立木直径生长量及环境信息远程监测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树干直径是林业测量的主要测量因子,然而当前的测量方式不能满足实时、连续地测量。本研究建立了一种可以实现实时、连续测量的立木直径生长量及环境信息远程监测系统,该系统通过将自行设计的树径(树径生长量)自动测量装置、多种环境信息传感器和成熟的无线传感器网络结合应用而建立。针对节点设计了节点的防护装置、并将太阳能应用到树木测量及信息传输的节点和传感器的供电系统中,同时针对系统设计了远程监测界面。该监测系统具有低功耗、反应灵敏、测量精准、可靠性高以及自供电等特性,树径测量精度可以达到5μm。
     本研究主要有2个创新点:(1)建立了基于无线传感器的立木直径生长量及环境信息远程监测系统,实现了活立木树径生长量及其环境信息的实时远程监测;(2)研制了一种树径(树径生长量)自动测量装置,并针对此结构设计了相应的树径(树径生长量)数学模型(申请了发明专利)。
The stumpage diameter is the main measuring factor of the forestry measurements. However, the current measurement mode can not meet real-time and continuous measurement. The study established a kind of system---remote monitoring system of stumpage diameter growth and environmental information which can realize the real-time and continuous measurement. This system is set up by combining the self designed Tree Diameter Automatic Measuring Device, several environmental sensors and the mature wireless sensor network. At the same time, node protective equipment and solar power application were designed for every node, and remote monitoring interface was developed for the whole system. This remote monitoring system has some features such as low power, responsive, precise measuring, high reliability,"green" power supply, efc. Moreover, the measurement accuracy of the stumpage diameter can reach5u m.
     There are two innovative points in the thesis:(1) Established the remote monitoring system of stumpage diameter growth and environmental information, enabled the accurate remote monitoring of standing tree growth and woodland environmental information in real time to be a reality;(2) Developed a kind of tree diameter (growth) automatic measuring device and related mathematical model for coverting the output from to the value of tree diameter (applied for a patent).
引文
1.丁轲轲.自动测量技术[M].北京:中国电力出版社,2004.
    2.郝占庆等 邓红兵.红松单木生长高模型研究[J].生态学杂志,1999,3(18):19-22.
    3.李文彬,裴志永,阚江明,等.活立木树木直径生长量实时自动测量的装置[P].
    4.刘笃仁等.传感器原理及应用技术[M].西安:电子科技大学出版社,2003.
    5.马双宝,陶桓齐,刘文琮.无线传感器网络在森林监测中的应用[J].测控技术,2010,29(2).
    6.孟宪宇.测树学[M].北京:中国林业出版社,2006.
    7.孙利民,李建中,陈渝等.无线传感器网络[M].北京:清华大学出版社,2005.
    8.张军国.面向森林火灾监测的无线传感器网络技术的研究[D].北京:北京林业大学,2009.
    9.郑治刚.现代森林经理学(续)[J].华东森林经理,1998,4(12):1-7.
    10.陆志平,秦会斌,王春芳.无线传感器网络在森林火灾监测中的应用[J].杭州电子科技大学学报,2006,26(5):48-51.
    11.宋小春,康宜华,武新军,等.基于数字图像处理的林木自动测量系统研究[J].计算机工程与设计,2005,26(5):1187-1189.
    12.陶桓齐,刘文琮,马双宝.无线传感器网络在森林监测中的应用[J].测控技术,2010,29(2):5-7.
    13.赵永辉.无线传感器网络在森林火灾监测中的应用.第八届中国林业青年学术年会,哈尔滨,2008.
    14.陈改英.GPS技术及其在林业中的应用[J].北京农学院学报,2004,19(3):46-48.
    15.方陆明.我国森林资源信息管理的发展[J].浙江林学院学报,2001,18(3):322-328.
    16.关强,尹丽丽,李志鹏,等.基于超声测距的定高树径测量仪的研究[J].东北林业大学学报,2006,34(4):27-30.
    17.郭修生,王宝森.便携式树径生长量测定器推介[J].林业勘查设计,2001,(1):49.
    18.黄心渊,王海.“数字林业”及其技术与发展[J].北京林业大学学报,2006,28(6):142-147.
    19.江长荫,焦培南.丛林环境传播损耗实验研究[J].通信学报,1992,13(2):73-78.
    20.景海涛,冯仲科,朱海珍,等.基于全站仪和GIS技术的林业定位信息研究与应用[J].北京林业大学学报,2004,26(4):100-103.
    21.李文彬,张俊梅,撒潮,等.人工林UHF频段电波传播场强预测模型[J].北京林业大学学报,2007,29(4):15-18.
    22.刘建国.现代森林经理学的主要进展与未为发展展望[J].林业资源管理,1995,(6):16-19.
    23.司敏山,高艺.基于太阳能的温室无线传感器网络监测系统设计[J].无线通信技术,2010,19(2):57-62.
    24.王秋萍,李宏伟,齐朝杰.无线局域网技术在精细农业中的应用[J].农机化研究,2005,(5):209-211.
    25.王雪峰,冯银花.基于原野服务器的远程树木直径测定的研究[J].林业科学研究,2006,19(6):675-678.
    26.王雪峰,张超,唐守正.基于图像理解的树木直径抽取技术[J].林业科学,2005,41(2):16-20.
    27.武红敢,陈改英.基于3“S”和网络技术的森林病虫害监测与管理系统[J].世界林业研究,2004,17(4):32-36.
    28.项小强,李月清.变时相生长模型技术及其在小班数据更新中的应用[J].浙江林学院学报,1999,16(3):279-282.
    29.肖生春,肖洪浪,司建华,等.胡杨(Populus euphratica)径向生长日变化特征分析[J].冰川冻土,2010,(4):816-822.
    30.鄢前飞.林业数字式测径仪的研制[J].中南林业科技大学学报:自然科学版,2008,28(2):95-99.
    31.鄢前飞.林业数字式测高测距仪的研制[J].中南林业科技大学学报:社会科学版,2007,(5).
    32.张军国,李文彬,韩宁,等.基于ZigBee无线传感器网络的森林火灾监测系统的研究[J].北京林业大学学报,2007,29(4):41-45.
    33.张青,李永慈,唐守正.基于仿射重构的树高测量[J].计算机工程与应用,2005a,41(31):21-22.
    34.张玉柱,曹志伟,闫敦梁,等.嫩江沙地樟子松人工林各测树因子数量关系的研究[J].防护林科技,2006,(1):7-9.
    35.赵伟,刘嘉新,王岩.森林环境因子的自动监测和无线传输[J].东北林业大学学报,2007,35(6):88-91.
    36.A1-Nuaimi M O. Measurements and Predictions of Attenuation and Scatter of Microwave Signals by Trees[J]. IEEE Transaction on Antennas and Propagation,1994,(141):70-76.
    37.Al-Turjman F M, Hassanein H S, Ibnkahla M A. Connectivity Optimization with Realistic Lifetime Constraints for Node Placement in Environmental Monitoring.2009 IEEE 34th Conference on Local Computer Networks (LCN 2009), Zurich, Switzerland,2009.
    38.Awang A, Suhaimi M H. A forest monitoring system using wireless sensor network. International Conference on Intelligent and Advanced Systems 2007,2007.
    39.Bardi J F, Villacampa Y, Losardo O, et al. A study of the relationship height-diameter,2001.
    40.Barrio-Anta, Ulises D, Castedo-Dorado F A J, et al. Mimicking natural variability in tree height of pine species using a stochastic height-diameter relationship[J]. New Zealand Journal of Forestry Science,2006,1(36):21-34.
    41.Fadi M. Al-Turjman H S H M. Connectivity Optimization for Wireless Sensor Networks Applied to Forest Monitoring. IEEE Communications Society subject matter experts for publication in the IEEE ICC 2009 proceedings,2009a.
    42.Fadi M. Al-Turjman H S H M. Connectivity Optimization with Realistic Lifetime Constraints for Node Placement in Environmental Monitoring.2009 IEEE 34th Conference on Local Computer Networks (LCN 2009) Zurich, Switzerland,2009b.
    43.Fukatsu T, Hirafuji M. Field monitoring using sensor-nodes with a web server[J]. Journal of Robotics and Mechatronics,2005,2(17):164-172.
    44.India R K T. Radio wave propagation through rain forests of India[J]. IEEE Transaction on Antennas and Propagation,1990,4(38):433-449.
    45.Karam M A. A Microwave Scattering Model for Layered Vegetation [J]. IEEE Transaction on Geo-science and Remote Sensing,1992,4(30):767-784.
    46.Krepkowski J, Uning A B, Gebrekirstos A, et al. Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopi[J]. Trees,2011,(25):59-70.
    47.Oberhuber W, Gruber A. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought[J],2010,(24):887-898.
    48.Schwering F K. Millimeter-Wave Propagation in Vegetation:Experiments and Theory[J]. IEEE Transaction on Geo-science and Remote Sensing,1998,3(26):355-367.
    49.Seker. S S. VHF/UHF Radio Propagation Through Forests:Modeling and Experimental Observations[J]. IEEE Proceedings-H,1992,1(139):72-78.
    50.Sevanto S, T. Vesala M, Peramaki, et al. Time lags for xylem and stem diameter variations in a Scots pine trees[J]. Plant, Cell and Environment,2002,(25):1071-1077.
    51.Sharma, Mahadev. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management,2007,3(249):187-198.
    52.Wonn. H T, O'Hara K L. Height diameter ratios and stability relationships for four northern Rocky Mountain tree species[J]. Western Journal of Applied Forestry,2001,2(16):87-94.
    53.Yuch. S H. Branching Model for Vegetation[J]. IEEE Transaction on Geo-science and Remote Sensing,1992,3(26):390-402.
    54.Zoughi. R. Identification of Major Backscattering Sources in Trees and Shrubs at 10 GHz[J]. Remote Sensing of Environment,1986,2(19):269-290.
    55.Zwally, Jay H, Brenner, et al. Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets[J]. IEEE Transactions on Geoscience and Remote Sensing,2007, 2(45):321-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700