Fenton与电Fenton技术处理有机废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的生物处理技术对水中的生物难降解有机物去除效率较低时,高级氧化技术处理此类污染物可发挥反应速度快、处理完全、二次污染小、适用范围广等优点,可成为生物难降解有机废水治理的有效方法之一。在高级氧化技术中,Fenton技术相对稳定、简单、具有应用优势,得到了广泛关注。目前其去除特定难降解有机物的过程与机理有待具体深入研究,同时也存在实验室单底物模拟条件与实际水体复杂体系条件相差较大等问题,得到的结果在实际工程应用时应研究其他组分的影响。
     研究以Fenton与电Fenton方法降解单底物模拟废水作为比较基础,考察了单底物和双底物条件下Fenton与电Fenton降解水中有机污染物的动力学行为,并对多底物条件下Fenton技术降解水中有机物的机理进行了探讨。主要开展如下研究:
     (1)分别采用甲基橙和刚果红偶氮染料作为模型化合物,考察Fenton技术降解水相中模型化合物的动力学特征。结果表明Fenton技术降解模型化合物的反应过程可以用底物浓度准一级动力学来表征,在30℃-60℃范围内温度对Fenton技术降解目标化合物的影响不明显,说明该过程具有较宽的温度适应范围。通过溶液浸渍法制备出以活性炭为基础的非均相Fenton催化剂,在pH为2.0~5.0范围内均具有较高活性,反应30min降解脱色0.028mmol/L甲基橙溶液脱色率均可达90%以上,反应过程中Fe2+离子浓度稳定在1.5mmol/L以上。
     (2)通过溶液浸渍法可以将金属Ag单质负载于金属加工废料铁刨花上,制备出双金属阴极电极。实验条件下,Fe基负载金属Ag作为阴极,反应60min后H202生成量比石墨板阴极生成量增加了46.9%,体相中Fe2+浓度分别比石墨板阴极增加了10.6倍,说明通过电极的改性可以改善电Fenton反应的效率。开发设计出内循环塔式阴极电Fenton反应器(ICBR),相对于普通方形电解槽反应器降解脱色甲基橙溶液具有很好的效果,相同条件下,其一级动力学反应常数为方形电解槽反应器的5.39倍,铁刨花作为阴极用于内循环塔式阴极电Fenton反应器具有较好的经济性和实用性。
     (3)分别采用亚甲基蓝-苯酚和甲基橙-十二烷基硫酸钠(SDS)两类双化合物体系作为多底物模拟环境水相,并对其进行Fenton、电Fenton技术氧化降解实验。结果表明苯酚对亚甲基蓝溶液脱色的抑制效果影响明显,推测苯酚与亚甲基蓝的Fenton反应为并行竞争反应,苯酚占有优势,亚甲基蓝的毓基因为空间位阻的存在,加之苯环结构影响电子云变形,相对于苯酚不容易被氧化。在甲基橙-SDS体系中,当SDS小于临界胶束浓度时,甲基橙降解反应速率常数随SDS浓度的增加而下降,推测SDS与甲基橙在水溶液中发生水合反应,SDS阻碍甲基橙被直接进攻氧化。实验结果表明双底物条件下,目标化合物的降解会受到第二种模型化合物的影响,且影响行为与两种化合物的分子结构及亲电竞争能力有关。
     (4)考察了Fenton技术与电Fenton技术降解实际糠醛工业废水的效果,在10L反应器中的实验结果表明Fenton技术由于反应条件温和,pH值变化较小,降解效率高,FeSO4、H202和COD的初始质量比为2:1:10时,反应1小时COD从13000mg/L降为1900mg/L,可以作为糠醛废水的预处理手段。采用Fenton-混凝-PACT组合工艺处理糠醛废水,效果稳定,基本达到污水综合排放标准(GB8978-1996)中规定的二级排放标准,药剂费用4.96元/吨糠醛废水,投资费用较低,具有很好的环境效益和经济效益。
     本研究成果丰富了Fenton高级氧化技术理论,并为Fenton技术在工业废水处理应用中的过程控制提供了科学研究参考。
Removal of refractory organics from industry wastewaters was difficult by biological process. Advanced oxidation processes (AOPs) are efficient for its fast reaction speed, high purification efficiency, less secondary pollution and wide application. Fenton process, which uses iron ions as homogeneous catalyst and hydrogen peroxide as oxidizing reagent, has attracted more and more attention for its relatively stable, simplicity, mild condition, and suitability for practical application although the reaction mechanism still need more in-depth studies. The dynamics of multiple organics pollutants degradation should be investigated for the results of laboratory scale studies differ greatly in complex system problems.
     This paper focused on dynamic behavior studies of Fenton and electro-Fenton process treatment of the single and dual organics pollutants in the aqueous phase to reveal the Fenton reaction characteristics in treating multiple organic pollutant substrates. The main resluts were as followed:
     (1) To investigate the dynamic behaviors of Fenton process, methyl orange and Congo red were selected as simulation target pollutant respectively. The kinetics modeling indicated the Fenton oxidation reaction of the targeted pollutants followed the pseudo first-order reaction. Variation of the rate constants was not obvious in the temperatures ranging from30℃to60℃. The process has a wide range of temperature adaptation. The heterogeneous Fenton catalyst based on activated carbon were made by solution immersion method. The decoloration efficiency of0.028mmol/L methyl orange solution could reach90%above even pH increased from2.0to5.0. The concentration of Fe2+could maintain1.5mmol/L above during the procedure.
     (2) Electro-Fenton oxidation simulation using methyl orange as the target pollutant was also studied. The Ag-Fe bimetal wires cathode were fabricated by solution immersion method using the iron scraps of a mechanical processing factory. The concentration of H2O2generated by Ag-Fe bimetal wires cathode was46.9%more than the graphite plate cathode in this research experimental conditions. The concentration of Fe2+by Ag-Fe bimetal wires cathode was10.6times as graphite plate cathode. The Ag-Fe bimetal wires cathode could enhance the efficiency of electro-Fenton reaction. Internal Circulation Batch Electro-Fenton Reactor (ICBR) had been used for these bimetal wires cathodes. In the same conditions the kinetics reaction constant of ICBR was5.39times as the the kinetics reaction constant of ordinary squaree electrolytic cell reactor. This ICBR was stable and efficient in treating the targeted pollutant.
     (3) Fenton process to treat the dual organics pollutants in the aqueous phase was studied with phenol-methylene blue and sodium dodecyl sulfate (SDS)-methyl orange as model pollutant respectively. The results indicated that the presence of phenol reduced Methylene Blue discoloration rates. The-OH was thought to be more effective towards phenol oxidation instead of methylene blue for the high steric resistance of hydrosulfuryl in methylene blue. The degradation rate decreased with concentration of phenol increased. SDS could reduce the methyl orange degradation rate during the Fenton process. The ion-associate complex compounds of SDS and methyl orange maybe formed in aqueous phase,-OH tended to degraded SDS instead of target pollutant methyl orange. The degradation rates of methyl orange were reduced by SDS during Fenton process when the concentration of SDS was below CMC (Critical Micelle Concentration). The results indicated that degradation process was affected by the second compounds in the system. The characteristic of dual degradation process was related to the molecular structures of compounds.
     (4) Treatment of furfural industry wastewater by Fenton and Electro-Fenton processes was investigated in this study using the reactor with10L volume. Results indicated that Fenton process was suitable for industrial pretreatment for its high efficiency degradation and mild conditions. On the optimum experiment results, the Fenton-coagulation-PACT process had been established to treat furfural wastewater. The COD of furfural industry wastewater could decrease from13000mg/L to1900mg/L when the initial mass ratio of FeSO4, H2O2and COD reached2:1:10with reaction1hour. The performance was stable during the experiment and effluents reached the second grade standard of GB8978-1996. The drug cost of this process to treat furfural wastewater has reached the Y4.96per ton furfural industry wastewater. This process also showed the advantages of lower capital construction costs and economic benefits.
     Results of the research had enriched the theory of Fenton advanced oxidation technology. It also provided the science references to process control of Fenton technology in industrial wastewater treatment.
引文
[1]GLAZE W H, KANG J W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation [J]. Ozone Science & engineering,1987,9(4): 335-352.
    [2]雷乐成,何锋.均相Fenton氧化降解苯酚废水的反应机理探讨[J].化工学报,2003,54(11):1592-1597.
    [3]MORDECHAI L K. Is-OH the active Fenton intermediate in the oxidation of ethanol? [J]. Journal of Inorganic Biochemistry,2000,78:255-257.
    [4]MODENES A N, ESPINOZA-QUINONES FR, MANENTI D R, et al. Performance evaluation of a photo-Fenton process applied to pollutant removal from textile effluents in a batch system [J]. Journal of Environme ntal Management,2012,104(15):1-8.
    [5]JIANG C C, PANG S Y, Ouyang F, et al. A new insight into Fenton and Fenton-like processes for water treatment [J]. Journal of Hazardous Materials,2010,174(1-3):813-817.
    [6]NAMKUNG K C, BURGESS A E, BREMNER D H, et al. Advanced Fenton processing of aqueous phenol solutions:A continuous system study including sonication effects [J]. Ultrasonics Sonochemistry,2008,15(3):171-176.
    [7]KONG L J, LEMLEY A T. Effect of nonionic surfactants on the oxidation of carbaryl by anodic Fenton treatment [J]. Water Research,2007,41(12):2794-2804.
    [8]MA X J, XIA H L. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation [J]. Journal of Hazardous Materials,2009,162(1):386-390.
    [9]FILIZ A, FIKRET K. Advanced oxidation of amoxicillin by Fenton's reagent treatment [J]. Journal of Hazardous Materials,2010,179(1/3):622-627.
    [10]FENTON H J H. Oxidation of tartaric acid in presence of iron [J].Journal of the chemical society, 1894,65:899-910.
    [11]LA AT J D, GALLARD H, Ancelin S, et al. Comparative study of the oxidation ofatrazine and acetone by H2O2/UV, Fe(Ⅲ)/UV, Fe(Ⅲ)/H2O2/UV and Fe(Ⅱ) or Fe(Ⅲ)/H2O2 [J]. Chemosphere,1999, 39(15):2693-2706.
    [12]李春娟.芬顿法和类芬顿法对水中污染物的去除研究[D].哈尔滨:哈尔滨工业大学,2009.
    [13]HAAG W R, YAO C C. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants [J]. Environmental Science & Technology,1992,26(5):1005-1013.
    [14]BAUTISTA P, MOHEDANO A, CASAS J, et al. An overview of the application of Fenton oxidation to industrial wastewaters treatment [J] Journal of Chemical Technology and Biotechnology,2008, 83(10):1323-1338.
    [15]MARTINS R C, ROSSI A F, QUINTA-FERREIRA R M. Fenton's oxidation process for phenolic wastewater remediation and biodegradability enhancement [J]. Journal of Hazardous Materials,2010, 180(1-3):716-721.
    [16]CHAMARRO E. MARCO A, ESPLUGA S. Use of reagent to improve Organic Chemical biodegradability [J]. Water Research,2001,35(4):1047-1051.
    [17]张晖,HUANG C P. Fenton法处理垃圾渗滤液的影响因素分析[J].中国给排水.2002,18(3):14-17.
    [18]汪严明,赵昕,徐丽娜,等Fenton氧化与生化组合技术处理油田采油废水的研究[J].环境污染治理技术与设备,2004,5(11):74-78.
    [19]李学勤Fenton-混凝沉淀-接触氧化工艺处理涂装废水[J].给水排水,2011,37(1):59-61.
    [20]郑先强,尤特,唐运平.Fenton试剂预处理化工综合废水的研究[J].环境工程学报,2011,5(10):2226-2232.
    [21]陈文松,韦朝海Fenton氧化-混凝法处理印染废水的研究[J].工业水处理,2004,24(4):39-41.
    [22]LIN S H, JIANG C D. Fenton oxidation and sequencing batch reactor (SBR) treatments of high-strength semiconductor [J]. Wastewater Desalination,2003,154 (3):107-116.
    [23]KARTHIKEYAN S, TITUS A, GNANAMANI A. et al. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes [J]. Desalination,2011,281(17): 438-445.
    [24]BALLESTEROS M M, SANCHEZ-PEREZ J A,CASAS-LOPEZ J L, et al. Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation [J]. Water Research,2011, 43(3):653-660.
    [25]陈楠,陈永利,刘新亮,等Fenton法深度处理制浆中段废水的工程应用[J].中国造纸,2009,28(10):59-62.
    [26]BARB W G, BAXENDALE J H, GEORGE P, et al. Reaction of ferrous and ferric ionswith hydrogen peroxide.Part I.The ferrous ion reaction [J]. Transactions of the Faraday Society,1951,47:462-500.
    [27]NAMGOO K, DONG S L, JEYONG Y. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols [J]. Chemosphere,2002,47(9):915-924.
    [28]HAGE J P L, SAWYER A, DONALD T. Aromatic Hydroxylation by Fenton Reagents{Reactive Intermediate [Lx+FeIIOOH(BH+)], not Free Hydroxyl Radical (HO·)} [J]. Bioorganic & Medicinal Chemistry,1995,3(10):1383-1388.
    [29]BOSSMANN S H, OLIVER E, SABINE G, et al. New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Photochemically Enhanced Fenton Reactions [J]. Journal of the American Chemical Society,1998,102(28):5542-5550.
    [30]LEI L C, HE F. Mechanism of Homogeneous Fenton Oxidation of Phenol-containing Wastewater [J]. Journal of Chemical Industry and Engineering,2003,54(11):1592-1597.
    [31]KREMER M L, STEIN G. The catalytic decomposition of hydrogen peroxise by ferric perchlorate [J]. Transactions of the Faraday Society,1959,0(55):959-973.
    [32]BARB W G, BAXENDALE J H, GERGE P, et al. Reaction of ferrous and ferric ions with hydrogen peroxide. Part Ⅰ-The ferrous ion reaction [J]. Transactions of the Faraday Society,1951,0(47): 462-500.
    [33]雷东成,汪大翠.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [34]YAMAZAKI I, PIETTE L H. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactivespecies in oxygen toxicity in biology [J]. The Journal of Biological Chemistry,1990, 265(23):13589-13594.
    [35]DONG Y H, FUJI H, HENDRICH M P, et al. A high valent nonhcme iron intermediate structure and properties [Fe2(mu-O)2(5-Me-TPA)2](Cl4)_3 [J].Journal of Americain Chemical Society,1995, 117(10):2778-2792.
    [36]BELTRAN F J, RIVAS J, ALVAREZ P M, et al. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water:application to phenanthrene andnitrobenzene [J]. Industrial and Engineering Chemistry Research,1999,38(11):4189-4199.
    [37]YAMAZMKI I, PIETTE L H. EPR spin trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide [J]. Journal of the American Chemical Society, 1991,113(20):7588-7593.
    [38]杨春维,王栋Fenton试剂对亚甲基蓝氧化褪色的反应动力学实验研究[J].环境技术,2004,22(6):24-29.
    [39]BIGDA R J. Consider Fenton's chemistry for wastewater treatment [J]. Chemical Engineering Progress,1995,91(12):62-66.
    [40]KUO W G. Decolorizing dye wastewater with Fenton's reagent [J]. Water Research,1992,26(7): 881-886.
    [41]KANG S F, CHANG C P. Coagulation of textile secondary effluents with Fenton's reagent [J]. Water Science and Technology,1997,36(12):215-222.
    [42]GULKAYA I, SURUCU G A, DILEK F B. Importance of H2O2/Fe2+ratio in Fenton's treatment of a carpet dyeing wastewater [J]. Journal of Hazardous Materials B,2006,136(3):763-769.
    [43]GINOS A, MANIOS T, MANTZAVINOS D. Treatment of olive mill effluents bycoagulation-flocculation--hydrogen peroxide oxidation and effect on phytotoxicity [J]. Journal of Hazardous materials B,2006,133(1-3):135-142.
    [44]吴伟,吴程程,赵雅萍.非均相Fenton技术降解有机污染物的研究进展[J].环境科学与技术,2010,33(6):99-104.
    [45]龙明策,林金清,许庆清.非均相Fenton反应技术研究进展[J].环境污染治理技术与设备,2005,6(7):14-18.
    [46]高真,雷国元,姜成春Si-FeOOH非均相Fenton降解活性艳红MX-5B的效能研究[J].环境科学学报,2011,31(4):765-769.
    [47]朱新锋,张乐观,李朝辉,等.粉煤灰协同非均相Fenton法处理焦化废水的研究[J].水处理技术,2010,36(12):59-62.
    [48]张钰,郑蒙,邓安平,等α-FeOOH类Fenton可见光光催化降解有毒有机污染物[J].环境科学与技术,2011,34(10):24-28.
    [49]GARADE A C, BHARADWAJ M, BHAGWAT S V, et al. An efficient γ-Fe2O3 catalyst for liquid phase air oxidation of p-hydroxybenzyl alcohol under mild conditions [J]. Catalysis Communications, 2009,10(5):485-489.
    [50]ARENDS I W C E, SHELDON R A. Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations recent developments [J]. Applied Catalysis A General,2001,212(1-2): 175-187.
    [51]MA W H, HUANG Y P, LI J, et al. An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs [J]. Chemical Communications,2003, (13):1582-1583.
    [52]LV X J, XU Y M, LV K. L, et al. Photo-assisted degradation of anionic and cationic dyes over iron III loaded resin in the presence of hydrogen peroxide [J]. Journal of Photochemistry and Photobiology A Chemistry,2005,173(2):121-127.
    [53]CHENG M M, MA W H, LI J, et al. Visible-light-assisted degradation of dye pollutant sover Fe Ⅲ loaded resin in the presence of H2O2 at neutral pH values [J]. Environmental Science & Technology, 2004,38(5):1569-1575.
    [54]LU M C, CHEN J N, HUANG H H, et al. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydro gen peroxide [J]. Chemosphere,2002,46(1):131-136.
    [55]BOBU M, YEDILER A, SIMINICEANU I, et al. Degradation studies of ciprofloxacin on a pillared iron catalyst [J]. Applied Catalysis B:Environmental,2008,83(1-2):15-23.
    [56]SABHI S, KIWI J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts [J]. Water Research,2001,35(8):1994-2002.
    [57]HE J, TAO X, MA M H, et al. Heterogeneous photo-Fenton degradation of an azo dye in aqueous H2O2/iron oxide dispersions at neutral pH [J]. Chemistry Letters,2002,31(1):86-87.
    [58]陈芳艳,倪建玲,唐玉斌.非均相UV/Fenton氧化法降解水中六氯苯的研究[J].环境工程学报,2008,2(6):765-770.
    [59]KASIRI M B, ALEBOYEH H, ALEBOYEH A. Degradation of acid Blue 74 using Fe-ZSM zeolite as a heterogeneous photo-Fenton catalyst [J]. Applied Catalysis B:Environmental,2008,84(1/2):9-15.
    [60]MASAHIKO A, NOBUYUKI S, KEIZO O. Solubilization of azo oil dyes by sodium dodecyl sulfate [J]. Journal of colloid and Interface Science,1984,99(1):226-234.
    [61]KATARZYNA M N. The effect of a polyelectrolyte on the efficiency of dye-surfactant solution treatment by ultrafiltration [J]. Desalination,2008,221(1/3):395-404.
    [62]ENGWALL M A, PIGNATELLO J J. Degradation and detoxification of woodpeservatives creosote and pentachlorophenol in water by the photo-Fenton reaction [J]. Water Research,1999,33(5): 1751-1158.
    [63]雷乐成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2):210-215.
    [64]陈琳,杜瑛,雷乐成.UV/H202光化学氧化降解对氯苯酚废水的反应动力学[J].环境科学,2003,24(5):106-109.
    [65]ZHOU M H, YU Q H. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system [J]. Separation and Purification Technology,2007,57 (2):380-387.
    [66]MARTIN B M M, SANCHEZ P J A, CASAS L I J L, et al. Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation [J]. Water research,2009,43(3):653-660.
    [67]邓洪君Fenton试剂与其他技术联合在废水处理中的应用[J].内蒙古电大学刊,2007(2):51-52.
    [68]刘承帅,高原雪,李芳柏,等.铁氧化物/草酸/UV体系中2-硫醇基苯骈噻唑的光化学降解[J].催化学报,2006,27(2):139-145.
    [69]程沧沧,尚忠梅,胡德之,等UV-TiO2/Fenton试剂系统处理制药废水的研究[J].环境科学研究,2001,14(2):33-35.
    [70]QIANG Z M, CHANG J H. HUANG C P. Electrochemical regeneration of Fe2+ in Fenton oxidation processes [J]. Water Research,2003,37(6):1308-1319.
    [71]RAMIREZ J H, MALDONA DO-HODAR F J, PEREZ-CADENAS A F. et al. Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts [J]. Applied Catalysis B: Environmental.2007,75(3/4):312-323.
    [72]OTURAN M A. An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants:application to herbicide 2,4-D [J]. Journal of Applied Electrochemistry,2000,30(3):475-482.
    [73]GUIVARCH E, TREVIN S, LAHITTE C, et al. Degradation of azo dyes in water by Electron-Fenton process [J]. Environmental Chemistry Letters,2003,1(1),38-44.
    [74]吴高明,杨志新,袁松虎,等.碳基复合电极制备和电Fenton降解4-氯酚研究[J].环境科学与技术,2006,29(6):9-10.
    [75]王爱民,曲久辉,史红星,等.活性炭纤维阴极电芬顿反应降解微囊藻毒素研究[J].高等学校化学学报,2005,26(9):1669-1672.
    [76]管玉琢,李亚峰,李秒,等.活性炭纤维阴极电Fenton法处理焦化废水[J].工业用水与废水,2010,41(4):13-16.
    [77]胡克宇,朱鲁华,李坤林.阴极电Fenton法脱色酸性红B废水研究[J].能源与环境,2007,(1):39-41.
    [78]梅涛,刘娟,李金坡,等.纳米铁/碳纳米管复合氧阴极电-Fenton降解RhB[J].化工进展,2007,26(8):1166-1169.
    [79]张亚群,王成元,陶伟,等Fenton试剂氧化法处理马铃薯淀粉废水[J].环境科技,2011,24(S1):8-9.
    [80]陈寿兵,段日雄,张学才Fenton试剂处理二硝基重氮酚工业废水的研究[J].安徽理工大学学报,2003,23(1):50-53,67.
    [81]刘剑玉,汪晓军Fenton化学氧化法深度处理精细化工废水[J].环境科学与技术,2009,32(5):141-143.
    [82]高超,乐清华,冯杰Fenton氧化法降解丙烯酸废水的研究[J].环境工程学报,2009,3(7):1279-1283.
    [83]刘燕韶,赵传山,马厚悦.制浆造纸污水Fenton氧化深度处理工艺[J].纸和造纸,2009,28(9):54-56.
    [84]闫肖茹,高建平,王建中,等Fenton氧化-混凝联合处理橡胶废水研究[J].水处理技术,2009,35(8):99-102.
    [85]张良波,魏新利.超声波/Fenton试剂联用降解水中的吡啶[J].环境化学,2009,28(3):364-368.
    [86]陈芳艳,唐玉斌,钟宇,等.微波诱导Fenton试剂氧化降解水中对硝基氯苯[J].环境科学与技术,2008,31(9):46-49.
    [87]孙旭辉,贾宇宇,马军.微电解-Fenton联合工艺处理硝基苯废水效能研究[J].水处理技术,2009,35(1):74-78.
    [88]胡晓莲,王西峰,关宏迅UV/TiO2/Fenton光催化氧化皂素废水的特性研究[J].应用化工,2009,38(1):38-40.
    [89]CHE H, LEE W. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension [J]. Chemosphere,2011,82(8):1103-1108.
    [90]TRUONG G L, LAAT J D, LEGUBE B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2 [J]. Water Research,2004,38(9):2383-2393.
    [91]LIPCZYNSKA-KOCHANY E, SPRAH G, HARMS S. Influence of some groundwater and surface waters on the degradation of 4-chlorophenol by the Fenton reaction [J]. Chemosphere,1995,30(1): 9-20.
    [92]SUN Y F, PIGNATELLO J J. Chemical treatment of pesticide wastes evaluation of Fe(Ⅲ) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH [J]. Journal of Agricultural and Food Chemistry,1992,40(2):322-327.
    [93]JHO E H, SINGHAL N, TURNER S. Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems [J]. Journal of Hazardous Materials,2010,184(1-3):234-240.
    [94]EWA L K, Jan K. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH [J]. Chemosphere,2008,73(5):745-750.
    [95]刘伟,段小月.二氧化氯-活性炭组合催化氧化刚果红废水[J].吉林师范大学学报(自然科学版),2011,32(2):64-66.
    [96]LIN S H, LO C C. Fenton process for treatment of desizing wastewater [J]. Water Research,1997, 31(8):2050-2056.
    [97]FENG J Y, HU X J, PO L Y. Effect of initial solution pH on the degradation of Orange Ⅱ using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst [J]. Water Research,2006, 40(4):641-646.
    [98]杨春维,翟文慧,才杨,等Fenton高级氧化工艺降解苯酚模拟废水的动力学实验研究[J].黑龙江环境通报,2009,33(3):70-74.
    [99]CHINGOMBE P, SAHA B, WAKEMAN R J. Surface modificati on and characterizati on of a coal based activated carbon [J]. Carbon,2005, (43):3132-3143.
    [100]LASZL O K, PODKOS C P, BROWSKI D A. Heterogeneity of polymer based active carbons in adsorp ti on ofaqueous s oluti ons of phenol and 2,3,4-trichl or ophenol [J]. Langmuir,2003(19): 5287-5294.
    [101]李子龙,马双枫,王栋,等.活性炭吸附水中金属离子和有机物吸附模式和机理的研究[J].环境科学与管理,2009,34(10):88-92.
    [102]NAGY A J, MESTL G, HEREIN D, et al. The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver oxygen systen [J]. Journal of catalysis,1999,182(2): 417-429.
    [103]MILOV M A, ZILBERBERG I L, RUZANKIN S P H, et al. Oxygen absorption on the Ag(Ⅲ) surface:a quantum chemical study by the NDDO/MC method [J]. Journal of Molecular Catalysis a-Chemical,2000,158(1):309-312.
    [104]REHREN C, ISAAC G, SCHOGL R, et al. Surface and subsurface products of the interaction of O2with Ag under catalytic conditions [J]. Catalysis Letters,1991,11(3-6):253-265.
    [105]范康年,包信和,邓景发.分子态氧在银表面吸附的理论分析[J].化学学报,1990,48(4):330-336.
    [106]钟知敏,谢璎,卢翠萍等.氧在银表面吸附的非绝热近似动力学计算[J].复旦学报,1996,35(3):241-251.
    [107]黄利军,虞炳西,高树浚.钛吸氢和放氢动力学[J].金属功能材料,1998,5(3):124-126.
    [108]郭卫斌,薛函迎,柴云川.吸气剂在行波管中的应用[J].真空电子技术,2011,4:7-9.
    [109]周红艺.钯/铁双金属体系对氯代芳烃的催化脱氯研究[D].杭州:浙江大漟,2003.
    [110]王志远.零价金属铁、锌以及双金属铁/钯、铁/银脱氯降解林丹.1,2,3,4-四氯代二苯并对二噁英的研究[[D].广州:中国科学院研究生院(广州地球化学研究所),2006.
    [111]BRILLAS E, CASADO J. Aniline degradation by Electro-Fenton and peroxicoagulation processes using a flow reactor for wastewater treatment [J]. Chemosphere,2002,47(3):241-248.
    [112]GUIVARCH E, TREVIN S, LAHITTE C, et al. Degradation of azo dyes in water by Electro-Fenton process [J]. Environmental Chemistry Letters,2003,1(1):38-44.
    [113]ROSALES E,IGLESIAS O,PAZOS M, et al. Decolonisation of dyes under electro-Fenton process using Fe alginate gel beads [J]. Journal of Hazardous Materials,2012,213-214(30):369-377.
    [114]PERA-TITUS M, GARCIA-MOLINA V, BANOS M A, et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review [J]. Applied Catalysis B:Environmental, 2004,47(4):219-256.
    [115]RAMIREZ J H, DUARTE F M, MARTINS F G, et al. Modelling of the synthetic dye Orange II degradation using Fenton's reagent:from batch to continuous reactor operation [J]. Chemical Engineering Journal,2008,148(2/3):394-404.
    [116]PIGNATELLO J J. Dark and photoassisted iron(3+) catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide [J]. Environmental Science and Technology,1992,26(5):944-951.
    [117]MASAHIKO A, NOBUYUKI S. KEIZO O. Solubilization of azo oil dyes by sodium dodecyl sulfate [J]. Journal of colloid and Interface Science,1984,99(1):226-234.
    [118]KATARZYNA M N. The effect of a polyelectrolyte on the efficiency of dye-surfactant solution treatment by ultrafiltration [J]. Desalination,2008,221(1/3):395-404.
    [119]任百祥,杨春维,滕洪辉.超声氧化降解糠醛废水的研究[J].环境工程学报,2007,1(10):68-70.
    [120]卢屿,康春莉,王玮瑜,等.铁屑过滤/生化法处理糠醛废水[J].中国给水排水,2005,21(5):77-79.
    [121]陈莉娥,周兴求,伍健东.表面活性剂废水的危害及处理技术[J].工业水处理,2003,23(10):12-16.
    [122]刘雁鹏.论述印染废水的处理方法[J].广西轻工业,2007,23(6):76-78.
    [123]CHEN F B, FANG Y, WU L N. Correlation between Micellization and Bulk Phase Behavior of Concentrated Sodium Dodecyl Sulfate Solution [J]. Chinese Journal of Applied Chemistry,2008, 25(4):401-404.
    [124]闫秀丽,苏会东.厌氧生物法处理糠醛废水的研究[J].沈阳航空工业学院学报,2001,18(1):90-91.
    [125]田冬梅,邓桂春,臧树良,等.糠醛废水治理技术的进展[J].辽宁大学学报,1999,26(3):271-276.
    [126]庞艳,冀强,勾怀亮,等.二级絮凝沉淀-厌氧-生物接触氧化法治理糠醛废水[J].工业水处理,2006,26(3):83-86.
    [127]李善评,乔鹏,庞艳,等UASB-CASS工艺处理糠醛废水[J].给水排水,2007,33(1):53-55.
    [128]甘海南,李善平,勾怀亮,等.糠醛废水处理工程的调试运行实例[J].云南环境科学,2000,19(Z1):182-184.
    [129]李晓萍,金向军,林海波.利用糠醛废水生产一级乙酸的研究[J].吉林师范大学学报(自然科学版),2005,1(2):37-38.
    [130]CHEN M Y, LEE D J. TAY J H, et al. Staining of extra cellular polymeric substances and cells in bioaggregates [J]. Applied Microbiology and Biotechnology,2007,75(2):467-474.
    [131]TORREGROSSA M, DOBELLA G, VIVIANI G, et al. Performances of a granular sequencing batch reactor (GSBR) [J]. Water Science and Technology,2007,55(89):125-133.
    [132]邹小南,谭红,李占彬,等.双效蒸发法处理糠醛废水的实验研究[J].工业安全与环保,2008, 34(11):1-4.
    [133]姜婷婷,王宝辉,韩洪晶.糠醛废水治理技术分析与进展[J].辽宁化工,2010,39(8):862-865.
    [134]邓小晖,张海涛,曹国民.过氧化氢对化学需氧量测定影响的研究[J].上海化工,2008,33(4):11-13.
    [135]刘君侠,刘琼玉,.H2O2对COD测定的干扰及消除[J].江汉大学学报(自然科学版),2010,38(2):46-49.
    [136]TING W P, LU M C, HUANG Y H. Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process [J]. Journal of Hazardous Materials,2009,161(2/3):1484-1490.
    [137]WANG C T, CHOU W L, CHUNG M H, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode [J]. Desalination,2010,253(1/3): 129-134.
    [138]OZCAN A, HIN Y, KOPARAL A S, et al. Carbon sponge as a new cathode material for the electro-Fenton process:Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium [J]. Journal of Electroanalytical Chemistry,2008, 616(1/2):71-78.
    [139]ZSOLT S, GUIDO Z. Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30 [J]. Applied Biotechemistry and Biotechnology,2000,89(1):31-42.
    [140]黄玉峰,张丽丽,郝嶶,等.SBR中好氧颗粒污泥的培养与除污效能[J].中国给水排水,2005,21(2):53-55.
    [141]LIU Y, TAY J H. The essential role of hydrodynamics hear force in the formation of biofilm and granular sludge [J]. Water Research,2002,36(7):1653-1665.
    [142]牟丽娉.SBR中好氧颗粒污泥及其脱氮功能的研究进展[J].中国给水排水,2009,25(2):21-26.
    [143]高景峰,周建强,彭永臻.处理实际生活污水短程硝化好氧颗粒污泥的快速培养[J].环境科学学报,2007,27(10):1604-1611.
    [144]TAY J H, LIU Q S, LIU Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor [J]. Journal of Applied Microbiology,2001,91(1):168-175.
    [145]WANG X H, ZHANG H M, YANG F L, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure [J]. Enzyme and Microbial Technology,2007, 41(3):205-211.
    [146]LIU Y Q, LIU Y, TAY J H. The effects of extra cellular polymeric substances on the formation and stability of biogranules [J]. Applied Microbiology and Biotechnology,2004,65(2):1432-48.
    [147]彭永臻,吴蕾,马勇,等.好氧颗粒污泥的形成机制、特性及应用研究进展[J].环境科学,2010,31(2):273-281.
    [148]MCKAY G. The adsorption of dyestuffs from aqueous solution usning activated carbon [J]. Journal of Chemical Technology and Biotechnology,1982,32(4):759-764.
    [149]申秀英,许晓路.投加粉末活性炭的活性污法研究进展[J].环境科学进展,1994,2(4):23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700