [72]Liu C, Jiang J, Wang Y, et al. Thermoregulated phase transfer ligands and catalysis XVIII:synthesis of N,N-dipolyoxyethylene-substituted-2-(diphenylphosphino)phenylamine(PEO-DPPPA) and the catalytic activity of its rhodium complex in the aqueous-organic biphasic hydroformylation of 1-decene [J].J.Mol.Catal.A,2003,198:23-27.
    [73]Jiang J, Wang Y, Liu C, et al. Thermoregulated phase transfer ligands and catalysis XIV Synthesis of N,N-dipolyoxyethylene-substituted-4-(diphenylphosphino)benzensulfonamide (PEO-DPPSA) and the catalytic activity of its rhodium complex in hydroformylation of 1-decene [J].J.Mol.Catal. A, 2001,171:85-89.
    [74]Wang Y, Jiang J, Miao Q, et al. Thermoregulated phase transfer ligands and catalysis XIII. Use of nonioic water-soluble phosphine ligands to effect homogeneous catalyst separation and recycling [J].Catal.Today,2002,74:85-90.
    [75]Chen R, Liu X, Jin Z. Thermoregulated phase-transfer ligands and catalysis. Part VI. Two-phase hydroformylation of styrene catalyzed by the thermoregulated phase-transfer catalyst OPGPP/Rh [J].J.Organomet.Chem.,1998,571:201-204.
    [76]Liu S, Xie C, Yu S, et al. Hydrogenation of 2-ethylhexenal using thermoregulated phase-transfer catalyst for production of 2-ethylhexanol [J].Ind.Eng.Chem.Res.,2011,50:2478-2481.
    [77]Terashima T, Ouchi M, Ando T, et al. Thermoregulated phase-transfer catalysis via PEG-armed Ru(II)-bearing microgel core star polymers:efficient and reusable Ru(Ⅱ) catalysts for aqueous transfer hydrogenation of ketones [J].J.Polym.Sci.A,2010,48:373-379.
    [78]Azoui H, Baczko K Cassel S, et al. Thermoregulated aqueous biphasic catalysis of Heck reaction using an amphiphilic dipyridyl-based ligand [J].Green Chem.,2008,10:1197-1203.
    [79]Liu N, Liu C, Jin Z. Thermoregulated ligand-palladium-catalyzed Suzuki reaction in water [J]. Appl.Organometal.Chem.,2011,25:168-172.
    [80]Liu N, Liu C, Jin Z. Green synthesis of fluorinated biaryl derivatives via thermoregulated ligand/palladium-catalyzed Suzuki reaction [J].J.Organomet.Chem.,2011,696:2641-2647.
    [81]Shaughnessy K H. Hydrophilic ligands and their application in aqueous-phase metal-catalyzed reactions[J].Chem.Rev.,2009,109:643-710.
    [82]Solinas M, Jiang J, Stelzer O, et al. A cartridge system for organometallic catalysis:sequential catalysis and separation using supercritical carbon dioxide to switch phases[J].Angew.Chem.Int. Ed.,2005,44:2291-2295.
    [83]Doorn J A V, Meijboom N. Synthesis of some functionalized phosphinocarboxylic acids[J]. Phosphorus Sulfur Silicon,1989,42:211-222.
    [84]环氧乙烷型及环氧乙烷-环氧丙烷嵌段聚合型非离子表面活性剂[S].GB/T 5559-1993.
    [85]Inorganic systhesis, vol 16 [M].New York:McGraw-Hill,1976.
    [86]Berthod M, Favre-Rguillon A, Mohamad J, et al. A catalytic method for the reduction of secondary and tertiary phosphine oxides[J].Synlett,2007,10:1545-1548.
    [87]黄枢.有机合成试剂制备手册[M].北京:科学出版社,2005.
    [88]Inorganic systhesis, vol 5 [M].New York:McGraw-Hill,1957.
    [89]Friedel R A, Wender I, Shufler S L, et al. Spectra and structure of cobalt carbonyls[J].J.Am.Chem. Soc.,1955,77:3951-3957.
    [90]Abrahamson B H, Frazier C C, Ginley D S, et al. Electronic spectra of dinuclear cobalt carbonyl complexes[J].Inorg.Chem.,1977,16(6):1554-1556.
    [91]刘哗,贺德华,李春波,等.双膦配体的合成及铑-双膦配体催化剂对混合辛烯氢甲酰化反应的催化行为[J].分子催化,2000,14(5):337-340.
    [92]刘晔,贺德华,刘崇微,等.Rh/Ph3PO催化剂体系的辛烯氢甲酰化反应性能考察和原位红外表征[J].分子催化,2000,14(3):227-231.
    [93]马占华,刘雪暖,杨国华,等.助剂对合成异壬醛用负载铑基催化剂性能的影响[J].中国石油大学学报(自然科学版),2009,33(2):134-138.
    [94]杨震宇,罗玉忠,刘惠德,等.低压醛化钴-膦系催化剂结构和性能的研究[J].催化学报,1980,1(1):26-35.
    [95]胡莎士.SHF工艺生产合成脂肪醇技术[J].日用化学工业,1994,(6):14-18.
    [96]吕士杰,傅宏祥,沈海邑,等.双膦钴配位催化烯烃氢甲酰化的研究[J].分子催化,1991,5(4):367-371.
    [97]吕士杰,杨帆,周宏英,等.双(二苯基膦)丙烷-双钴羰基配合物催化烯烃氢甲酰化反应研究[J].分子催化,1994,8(4):320-324.
    [98]Arpe H-J. Industrial Organic Chemistry,5th edition[M].Weinheim:Wiley-VCH,2010.
    [99]张林,李春,付海燕,等.新型双膦配体的合成及其在2-丁烯氢甲酰化反应中的应用[J].催化学报,2011,32(2):299-302.
    [100]Frankel E N, Metlin S, Rohwedder W K, et al. Hydroformylation of unsaturated fatty esters[J]. J.Am.Oil Chem.Soc.,1969,46:133-138.
    [101]DSM NV/Du Pont. Process to prepare a terminal aldehyde:WO,9733854[P].1996-03-15.
    [102]Fell B, Rupilius W, Asinger F. Zur frage der isomerenbildung bei der hydroformylierung hohermolekularer olefine mit komplexen kobalt-und rhodiumkatalysatoren[J].Tetrahedron Lett., 1968,9(29):3261-3266.
    [103]Hershman A, Craddock J H. Hydroformylation of 1-olefins in tertiary organophosphine-cobalt hydrocarbonyl catalyst systems[J].Ind.Eng.Chem.Res.,1968,7:226-227.
    [104]Union Carbide Corporation. Bis-phosphite compounds:US.4748261 [P].1988-05-31.
    [105]van der Veen L A, Karmer P C, van Leeuwen P W N M. New phosphacyclic diphosphines for rhodium-catalyzed hydroformylation [J].Organometallics,1999,18:4765-4777.
    [106]Klein H, Jackstell R, Wiese K-D. Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes[J].Angew.Chem.,Int.Ed.,2001,40(18):3408-3411.
    [107]Selent D, Hess D, Wiese K-D, et al. New phosphorus ligands for the rhodium-catalyzed isomerization/hydroformylation of internal octenes[J].Angew.Chem.,Int.Ed.,2001,40(9):1696-1698.
    [108]Yan Y, Zhang X, Zhang X. A tetraphosphorus ligand for highly regioselective isomerization-hydroformylation of internal olefins[J].J.Am.Chem.Soc.,2006,128:16058-16061.
    [109]刘雯静,袁茂林,付海燕,等.铑/双膦配体催化均相内烯烃氢甲酰化反应的研究进展[J].催化学报,2009,30(6):577-586.
    [110]Klein H, Jackstell R, Beller M. Synthesis of linear aldehydes from internal olefins in water[J]. Chem.Commum.,2005:2283-2285.
    [111]张华.现代有机波谱分析[M].北京:化学工业出版社,2005.
    [112]周宏英,吕云平,吕士杰,等.四膦配体的合成及其金属配合物催化烯烃氢甲酰化反应研究[J].分子催化,1994,8(2):99-104.
    [113]北京化工大学.一种乙酰丙酮钴的制备方法:CN,1746180[P].2006-03-15.
    [114]Marhenke J, Massick S M, Ford P C. Time-resolved infrared study of reactive species produced by flash photolysis of the hydroformylation catalyst precursor Co2(CO)6(PMePh2)2[J].Inorg.Chim. Acta,2007,360:825-836.
    [115]Godard C, Duckett S B, Polas S, et al. An NMR study of cobalt-catalyzed hydroformylation using para-hydrogen induced polarisation[J].Dalton Trans.,2009,2496-2509.
    [116]Klingler R J, Chen M J, Rathke J W, et al. Effect of phosphines on the thermodynamics of the cobalt-catalyzed hydroformylation system[J].Organometallics,2007,26:352-357.
    [117]薛舜卿,李达刚,吴光荪.钻-膦催化剂生成机理的原位红外光谱研究[J].催化学报,1984,5(4):355-362.
    [118]杨武,高锦章,康敬万.光度分析中的高灵敏反应及方法[M].北京:科学出版社,2000.
    [119]钢铁及合金化学分析方法亚硝基R盐分光光度法测定钴量[S].GB/T 223.22-94.
    [120]水质总磷的测定钼酸铵分光光度法[S].GB 11893-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700