奶牛精确饲喂装置检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展,人民生活水平的提高,畜牧业得到了很大的发展成为地方新兴产业的主导产业,而奶牛业作为畜牧业的重要组成部分,在国民经济和社会发展中占据着重要的地位。但是随着我国奶牛养殖业的飞速发展,如何提高奶牛的产奶量以及奶牛的产奶质量,提高效益是奶牛业面临的重大课题。促进奶牛养殖的标准化、集约化和科学化建设,实现从传统生产管理向现代管理方式转变,以规模经营为载体,不断提高科技含量,对于我国奶业的持续健康发展是至关重要的。
     采食量是反刍动物健康和生产所需的营养物质的量化基础。只有均衡持续地提高奶牛的采食量,使奶牛能够获得较全面的营养元素,才可以实现理想的牛奶产量,从而提高产业收入,然而依靠人工采集的数据误差大,实时性不好,给管理带来了很大难度。因此为了使奶牛的管理更加科学、规范、快捷,推广机械化饲喂,使用计算机技术迫在眉睫。
     本文首先分析了奶牛饲喂技术与设备的发展现状,确定了装置的技术要求。按照整个设备的设计过程进行分析研究,确定饲喂装置的总体方案,装置主要由给料机构、称重机构及卸料机构组成。在虚拟仪器及其软件开发平台Lab view的基础上通过PC机与AVR ATmega32单片机实现无线数据通信,分别设计了基于无线收发芯片NRF24E1的无线通信模块和基于称重传感器的无线数据采集模块。本系统的无线数据采集模块改进了传统的采食量测量方法,利用称重感器技术方便快捷地采集数据。通过芯片的选型以及芯片外围电路的改进优化了硬件电路,并且设计了有效的通信协议,对奶牛个体采集准确性提高,防止传输的数据信号产生畸变并具有剔除错误信号的能力。上下位机间简单的串口通讯和上位机图形化的Lab view编程,使得整个系统模块化程度高、结构清晰、调试方便、运行稳定可靠。
     实验结果表明,本课题开发的奶牛信息采集系统用户界面友好,功能比较完备,实现对多头奶牛采食数据的采集,操作简单,能满足奶牛养殖场对基本数据的采集需要,系统低成本,低功耗,高可靠性,应用广泛,有很好的应用前景。
With the development of national economy, people's living standards have been improved, and the animal husbandry has been greatly developed into a new industry where the leading industry. Dairy industry is an important part of animal husbandry which occupies an important status in the national economy and social development. But with the rapid development of China's dairy industry, how to improve milk production and cow milk quality, and efficiency is a major issue. For the sustained and healthy development of China's dairy industry, the scale of operation as the carrier, promoting the standardization of dairy farming, intensive and scientific construction, production management from the traditional to the modern management pattern and increasing scientific and technological content is crucial.
     Ruminant feeding intake is required for animal health and production which is based on the quantification of nutrients. Only improving the dairy cow feeding intake equitably and continuously, do dairy cow have access to more comprehensive nutrients before they can achieve the desired milk production, and to improve industry revenue. However, the poor timeliness of data errors would exist which are relied on manual collection that would leads the management to a great degree of difficulty. Therefore, in order to make the management of dairy dairy cow more scientific, standardized and fast, the use of computer technology is imminent to promote mechanized feeding.
     This paper analyzes the dairy cow feed the development status of technology and determined the device's technical requirements. According to the analysis of the design process, the overall scheme of feeding device has determined. The device is mainly composed by feeding body weight bodies and discharging institutions. Based on the virtual instrument and its software development platform, the single chip wireless data communication is achieved with the Lab view PC and the AVR ATmega32, respectively, the wireless transceiver chip was designed based on the wireless communication module NRF24E1 load cell-based wireless data acquisition module. The wireless data acquisition module of the system improves the intake of traditional measurement methods and uses the weighing sensor technology to quickly and easily collect the data. Through the chip selection and chip peripheral circuits, it improved and optimized hardware improvements, and designed an effective communication protocol to improve the accuracy of the collection of individual dairy cow, and to prevent the transmission of data signals and have removed the distortion error signals. Between simple upper and lower computer serial communication, the Labview graphical programming makes the system high degree, clear structure, easy commissioning and reliable operation.
     Experimental results show that the development of the dairy project information collection system is used friendly. The feature is more comprehensive, and the feeding dairy cow data collection is achieve at the same time, its operation is simple and could meet the basic needs of data collection for dairy farms. Low system cost, low- power consumption, high reliability and widely used indicates a good prospect.
引文
[1]李胜利.中国奶牛养殖场产业发展现状及趋势.中国农业大学动物科技学院.奶牛养殖专栏2008年第44卷第10期
    [2]张盛友.舍饲水牛采食行为监测系统的建立和应用研究.南京农业大学硕士论文. 2000-06-01,4-512-15
    [3]王峰,田春英等.澳大利亚奶牛业[J],畜牧与饲料科学,2005,(1):48-49.
    [4]徐春阳.美国奶业给我们的启示[J].农场经济管理,2007,(5):15-17.
    [5]李仕坚,陆阳清.美国奶牛业考察报告[J].中国奶牛,2007,(4):50-52.
    [6]吴小华.网络化的精密配料控制技术研究.西安交通大学硕士学位论文2003.
    [7]OIML.Seminar“Weighing in Braunschweigh”,15-18,May,1990.
    [8]Koukouvinos,Christos.Optimal weighing designs and some new weighing matrices. Statistics and Probability Letters Volume:25,Issue:1,October,1995:37-42;
    [9]Lidn,Gran;Bergman,Gunnel.Weighing imprecision and handle ability of the sampling cassettes of the IOM sampler for invaluable dust. The Annals of Occupational Hygiene Volume:45,Issue:3,April, 2001:241-25;
    [10]宋连喜,纂颖.关于我国加快推广奶牛TMR饲养技术的思考[J].辽宁畜牧兽医,2004(9):38~40. Song lian xi, Zuan Ying. Thought on expedite popularizing feeding technique of cow’s TMR inourcountry[J].Liaoning Journal of Animal HusbandryandVeterinaryMedicine,2004(9):38~40. (in Chinese).
    [11]张元跃.猪改良的目标与策略:应用前景,养猪,2000,2:22一24
    [12]王亮亮.饲喂模式和TMR颗粒度对奶牛瘤胃发酵和生产性能的影响[D].北京:中国农业大学, 2006.
    [13]陈钦国.奶牛全混合(TMR)日粮饲养技术[J]. http://www.tmr.cn/old/Article_Print.asp?ArticleID=494.
    [14]颜旺洪,高剑锋,王飞雪.粮食与饲料工业包装秤的选用[J].粮食与饲料工业.2003,11:21-22.
    [15]张麟.称重式包装机粉料给料装置的研究[J].包装与食品机械.1997,15(6):1-3.
    [16]谭春林.奶牛饲喂装置的设计研究[D].石河子:石河子大学,2007.Tan Chunlin. Design and study of cow-feeding equipment[D].Shihezi: Shihezi University,2007. (in Chinese)
    [17]吴向峰.动态颗粒状物料定量称重技术研究[D].北京:中国计量科学研究院,2006.22(2):14-17. (in Chinese).
    [18]S.Devir,Validation of Dairy Automatic Routine for Dairy Robotic and ConcentratesSupply[J]. J.agric.Engng Res.(1996)64,49-60.
    [19]K.Cooper;D.Parsons,A Simulation of an Automatic Milking System Applying DifferentManagement Strategies[J],J.AGRIC.Engng Res.(1998)69,25-33.
    [20]J.Eric Hillerton,Milking equipment for robotic milking[J],Computer and Electronics inAgriculture 17(1997)41~51.
    [21]Reinhold Ludwig著.王子宇等译.射频电路设计——理论与应用[M].北京:电子工业出版社,2002.57-83.
    [22]王立方,陆昌华,谢菊芳等.家畜和畜产品可追溯系统研究进展[J].农业工程学报,2005,(7):168-174.
    [23]游战清,李苏剑等.无线射频识别技术(RFID)理论与应用.[M]北京:电子工业出版社,2004.231.
    [24]郎为民.射频识别(RFID)技术原理与应用[M].北京:机械工业出版社,2006.
    [25]熊本海,钱平,罗清尧等.基于奶牛个体体况的精细饲养方案的设计与实现[J].农业工程学报,2005,21(10):118-123.
    [26]FinkenzellerK.RFIDHandbook,Wiley,John SonsIne.2000:5-20.
    [27]郭帅.远距离RFID读卡器设计[D].大连:大连理工大学,2005.
    [28]黎飞鸿.远距离高频段RFID读写器系统研究与设计实现[D].上海:华东师范大学,2007.
    [29]汪大卓,陈龙.基于S6700的电子标签读写器的设计[J].杭州电子科技大学学报,2007,27(4):41-44.
    [30]陈雷,鲁刚,佘锐萍.编码定义标准对RFID技术在动物身份识别上应用的影响[J].中国兽医杂志,2007(21).
    [31]Christian Floerkermeier, Sanjay Sarma. An Overview of RFID System Interfaces and Reader Protocols. 2008IEEE International Conference on RFID The Venetian ,LasVegas, Nevada, USAApril 16-17: 232-240.
    [32]邱怀.现代乳牛学[M].北京:中国农业出版社,2002.87-98.
    [33]何立民,单片机实用技术选编10[M].北京航空航天大学出版社,2004.303-338.
    [34]艾德才.微机原理与接口技术[M].北京:中国水利水电出版社,2004.64-81.
    [35]刘易勇,谢志明.串行外设接口在单片机系统中的应用[J].新疆工学院学报,2000,21(4):344-346.
    [36]吴少军.实用低功耗设计-原理、器件与应用[M]北京:人民邮电出版社,2003.59-63.
    [37]张麟.称重式包装机粉料给料装置的研究[J].包装与食品机械1997,15(6):1-5.
    [38]王书鹤.螺旋加料动态定量称重控制方法的研究[J].山东大学学报.2003,38(1):83-85.
    [39]谭春林.奶牛饲喂装置的设计研究[D].新疆石河子大学.2007.04.
    [40]王书鹤,亓克贵,任思成.提高动态称量精度的研究与实现[J].自动化博览.2002,5:23-24.
    [41]何希才.传感器及其应用[M].国家工业出版社,2001.5.
    [42]沈兰荪.高速数据采集系统的原理与应用[M ].北京:人民邮电出版社,1995.20-35.
    [43]陆伯勤.电子称重技术和自动称重系统的进展[J].自动化博览,1999,(1):1-6.
    [44]周林,殷侠等编著.数据采集与分析技术[M].西安:西安电子科技大学出版社,2005.1-6.
    [45]丁易新.PC机与AVR单片机之间串行通信的实现[J].现代电子技术,2005(12):32-34.
    [46]王以伦,王洪涛,邓宝林等.嵌入式C编程与AVR单片机的同步串行通信[J].中国科技信息,2005 (20):18-30.
    [47]耿德根,宋建国,马潮等.AVR高速嵌入式单片机原理与应用[M].北京:北京航空航天大学出版社,2001.32-46.
    [48]李朝青.单片机学习指导[M].北京:北京航空航天大学出版社,2005.120-156.
    [49]耿德根,宋建国.AVR高速嵌入式单片机原理与应用[M].北京:北京航空航天大学出版社,2002. 239-245.
    [50]沈文.AVR单片机C语言开发入门指导[M].北京:清华大学出版社,2003.273-289.
    [51]Atmel Corpration.ATmega32(L)Preliminary.www.atmel.com/literature,2005.
    [52]Mohan,Sibin,Mueller,Frank etc.Timing analysis for sensor network nodes of the Atmega processor family[A].Proceedings of the IEEE Real-Time and Embedded Tech-nology and Applications Symposium[C],2005.405-414.
    [53]http://www.atmel.com.
    [54]Jamal.Rahman. Oriented programming with Lab VIEW Nuclear Instruments and Methods in Physies Research[J].Graphical object,1994(1):438-441.
    [55]Whitley, K. N. Blackwell, Aan F. A Surrey of LabVIEW Programmers. Journal of Visual Languages&Computing[J]. Visual Programming in the Wild,2001,12(4): 435-472.
    [56]LabVIEW Measurements Manual. National Instruments Corp,USA,2003.
    [57]孙春龙.基于LabVIEW多通道数据采集分析系统开发[D].华中科技大学图书馆,2004.
    [58]马双宝,王攀,曾勇等.基于LabVIEW7.0虚拟信号发生器的实现[J].传感器与仪器仪表,2005, 21(1):89-90.
    [59]陈敏.虚拟仪器软件LabVIEW在仪器控制中的应用[J].宇航计测技术,1999,19(1):32-36.
    [60]Gary W.Johnson,Richard Jennings.武嘉澎,陆尽昆译.LabVIEW图形编程[M].北京:北京大学出版社,2002.3-15.
    [61]NI Educational Laboratory Virtual Instrumentation Suite User Manual.National In struments Corporation.2003.
    [62]Mark.I..Montrose:Printed Circuit Board Design Techniques for EMC Com pany.IEEE PRESS Editorial Board.1996,73-86.
    [63]Atmel Corpration.ATmega32(L)Preliminary.www.atmel.com/literature.2005.
    [64]石东海.单片机数据通信技术从入门到精通[M].西安:西安电子科技大学出版社,2002.34-46.
    [65]Mohan,Sibin,Mueller,Frank etc.Timing analysis for sensor network nodes of the Atmega processor family[A].Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium[C].2005,405-414.
    [66]王浩鸣.常用无线数据通讯技术比较[J].计算机与现代化,2002(9):35-38.
    [67]郑启忠,朱宏辉,耿四军,等.系统级RF芯片nRF24E1收发原理与应用编程[J].单片机与嵌入式系统应用, 2004(7): 42-44.
    [68]Nordic white paper nRF24E1 product specification [EB/OL]. 2003-07-31. http://www.nvls.ino/files/product/data_sheet/nRF24E1_prod_vl_0. PDF.
    [69]潘新民.微型计算机控制技术[M].北京:电子工业出版社.2003.165-175.
    [70]徐大诚.微型计算机控制技术及应用[M].北京:高等教育出版社,2003.311-340.
    [71]熊诗波,黄长艺.机械工程测试技术基础(第三版)[M].北京:机械工业出版社,2006.63-66.
    [72]肖伟.单片机测控系统中的抗干扰技术[J].山东理工大学学报,2006,20(6):106-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700