人工林内无线遥测信号传输绕射规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林内无线传感器网络采用的2.4GHz信号绕射能力较差,在林内立木后方较近的范围内存在信号盲区,研究2.4GHz射频信号在林内的传输衰减与遇树干时的绕射规律,建立场强模型和活立木绕射盲区计算方法是林内立木胸径无线传感器网络优化布置策略的理论依据。
     本文在充分分析和借鉴己有的国内外关于林内信号传输衰减、电磁波传播理论及其他相关学科领域研究成果基础上,以人工林内无线射频信号传播为研究对象,对绕射场强和盲区进行了研究,研究内容和研究结果如下:
     1.论文分析了信号传播的环境及信号发射的硬件设施。
     2.研究了信号在人工林内的总传输特性;结合人工林的配置特点,以四层独立介质层分层独立分析建模的方法对射频信号在人工林内的总体传播模型进行了简化,提出树冠衰减屏和树干吸收屏的概念,并给出了电磁波在人工林介质中传播损耗计算公式L=L(Z)+L(S)+L(X).
     3.应用一致性几何绕射理论(UTD)以多边形近似法简化了活立木模型,研究了模型的信息存储,应用反向射线跟踪法解决了人工林内信号的路径搜索及传输寻迹问题,求出了接收点已知和未知两种情况下绕射路径的通用解Q(t)=p1+t(p2-p1).
     4.在总体传输模型及射线追踪研究结果的基础上,对吸收屏(林内树干部分)进行了重点研究:
     (1)提出了活立木垂直入射和斜入射两种条件下的绕射模型;
     (2)应用电磁波理论、Fresnel-Kirchhoff原理和UTD理论推导了活立木绕射场求解公式,En(S)=EN-1(Q)D(θ)A(s)exp(-JKS SINγ)exp(-jkz COSγ);
     (3)对近似计算造成的阴影边界处过渡区的不连续,采用了过渡区修正,得出了修正绕射系数表达式D(1)=-exp(-jπ/4)×cotγ(1)F(2kLn2sin2γ(1))/2n√2πκ。
     (4)分析了绕射盲区的影响因素,在计算焦散距离的同时得出了盲区计算公式-(κΡ/2)1/3+π/2≤θ≤(κΡ/2)1/3+π/2;
     (5)以白杨木人工林为采样区域,进行活立木绕射场仿真模拟,验证了模型的正确性。
     本文的研究结果为无线传感器网络优化布置策略提供了一个新思路,成果也可为林区的其他射频信号通讯技术开发提供理论支撑。
The ability of 2.4GHz signal diffraction which is adopted by WSN(Wireless Sensor Networks) is worse in forests, because of the range behind standing tree in forests exists blind signal area. Diffraction law of transmission attenuation and clinging trunk of 2.4GHz radio-frequency signal in forests has been studied. Establishment of field intensity model and computing method of blind signal area of alive standing tree can serve as the theoretical basis of optimum arrangement strategy, which is in standing tree DBH(Diameter at Breast Height) of forests of WSN.
     Based on the analysis and learning from signal transmission attenuation in forests, the theory of electromagnetic propagation and other related research achievements at home and abroad. The research object is wireless RF signal transmission in man-made forests. Diffraction field strength and blind area have been studied. The main contents and conclusions as follows:
     1. In this paper, signal propagation environment and transmission facilities was analyzed.
     2.The signal transmission characteristics in plantation was studied. The configuration characteristic of plantation was combined. Through the modeling methods of hierarchical independent analysis at using four-storey independent dielectric layer, to simplify the overall propagation model of RF signal in plantation. The concept of crown attenuation screen and truck absorbing screen were put forward. And the formula of loss(L= L(Z)+L(S)+L(X)) was given, when electromagnetic wave mathematical were spreading in plantation medium.
     3.The UTD was used and the alive standing tree model was simplified by polygonal approximation. Information storage of model was studied and through the reverse ray tracing method to solve the problem of path search and transmission tracing of signal in plantation. The general solution(Q(t)= p1+t(p2-P1)) of receiving point was found under the cases between known and unknown.
     4. On the basis of overall transmission model and results of ray tracing, the of absorption screen (trunk in trees) was research primarily:
     (1) The diffraction models of alive standing tree was proposed under vertical incidence and oblique incidence.
     (2) The diffraction field solution formula of standing tree was deduced through the Electromagnetic Wave Theory, the law of Fresnel-Kirchhoff and the theory of UTD, which is given by En(s)= En-1(Q)D(θ)A(s)exp(-jks sinγ)exp(-jkzcosy).
     (3) The transition zone of shadows boundary was not continuous by approximate calculation, the transition zone correction was used to solve and the expression of modified diffraction coefficient was obtained, which is given by D=-exp(-jπ/4) x cotγ(1) F (2κLn2 sin2γ(1)/2n√2πκ
     (4) The influence factors of diffraction blind area were analyzed. When the caustics distance was calculated, the formula of blind area was obtained, which is given by一(κΡc/2)1/3+π/2≤θ≤(κΡc/2)1/3+π/2.
     (5) To take the white poplar as the sampling area, the diffraction field of alive standing was carried analogue simulation. The correctness of the model was tested and verified.
     In this article, the research result provides a new thread for network optimization decoration strategy of WSN. Meanwhile it can provide theoretical support for communication technology development of other radio-frequency signal.
引文
1.陈磊,赵宝华.低能耗自适应分簇的面向数据融合的路由协议[J].北京邮电大学学报,2009,32(5):71-74.
    2.崔索民,汪茂光.理想导体半圆柱TE波散射的混合法解[J].电子科学学刊,1995,17(4):391-396.
    3.狄飞,张莉君.基于ZigBee无线传感器网络的森林环境监测系统[J].福建农林大学学报(自然科学版),2011,40(4):435-438.
    4.董斌.基于全站仪的林业数据自动测算系统[J].南京林业大学学报,2005,(5):119-122.
    5.范植荣,刘永华,章秀麓.中原地区森林环境电波传播实验研究[J].通信学报,1997,18(7):87-92.
    6.冯仲科等.一种基于三维激光扫描系统测量树冠体积方法的研究—以油松为例[J].北京林业大学学报,2007,29(增2):61-65.
    7.冯仲科,韩熙春,周科亮等.全站仪固定样地测树原理及精度分析[J].北京测绘,2003,(1):29-30.
    8.冯仲科,殷嘉俭,贾建华,南永天.数字近景摄影测量用于森林固定样地测树的研究[J].北京林业大学学报,2001,23(5):15-18.
    9.冯仲科,徐祯祥,王小昆,孔维鹤.测定立木材积的改进形点法[J].北京林业大学学报,2005,127(5):87-91.
    10.关强,尹丽丽,李志鹏,詹长书.基于超声测距的定高树径测量仪的研究[J].东北林业大学学报,2006,34(4):27-30.
    11.郭剑,孙力娟,王汝传.基于最仕簇数的无线传感器网络粒子群分簇协议[J].南京邮电大学学报,2010,30(2):36-40.
    12.韩光瞬,冯仲科,刘永霞,王小昆.三维激光扫描系统测树原理及精度分析[J].北京林业大学学报,2005.27(12):187-190.
    13.郝晓军,焦斌,陈永光,何建国.障碍物遮挡效应理论建模研究[J].计算机仿真,2007,29(9):304-307.
    14.胡星华,骆坚,谭珊珊.固定簇的LEACH半径自适应簇头改进算法[J].传感技术学报,2011,24(1):79-82.
    15.江希钿.简单竞争指数在立木材积测定中的应用[J].华东森林经理,1996,(03):1-4.
    16.柯亨玉,侯杰昌.介质涂敷导电凸曲面上磁振子辐射场一致性几何绕射理论[J].电子学报,1999,27(3):81-92.
    17.柯亨玉.介质覆盖导电圆柱上缝隙天线高频辐蛇UTD研究[J].武汉大学学报:自然科学版,1994,(1):39-46.
    18.李宏伟,陈克安,姜建伟.基于一致性几何绕射理论的曲面表面绕射声场解[J].声学技术,2007,26(4):618-622.
    19.李乐伟,焦培南.丛林通信中电波的混合路径传播[J].通信学报,1988,9(6):1-7.
    20.李乐伟,焦培南.用并矢格林函数方法求解四层丛林介质中的电磁场[J].电波科学学报,1986,1(2):10-25.
    21.李光辉,赵军,王智.基于无线传感器网络的森林火灾监测预警系统[J].传感技术学报,2006,(06):2760-2764.
    22.李文彬,张俊梅,撒潮,王德明,高凯.人工林UHF频段电波传播场强预测模型[J].北京林业大学学报,2007,29(4):15-18.
    23.李兴霞.农田环境数据采集系统的研究与设计[J].黑龙江八一农垦大学学报,2010,22(6):72-74.
    24.连汉雄.超高频侧面波在森林中的损耗[J].电子学报,1986,14(5):12-20.
    25.林昌庚.林木蓄积量测算技术中的干形控制问题[J].林业科学,1964,9(4):365-375.
    26.梁昌洪,陈曦.电磁波极化及其应用.电气电子教学学报,2011,33(03):1-5.
    27.刘守亚.关于干形控制方法的几点意见[J].林业勘查设计,1976,(1):30-33.
    28.刘云伟,冯仲科.全站仪在林业数字化工程上的应用[J].北京林业大学学报,2008,30(1):306-309.
    29.刘立国,王海松等.树冠中电波传播路径损耗的研究及模型的建立[J].电波科学学报,2006,21(6):910-914.
    30.刘其中.GTD中绕射线的寻迹[J].西安电子科技大学学报,1991.18(3):45-53.
    31.刘斐.基于射线追踪法的电波特性研究[J].煤炭技术,2011,30(5):210-211.
    32.刘劲风.无线传感器网络在森林监测中的应用[J].林业科技,2010,35(4):18-20.
    33.孟宪宇主编.测树学(第二版)[M].北京:中国林业出版社,1995.
    34.聂玉藻,马晓军,冯仲科等.精准林业技术的设计与实践[J].北京林业大学学报,2002,(3):20-24.
    35.彭恩强.关于用伪望高法求算立木材积的研究及其应用[J].林业资源管理,1996,(5):57-59.
    36.彭怀云,樊文生,潘威炎,张红旗.沿不规则不均匀地而传播的侧面波[J].电波科学学报,2006,(4):27-32.
    37.齐建东,蒋禧,赵燕东.基于无线多媒体传感器网络的森林病虫害监测系统[J].北京林业大学学报,2010(4):192-196.
    38.沈玮,吴先良.一致性绕射理论的等效边缘电磁流法在抛物线方程中的应用[J].电子学报,2007,35(3):563-566.
    39.孙时轩,造林学[M],北京:中国林业出版社,1992.
    40.陶桓齐,刘文琮,马双宝.无线传感器网络在森林监测中的应用[J].测控技术,2010,(2):10-12.
    41.王雪峰,张青,张超.基于立体视觉的郁闭林分主要测树因子的重建[J].东北林业大学学报,2006,34(4):24-30.
    42.汪茂光.几何绕射理论[M].西安:西安电子科技大学出版社,1994:9-13.
    43.王晖,周锡扔,韩桂军.线性绕射波理论的直接边界积分方程及其数值处理[J].天津大学学报,2000,33(3):310-313.
    44.吴良超,汪茂光,阻抗劈一致性绕射系数的一种简洁表达式,电波科学学报,1994,09(04):76-80.
    45.王福禄,房俊龙,张喜海.基于无线传感器网络技术的温室环境监测系统研究[J].自动化技术与应用,2009,28(10):61-67.
    46.王卫东.导体楔加载有损圆柱体的绕射和散射场[J].电波科学学报,1997,12(2):225-232.
    47.王卫星.茶园信息采集无线传感器网络节点设计[J].农业工程学报,2011,27(5):169-173.
    48.吴彦鸿.一致性劈绕射理论在无源雷达绕射损耗中的应用研究[J].国外电子测量技术,2009,(9):75-78.
    49.吴志忠.移动通信无线电波传播[M].北京:人民邮电出版社,2002.
    50.徐杨,朱林,常明.树木三维形态结构的计算机建模[J].计算机工程与应用,2001,(21):141-143.
    51.杨华.近景摄影测量技术在立木材积测定中的应用研究[D].北京林业大学博士学位论文,2005.
    52.肖德琴,古志春,冯健昭,肖克辉,罗锡文.稻田水分监测无线传感器网络优化设计与试验.农业工程学报,2011,27(2):174-179.
    53.徐祯祥.测定单株立木材积的形点法[J].林业科学,1990,(5):475-480.
    54.杨华.利用正形数估测立木材积方法的研究[J].林业资源符理,2005,(1):39-41.
    55.杨弃疾.电磁场理论(下册)[M].北京:高等教育出版杜,1995.
    56.叶慧坤.无线传感器网络及其在林业中的应用.福建林业科技,2009,36(3):251-255.
    57.张超,王雪峰,李海奎.立体视觉技术在森林资源调查中的应用[J].北京林业大学学报,2004,26(3):31-35.
    58.赵孟文,袁朝晖,王鸿辉.基于蓝牙技术的温度无线传感器网络系统[J].测控技术,2009.21:144-146.
    59.赵雄文.劈形与刃峰绕射场的远区一致性[J].电波科学学报,1995,10(3):46-49.
    60.赵雄文.曲顶障碍碍物绕射场的一致性解[J].通信学报,1995,16(2):29-34.
    61.赵雄文.平顶斜边障碍物的绕射场[J].电子学报,1995,23(6):80-83.
    62.赵雄文.劈形与平顶直边障碍物的绕射场[J].电波科学学报.1994,9(3):1-5.
    63.张军国.基于ZigBee无线传感器网络的森林火灾监测系统的研究[J].北京林业大学学报,2007(04):45-49.
    64.张明铁.用干形指数测定单株立木材积的研究[J].内蒙古林学院学报,1995,(1):43-46.
    65.张明铁.单株立木材积测定方法的研究[J].林业资源管理,2004,(1):24-26.
    66.张荣博,曹建福.利用蚁群优化的非均匀分簇无线传感器网络路由算法[J].西安交通大学学报,2010,44(6):33-38.
    67.张玉柱,曹志伟,闫敦梁,戴玉玮.嫩江沙地樟子松人工林各测树因子数量关系的研究[J].防护林科技,2006,(1):7-9.
    68.张玉华,高集权等.利用伐根估算杨树立木材积方法研究[J].防护林科技,2009,(4):29-30.
    69.宗卫华,梁昌洪,曹祥玉,项铁铭.圆锥体与圆柱体的几何绕射理论绕射线寻迹[J].西安电子科技大学学报(自然科学版),2002,29(4):482-489.
    71. A.K. Gautesen.Diffraction of plane waves by a wedge with impedance boundary conditions[J].Wave Motion,2005,41(3):239-246.
    72. Aline, Baggio.Wireless sensor networks in precision agriculture[J]. Stockholm:Workshop on Real-World Wireless Sensor Networks,2005:20-21.
    73. Aleksandar MilenkoviC, Chris Otto, Emil Jovanov. Wireless sensor networks for personal health monitoring:Issues and an implementation.Computer Communica-tions,2006, 29(13-14):2521-2533.
    74. Bardi J.F, Villacampa Y, Losardo O, Borzone H. A study of the relationship height-diameter[J]. Advances in Ecological Sciences, Ecosystems and Sustainable Development III,2001, (10):657-666.
    75. Barrio-Anta, Dieguez-Aranda, Ulises, Castedo-Dorado, Fernando, etc. Mimicking natural variability in tree height of pine species using a stochastic height-diameter relationship[J]. New Zealand Journal of Forestry Science,2006,36(1):21-34.
    76. Bair V. Budaev, David B. Bogy. Diffraction by a convex polygon with side-wise constant impedance Original Research Article Wave Motion,2006,43(8):631-645.
    77. B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens Principle[C], London 2nd ed Qxford University Press,1953.
    78. B.R.Levy and J.B.Keller. Diffraction by a Smooth Object[J]. Commun Pure Appl Math,1959, 12(3):159-209.
    79. Canton, Aymeric. Diffraction by a rounded wedge with an hybrid method MM/PO[J]. Annales des Telecommunications/Annals of Telecommunica-tions,1994,49(9-10):554-558.
    80. Cardell-Oliver et al,., A reactive soil moisture sensor network:design and field evaluation Int. J. Distributed Sens. Networks,2005,1(2):149-162.
    81. Casciato, M.D.I, Sarabandi, K..High-frequency radio wave diffraction from singly curved, convex surfaces-A heuristic approach[J]. IEE Proceedings:Microwaves, Antennas and Propagation,2004,151(1):43-53.
    82. Dence D. and T.Tamir. Radio loos of lateral waves in forest environment[J].Radio Sci,1969, 4(2):307-318.
    83. D.Gaffrey, B. Sloboda, M. Fabrika, S. Smelko.Terrestrial single-image photogrammetry for measuringstanding trees[J].as applied in the Dobroc virgin forest.JOURNAL OF FOREST SCIENCE,2001,47(2):75-87.
    84. Duan Wenyang, He Wuzhou. Second-order potentials and forces for two-dimensional diffraction problem of finite water depth[J]. China Ocean Eng, Ser B.1994,6(3):321-330.
    85. Fawwazt T.UIaby, Kamal Sarabandi, Kyle Mcdonald. Michigan microwave canopy scattering model[J]. International. Remote Sensing,1990,11(7):1223-1253.
    86. FukatsuT, HirafujiM.Field Monitoring Using Sensor-Nodes with a Web-Server[J]. Journal of Robotics and Mechatronics,2005,17(2):164-172.
    87. G. Bora Esmer, Levent Onural, Haldun M. Ozaktas. Exact diffraction calculation from fields specified over arbitrary curved surfaces.Optics Communications,2011,284(24):5537-5548.
    88. Haudy M J, Haase M, Timmerrnann M D. Low Energy Adaptive Clustering Hierarchy with Deterministic Cluster-Head Selection[C]. The 4th IEEE Couf. on Mobile and Wireless Communications Networks. Stockholm:IEEE Communications Society,2002: 368-372.
    89. Hemy L. Bertoni. Radio Propagation for Modem Wireless Systems[M]. Beijing:Publishing House of Electronics Industry,2002.
    90. Henry L. Bertoni, Radio propagation for modern wireless system, Publishing House of Electronics industry, Beijing:2002.
    91. Heinzelman W, Chandrakasan A, Balakrishman H.Energy-Efficient Communication Protocol for Wireless Microsensor Networks [C].The 33rd Annual Hawaii International Couf. on System Younis Sciences. Maui:IEEE Computer Society,2000:3005-3014.
    92. Hussar, P.E. IIT Res. Inst., Annapolis, MD.A uniform GTD treatment of surface diffraction by impedance and coated cylinders[J]. Antennas and Propagation, IEEE Transactions on, 1998,46(7):998-1008.
    93. Isaacson M, Cheung K F. Second-order wave diffract ion around two dimensional bodies by time-domain method. App lied Ocean Research[J],1990,13(4):175-186.
    94. Jean-Francois Lalonde.Vandapel and Martial Hebert. Automatic Three Dimensional Point Cloud Proeessing for Forest lnventory[D].The Roboties Institute Carnegie Mellon University, 2006,18(2):364-365.
    95. J.L.Volakis. M.Ricoy. Diffraction by a thick perfectly conducting half-plane[J]. IEEE Trans. Antennas Propagat,1987,35(1),62-72.
    96. J.M.L. Bernard. On a novel expression of the field scattered by an arbitrary constant impedance plane.Wave Motion,2011,48(7):635-646.
    97. J.H.W hltteker.Frresnel-Kirchhoff theory applied to terrain diffraction problems[J].Radio Sci, 1990,25(5):837-851.
    98. Kim Yunseop, Evans R G. Iversen W M.Remote sensing and control of an irrigation system using a distributed wireless sensor networks[J].leee Transctions On Instrumentation And Measurement,2008,57(7):1379-1387.
    99. L.P. Castro, D. Kapanadze. The impedance boundary-value problem of diffraction by a strip Journal of Mathematical Analysis and Applications,2008,337(2):1031-1040.
    100. L.P. Castro, D. Kapanadze. Wave diffraction by a 45 degree wedge sector with Dirichlet and Neumann boundary conditions Original Research Article Mathematical and Computer Modelling,2008,48(1):114-121.
    101. Mao-Guang Wang, Geometrical Theory of Diffraction[M], China Xidian University Press, Beijing:1989.
    102. Michaeli, A. Extension of asymptotic treatment of double-edge diffraction to convex surfaces. Electromagnetics,1998,18(2):167-178.
    103. M.M.Chen, C. Majidi, D. M. Doolin, S. Glaser and N. Sitar. Design and construction of a wildfire instrumentation system using networked sensors (Poster). Network Embedded Systems Technology (NEST) Retreat,2003, (7):17-18.
    104. Musaloiu-E et al., Life Under Your Feet:A Wireless Soil Ecology Sensor Network, Proc.3rd Workshop on Embedded Networked Sensors,2006.
    105. Nicolas No'e and Fran,cois Gaudaire. Reflection on curved surfaces in a 2.5D ray-tracing method for electromagnetic waves exposure prediction in urban areas. General Assembly and Scientific Symposium,2011, (8):13-20.
    106. P.B.Sunil Kumar and G.S.Ranganath.Geometrical thery of diffraction-A historical perspective[J].CURRENT SCIENCE,1991,61(1):22-27.
    107. P. D. Holm. A new heuristic UTD diffraction coefficient for Nonperfectly conducting wedges[J]. IEEE TransAP,2000,48(8):1211-1219.
    108. Pathak, Kouyoymjlanrg. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J]. Proc. IEEE.1974:1448-1461.
    109. Pathak, P. H., Huang, J.An MM-GTD Analysis of the Radiation from Slots in Planar and Cylindrical Perfectly-Conducting Structures with a Surface Impedance Patch[J]. Defense Technical Information Center OAI-PMH Repository (United States). OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB,2002.
    110. Paul R. ROUSSEAU and Prabhakar PATHAK, A Time Domain Uniform Geometrical Theory of Slope diffraction for a Curved Wedge. Turk J Elec Engin,2002,10(2):385-398.
    111. Rao, S.Wilton, D. Glisson, A.Syracuse Univ. Electromagnetic scattering by surfaces of arbitrary shape. Antennas and Propagation[J]. IEEE Transactions on,1982,30(3):409-418.
    112. Sami Tabbane. Handbook of Mobile Radio Networks[M].Artech House,2000.
    113. Sharma, Mahadev. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management,2007,249(3): 187-198.
    114. S.S.Seker. VHF/UHF Radio Propagation Through Forests:Modeling and Experimental Observations, IEEE Proceedings-H,1992,139(1):72-78
    115. S.S.O. Burgess, M.L. Kranz, N.E. Turner. Harnessing wireless sensor technologies to advance forest ecology and agricultural research. Agricultural and Forest Meteorology,2010,150(1): 30-37.
    116. Stutman W L. Thiele G A. Antenna Theory and Design[M].New York:Wiley 1998:123-130.
    117.Tai C. T. Dyadic Green's Funetion in Electromagnetic Theory [M]. International Textbook Co, 1971.
    118. Taylor.R., Chau, F.P.Wave diffraction theory-some developments in linear and nonlinear theory[J]. Journal of Offshore Mechanics and Arctic Engineering,1992,114(3):185-194
    119. Tewari R.K, etal. Radio wave propagation through rain forests of India[C]. IEEE T rans on A ntennasand P ropagat,1990,38(4):433-449.
    120. Tillett J, Rao R, Sahin F. Cluster-Head Identification in ad-hoc Sensor Networks Using Particle Swarm Optimization[C].IEEE International Conf. on Personal Wireless Communications. New Delhi, India,2002:201-205.
    121. Tolle et al.Amacroscope in the redwoods Proceedings of the 3rd international Conference on Embedded Networked Sensor Systems,2005, (05):51-63.
    122.Torrico, SA.H. L.Bertoni, and R. H. L.lang. Modeling tree effect on path loss in a residential environment[J].IEEE Trans on Antennas and propagation,1998,46(6):872-880.
    123. T Tamir. On radio-wave propagation in forest environment [C]. IEEE Transactions on Antennas and Propagation,1967,15(7):806-817.
    124. T.Tamir. Radio wave propagation along mixed Paths in forest environments[J]. IEEE Trans on Antennas and Propagation,1977,25(4):471-477.
    125. Voltmer D R. Diffraction by Doubly Curved Convex Surfaces[D].Ph.D. Dissertation.Ohio State University,1970.
    126. V. I. Popov. Mathematical model for radiowave propagation in sparse forests:Rytov approximation. AUTOMATIC CONTROL AND COMPUTER SCIENCES,2009(43):104-108.
    127. Weissbereger, M.etal. Radio Wave Propagation:A Handbook of Practical Techniques for Computing Basic Transmission Loss and Field Strength[J]. ECAC-HDBK-82-049, Electromagnetic Compatibility Analysis Center North Severn, Annapolis, MD21402, Setember,1982.
    128. Werner-Allen et al.. Fidelity and yield in a volcano monitoring sensor network Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation,2006, (7): 27-127.
    129. Wolpert D.H, Macready WG. No Free Lunch Theorems for Optimization[J]. IEEE Trans, on Evolutionary Computation,1997,1(1):67-82.
    130. Wonn H.T, O'Hara, K.L.Height.diameter ratios and stabil-ity relationships for four northern Rocky Mountain tree species[J]. Western Journal of Applied Forestry.2001,16(2):87-94.
    131. Xiaowei Yu, Juha Hyypp, Harri Kaartinen, MEASURING THE GROWTH OF INDIVIDUAL TREES USING MULTI-TEMPORAL AIRBORNE LASER SCANNING POINT CLOUDS[J].ISPRS WG 111/3,111/4, V/3 Workshop"Laser scanning 2005",2005, (12-14):204-208.
    132. Xiong-Wen, Yi-Xi Xie, Diffraction over a Flat-Topped Terrain Obstacle with Bevel Edge, Chinese Journal of Electronics,1995,23(06):81-83.
    133. Yury A. Kravtsov, Ning Yan Zhu. Multiple diffraction of electromagnetic waves by a wedge of concave shape [J].Wave Motion,2006,43(3):206-221.
    134. Youngchel Kim, B.S., M.S..On a Uniform Geometrical Theory of Diffraction based Complex Source Beam Diffraction by a Curved Wedge with Applications to Reflector Antenna Analysis[J]. The Ohio State University. Dissertation Committee,2009.
    135. Youngchel Kim, B.S., M.S., On a Uniform Geometrical Theory of Diffraction based Complex Source Beam Diffraction by a Curved Wedge with Applications to Reflector Antenna Analysis, Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University,2009.
    136. Y. S. Meng.PATH LOSS MODELING FOR NEAR-GROUND VHF RADIO-WAVE PROPAGATION THROUGH FORESTS WITH TREE-CANOPY REFLECTION EFFECT. Progress In Electromagnetics Research M,2010, (12):131-141.
    137. Yun-Jie Xu, Wen-Bin Li, Strength Prediction of Propagation loss in Forest Based on Genetic-SVM Classifier,2010 Second International Conference on Future Computer and Communication,2010, (03):251-254.
    138. Yun-jie Xu, Wen-bin Li. Propagation path loss prediction model of multi-sensor network in forest[J]. Procedia Engineering,2011(8):412-414.
    139. ZHANG Yu-zhu; CAO Zhi-wei; YAN Dun-liang; DAI Yu-wei, Study on Quantitative Relations Between Tree Measuring Factors of Pinus sylvestris var.mongolica Plantation on Sand Land of Nenjiang River, Protection Forest Science and Technology,2006, (01):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700