环糊精—聚合物薄膜玻璃光波导传感元件的气敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学传感器是识别、检测化学物质,再转换成电信号的仪器。随着科学技术的发展,化学传感器在科学、工业及军事领域的应用越来越广泛。而气敏材料是传感器的核心部分。因此,具有气敏功能的聚合物复合材料的研究与开发由于具有广阔的应用前景和重要的理论研究意义而越来越受到人们的广泛关注。气敏材料种类很多,其中高分子材料由于成本低、易加工、物理或化学性能修饰比较简单等优点,在传感器的发展中具有举足轻重的作用。
     光波导传感器(OWG)对敏感试剂的选择灵活,且具有灵敏度高、响应快、成本低等诸多特点。因此,在环境监测、生化监测等领域有着广泛应用前景。将光波导传感技术应用到气体的检测领域时,能发挥出更好的价值。
     文章前言部分以超分子化合物及其在传感器领域中的应用及挥发性有机气体的危害性出发,讲述了超分子衍生物作为敏感试剂的各种传感器的检测对象和检测方法。同时介绍了光波导化学传感器在分析领域中的重要性,及其工作原理和特点。
     本文以β-环糊精(β-cyclodextrin,简称为β-CD),聚乙烯吡咯烷酮(PVP),对叔丁基杯[6]芳烃(4-tert-butylcalix[6]arene),溴酚蓝等材料作为光波导传感元件主体敏感材料,设计并制作了光波导气体传感器,并考察了其对挥发性有机气体的响应。具体内容如下:
     1.聚合物,高分子气敏材料具有成本低,易修饰等特点,被广泛使用在传感器领域当中。在第二章中,筛选β-环糊精作为敏感试剂,并将其固定在K~+交换玻璃光波导表面研制了β-环糊精薄膜光波导传感元件。同时筛选出制备光波导敏感元件的最佳条件(溶剂、敏感试剂浓度、匀胶机速度等)。将β-环糊精薄膜/K~+交换玻璃光波导元件固定在光波导气体传感检测系统中,检测了该传感元件对挥发性有机气体的气敏性。通过敏感膜光学特性变化来解释了敏感机理。研究结果表明,该元件能够检测出体积比为1×10~(-5)(43.3mg/m~3)的苯乙烯气体并具有一定的选择性响应。
     2.第三章以第二章为基础,对β-环糊精薄膜进行了修饰。本章中筛选了不同百分含量的PVP和β-环糊精作为敏感试剂,并将其固定在K~+交换玻璃光波导表面研制了PVP-环糊精薄膜/K~+交换玻璃光波导元件,对不同挥发性有机气体进行了检测。实验结果表明,该元件能够检测到体积比为1×10~(-6)(4.33mg/m3)的苯乙烯气体。当气体浓度为1×10~(-3)时,该光波导元件对甲醇、乙醇和甲醛的响应较小。此外还对PVP-环糊精薄膜进行了红外光谱分析并研究了两者之间的相互作用。
     3.第四章中,又对β-环糊精薄膜进行了修饰。本章中,先筛选出了溴酚蓝最佳含量,然后确定最佳制膜条件(匀胶机速度)。研制出了溴酚蓝-环糊精薄膜/K+交换玻璃光波导元件,并研究了其对挥发性有机气体的响应。同时,还研究了该元件对酸性气体的气敏性并分析其原理。实验结果表明,该传感元件对二甲苯具有较好的选择性响应,能够检测浓度为1×10~(-6)(4.41mg/m3)的二甲苯。该元件对SO_2和NH_3具有较明显的响应,但酸性气体的恢复较慢,不利于检测该传感元件对不同浓度酸性气体的传感响应,但此元件对NH3的恢复较好,能够成功地检测到浓度为1×10~(-5)(7.1mg/m~3)的NH_3气体。
     4.传感器技术能够提供低成本的装置,可调整传感器敏感材料来实现新型材料在传感器领域中的应用。在第五章中,以对叔丁基杯[6]芳烃作为敏感试剂,通过旋转甩涂法在K~+交换玻璃光波导表面制备了对叔丁基杯[6]芳烃薄膜,研制出了对叔丁基杯[6]芳烃薄膜/K+交换玻璃光波导传感元件并对挥发性有机气体进行了检测。同时研究了其气敏性。实验结果表明,该元件对苯乙烯具有较好的选择性响应。能够检测到浓度为1×10~(-7)(0.43mg/m~3)的苯乙烯。此外还对氯苯和甲苯分别进行气敏性研究。
Chemical sensor is the instrument that can identify and detect the chemicalsubstance and then experiment consequent can replaced electric signal. With thedevelopment of science and technology, chemical sensors possess widespreadapplications in the area of scientific, industrial and military. However Gas-Sensingmaterial is a core part of the sensor device. Therefore, the research and developmentof the polymer composite materials has wide application prospects and importanttheoretical significance and researcher has been concerned. Gas-Sensing material hasmany different types. Among that, polymer materials due to be low cost, simplemodified of physical and chemical properties, so it plays a decisive role in thedevelopment of sensors.
     Optical waveguide sensor has the characteristics of flexibility, high sensitivity tothe choice of sensitive reagents, fast response, low cost and other many features.Therefore, it has wide application prospects in the field of environmental monitoring,chemical and biological monitoring. The optical waveguide sensor technology canplay a better value in the area of gas detection.
     The article began by describing the poisoning effect of the human and theapplication of supramolecular compounds in the sensor field, we introduced thedetected object and detection methods of the supramolecular derivatives as a sensitivereagent. Meanwhile, we also introduced the importance of optical waveguidechemical sensors in the analysis of the field and its working principle andcharacteristics.
     Here, β-cyclodextrin(β-CD), polyvinylpyrrolidone(PVP), tert-butylcalix[6]arene,bromophenol blue material as the waveguide main sensitive materials. Opticalwaveguide gas chemical sensors were designed and fabricated. And its response to thevolatile organic gases was studied. The main contents were listed below.
     1. Polymer gas-sensing material has the important characteristics of low cost,easymodification, so they are widely used in the sensor field. In the second chapter,β-cyclodextrin was used as sensitive material, the β-cyclodextrin/K~+-exchanged optical waveguide sensor was fabricated. Meanwhile, the best condition tofabricate the sensing element was selected (solvent, the concentration ofsensitive reagent, the speed of spin-coating machine). The OWG sensor wasused to detect Volatile Organic Compounds gas. The sensing principle wasstudied by the change of optical characteristics of sensitive film. Theexperiment result indicated that the minimum concentration of detection tostyrene gas of sensor is1×10~(-5)(43.3mg/m3).
     2. Chapter third is based on chapter second, the β-cyclodextrin thin film wasmodified. In this chapter, we first choice adequate PVP, and we choose certainamount of PVP and β-cyclodextrin as the sensitive reagents. And thePVP-cyclodextrin/K~+-exchanged OWG sensor was fabricated by spin-coatingmethod. And the sensitive characteristics of the sensor device was detected. Theexperiment results indicated that, the minimum concentration of detection tostyrene gas of sensor is1×10~(-6)(4.3mg/m~3).while the concentration of the gaseswas1×10~(-3), the response of sensor to methanol, ethanol and formaldehyde wassmall. In addition, the infrared spectroscopy of PVP-cyclodextrin film wasmeasured and the interaction between them was studied.
     3. In the fourth chapter, the β-cyclodextrin film was modified. In this chapter, wefirst decided the certain amount of BPhB, and then chose the appropriate speedof spin-coating machine. The BPhB-cyclodextrin composite film/K~+-exchangedOWG sensor was fabricated by spin-coating method. And carried out theVolatile Organic Compounds gas detection. Meanwhile, the sensitiveperformance to acidity of sensor device was studied. The experiment resultsindicated that, the sensor device has high response to xylene and the minimumdetection concentration of1×10~(-6)(4.41mg/m3). Meantime, has good responseto SO2and NH3, but it has slow recovery time to acidic gases.
     4. Sensor technology can provide low-cost device, therefore, an adjustable sensorsensitive material has wide application of new material in the sensor field. In thefifth chapter,4-tert-butylcalix[6]arene was selected as sensitive material. The4-tert-butylcalix[6]arene/K~+-exchanged OWG sensor was fabricated by spin-coating method. And the sensitive performance to VOC was detected andthe sensing principle was studied. The experiment results indicated that, thesensor device has good selective response to styrene and the minimum detectionconcentration was1×10~(-7)(0.43mg/m~3). In addition, the sensitive characteristicsof sensor device to chlorobenzene and toluene was researched.
引文
[1] Pedersen, C J Angew. Chem., Int. Ed. Engl.1988,27,1021-1027.
    [2] Cram, D J Angew. Chem., Int. Ed. Engl.1988,27,1009-1020.
    [3] Hartley J H, James T D, Ward C J. Synthetic receptors[J]. J. Chem. Soc., Perkin Transactions1,2000,19:3155-3184.
    [4]韩国胜,张宇虹,武现丽.超分子化合物及其在色谱分离中的应用[J].河南化工,2008,25,6-10.
    [5] F.L. Dickert, R. Sikorski. Supramolecular strategies in chemical sensing[J]. Mater Sci Eng C,1999,10:39-46.
    [6]王春,何锡文.超分子在质量敏感压电化学传感器中的应用[J].分析测试学报,2001,20(1):85-86.
    [7] W. Gopel. New materials and transducers for chemical sensors[J]. Sens. Actuators B,1994,18:1-3.
    [8] K.D. Schierbaum. Functional polymers and supramolecular compounds for chemicalsensors[J]. Synth.Met.,1993,61:37-39.
    [9] F.L.Dickert, A. Haunschild, Adv. Mater.1993,5:887-895.
    [10] Tang B, Liang H L, Tong L L, Li P. Synthesis of ethylenediamine linked β-cyclodextrin dimerand its analytical application for tranilast determination by spectrofluorimetry[J]. Bioorg.Med. Chem.2006,14(11):3947-3952.
    [11] Ha P T T, Hoogmartens J, Schepdael A V. Recent advances in pharmaceutical applications ofchiral capillary electrophoresis[J]. J. Pharm. Biomed. Anal.2006,41(1):1-11.
    [12] Touil S, TIngry S, Palmeri J, Bouchtalla S, Deratani A. Preparation and characterization ofα-cyclodextrin-containing membranes-application to the selective extraction of xyleneisomers[J]. Polymer.2005,46(23):9615-9625.
    [13] Liu Y, Chen G S, Chen Y, Lin J. Inclusion complexes of azadirachtin with native andmethylated cyclodextrins: solubilization and binding ability[J]. Bioorg. Med. Chem.2005,13(12):4037-4042.
    [14]周志军,蔡荣锡,柳能军,张林,陈欢林.含环糊精膜的制备与应用[J].化学进展,2007,19(9):1436-1442.
    [15] Minns J W, Khan A. α-cyclodextrin-I3-host-guest complex in aqueous solution:theoreticaland experimental studies[J]. J. phys. Chem A,2002,106(26):6421-6425.
    [16] Alvarez-Parrilla E, Al-Soufi W, Caber P R. Resolution of the association equilibria of2-(p-toluidinyl)-naphthalene-6-sulfonate (TNS) with β-cyclodextrin and a chargedderivative[J]. J. Phys. Chem B,2001,105(25):5994-6003.
    [17] Rekharsky M V, Yamamura H, Kawai M. Complexation and chiral recognitionthermodynamics of γ-cyclodextrin with N-acetyl-and N-carbobenzyloxy-dipeptidespossessing two aromatic rings[J]. J.Org. Chem,2003,68(13):5228-5235.
    [18] Irie T, Uekama K. Cyclodextrins in peptide and protein delivery[J]. Adv. Drug Del. Rev.,1999,36(1):101-123.
    [19] Kano K, Hasegawa H. Chiral recognition of helical metal complexes by modifiedcyclodextrins[J]. J. Am.Chem. Soc.,2001,123(43):10616-10627.
    [20] Linda K. Modified cyclodextrins as molecular sensors[J]. Res J Chem Environ,2008,12(2):102-103.
    [21] Fakayode S O, Lowry M, Fletcher K A. Cyclodextrins host-guest chemistry in analytical andenvironmental chemistry[J]. Curr. Anal. Chem,2007,3(3):171-181.
    [22] Bersier P M, Bersier J, Klingert B. Electrochemistry of cyclodextrins and cyclodextrininclusion complex[J]. Electroanalysis,1991,3(6):443-455.
    [23] Kitano H, Taira Y, Yamamoto H. Inclusion of phthalate esters by a self-assembled monolayerof thiolated cyclodextrin on a gold electrode[J]. Anal. Chem,2000,72(13):2976-2980.
    [24] Yang D H, Ju M J, Maeda A. Enhanced sensor capability of juxtaposed β-cyclodextrin ringsin TiO2ultrathin matrix as determined by cyclic surface-polarization impedancemeasurement[J]. Sens Mater,2008,20(4):191-200.
    [25] He P G, Ye J N, Fang Y Z. Voltammetric responsive sensors for organic compounds based onorganized self-assembled lipoyl-β-cyclodextrin derivative monolayer on a gold electrode[J].Anal. Chim. Acta.,1997,337(2):217-223.
    [26] D’Souza F, Hsieh Y Y, Wickman H. New sensor for dissolved dioxygen: a gold electrodemodified with a condensation polymer film of β-cyclodextrin hosting cobalttetraphenylporphyrin[J]. Chem. Commun.,1997,13:1191-1192.
    [27] M. Ben Ali, R. Kalfat, H. Sfihi, H. Ben Ouada, J.M. Chovelon, N. Jaffrezic-Renault.Cyclodextrin-polymethylhydrosiloxane gel as sensitive membrane for heavy ion sensors[J].Mater. Sci. Eng C,1998,6:53-56.
    [28]彭军.传感器与检测技术[M].西安:西安电子科技大学出版社,2003,366-368.
    [29] A.L.Palaniappan, Xu Li, Francis E.H. Tay, Jun Li, Xiao Su. Cyclodextrin functionalizedmesoporous silica films on quartz crystal microbalance for enhanced gas sensing[J]. Sens.Actuators B,2006,119:220-226.
    [30] Jiun-Feng Ju, Mei-Jywan Syu, His-sheng Teng, Shih-Kai Chou, Yu-Sung Chang. Preparationand identification of β-cyclodextrin polymer thin film for quartz crystal microbalance sensingof benzene, toluene, and P-xylene[J]. Sens. Actuators B,2008,132:319-326.
    [31]关鲁雄,刘立华.石英微天平对β-环糊精衍生物分子的识别[J].传感器技术,2001,20(6):20-23.
    [32] Yu Kun Yuan, Xi Lin Xiao, Yong Sheng Wang, Jin Hua Xue, Gui Rong Li, Rong Hui Kang.Quartz crystal microbalance with β-cyclodextrin/TiO2composite films coupled withchemometrics for the simultaneous determination of urinary1-and2-naphthol[J]. Sens.Actuators B,2010,145:348-354.
    [33] Dickert F L, Tortschanoff M, Weber K. Process control with mass-sensitive chemicalsensors-cyclodextrin modified polymers as coatings[J]. Fresenius J Anal Chem,1998,362(1):21-24.
    [34] Ng S C, Sun T, Chan H S O. Chiral discrimination of enantiomers with a self-assembledmonolayer of functionalized β-cyclodextrins on Au surfaces[J]. Tetrahedron Lett.2002,43(15):2863-2866.
    [35]司士辉,朱德荣,陈昕. TiO2纳微孔膜增敏的压电石英晶体传感器[J].中南工业大学学报,2002,33(5):477-479.
    [36] Liu Y, Zhang N, Chen Y. Fluorescence sensing and binding behavior ofaminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+[J]. Org Lett,2007,9(2):315-318.
    [37]潘勇,赵建军,刘卫卫.表面波技术在化学战剂检测中的研究及发展[J].化学传感器,2004,24(2):8-14.
    [38] De Quan Li, Min Ma, Surface acoustic wave microsensors based on cyclodextrin coatings[J].Sens. Actuators A,2000,69:75-84.
    [39] Jyisy Yang, Huang Jei Lin, Hsi-Ya Huang. Characterization of cyclodextrin modified infraredchemical sensors. PartⅡ. Selective and quantitative determination of aromatic acids[J]. Anal.Chim. Acta,2005,530:213-220.
    [40] Hattori K, Takeuchi T, Ogata M. Detection of environmental chemicals by SPR assay usingbranched cyclodextrin as sensor ligand[J]. J Incl Phenom Macro Chem,2007,57(1-4):339-342.
    [41]刘育,尤长城,张衡益.超分子化学合成受体的分子识别与组装[M].天津:南开大学出版社,2001:306-320.
    [42] Kammerer H, Happel G. Formaldehyde polymers[J]. Makromol Chem,1972,162:179-180.
    [43] Happel G. Mathiasch B. Isolation and characterization of calix[5]arene from the condensationproduct of4-tert-butylphenol with formaldehyde[J]. Makromol Chem,1975,176:3317-3319.
    [44] Iwamoto, K. Araki, K. Shinkai, S. Conformations and structures oftetra-o-alkyl-p-tert-butylcalix[4]arene[J]. J. Org. Chem.1991,56:4956-4962.
    [45] Nemilova, M. Y., Shvedene, N. V., Kovalev, V. V., Shokova, E. A. Universal two-dimensionalHPLC technique for the chemical analysis of complex surfactant mixtures[J]. Anal. Chem,2003,58:375-378.
    [46] Lu,J. Q., Chen R. He, X. W. A lead ion-selective electrode based on a calixarenecarboxyphenyl azo derivative[J]. Electronanal. Chem.2002,528:33-38.
    [47] Lu, J., Tong X.Q., He, X. W. A mercury ion-selective electrode based on a calixarenederivative containing the thiazole azo group[J]. Electroanal. Chem.,2003,540,111-117.
    [48] Cha N R, Kim M Y, Kim Y H. New Hg2+selective fluoroionophores derived fromp-tert-butylcalix[4]arene-azacrown ethers[J]. J. Chem. Soc., Perkin Trans,2002,2:1193-1196.
    [49] Chen Q Y, Chen C F. A new Hg2+selective fluorescent sensor based on a dansyl amide-armedcalix[4]-aza-crown[J]. Tetrahedron Lett.,2005,46:165-168.
    [50] Liu J M, Zheng Q Y, Yang J L. A new fluorescent chemosensor for Fe3+and Cu2+based oncalix[4]arene[J]. Tetrahedron Lett,2002,43:9209-9212.
    [51] Metivier R, Leray I, Valeur B. A highly sensitive and selective fluorescent molecular sensorfor Pb(Ⅱ)based on a calix[4]arene bearing four dansyl group[J]. Chem. Commun.,2003,996-997.
    [52]曹丙庆,吕晖,骆国芳,潘勇,赵建军,黄启斌.杯芳烃-SAW传感器检测有机磷响应特性研究[J].化学传感器,2008,28(1):54-57.
    [53] Schierbaum K D, Weiss T, E U Thoden van Velzen. Molecular recognition by self-assembledmonolayers of cavitand receptors[J]. Science,1994,265:1413-1415.
    [54] Rickert J. Weiss T, Gopel W. Detection of oligonucleotide sequences with quartzoscillators[J]. Sens. Actuators B,1996, B31(1-2):45-50.
    [55] Daniel L Dermody, Richard M Crooks., Taisun Kim. Interaction between organized,surface-confined nomolayersand vapor-phase probe molecules: synthesis, characterization, andchemical sensitivity of self-assembled polydiacetylene/calix[n]arene bilayers[J]. J. Am. Chem.Soc.1996,118:912-917.
    [56] Yang X, Johnson S, Shi J. Polyelectrolyte and molecular host ion self-assembly timutilayerthin films: An approach to thin film chemical sensors[J]. Sens. Actuators B,1997,45:87-92.
    [57] Cygan M T, Collins G E. Calixarene monolayers as quartz crystal microbalance sensingelements in aqueous solution[J]. Anal. Chem.1999,71(1):142-148.
    [58]李园园,何锡文,张国柱.以含氨基酸1,3-侨联杯[4]芳烃为涂层的压电石英传感器对有机胺和有机醇的选择性识别研究,化学学报,2004,62(2):194-198.
    [59] C.J.Liu, J.T.Lin, S.H.Wang, J.C.Jiang, L.G.Lin. Chromogenic calixarene sensors for aminedetection[J]. Sensors and Actuators B,108:521-527.
    [60]崔九思.室内空气污染监测方法[M].北京:化学工业出版社,2002,22-23:768-770.
    [61]杜荣光,齐冰,郭惠惠,刘熔熔.室内空气中苯系物和TVOC检测[J].浙江化工,2005,36(8):29-31.
    [62]陈长伦,何建波,刘伟,刘静准.电化学式气体传感器的研究进展[J].传感器世界,2004,4:11-15.
    [63]葵河山,黎晓霞,徐颂.挥发性及化合物的净化处理[C].全国气体净化信息站2008年技术交流会文集,2008,176-178.
    [64]高莲,谢永恒.控制挥发性偶记化合物污染的技术[J].化工环境,1998,18(6):343-346.
    [65]裴素华,孙海波,张华,江玉清. γ-Fe2O3响应苯类气体敏感材料特性研究[J].功能材料与器件学报,2004,10:41-44.
    [66]程文雍,裴素华.响应苯类气体敏感材料改性与器件研究[J].传感技术学报.2006,19(3):559-562.
    [67]刘洋,余萍,王欢,胡国兵,肖定全. TiO2基陶瓷苯敏感元件的制备及性能研究[J].四川大学学报(自然科学版),2005,42(2):501-503.
    [68]张覃轶,谢长生,李登峰,张顺平,柏自奎.基于纳米ZnO气体传感器阵列的乙醇、丙酮、苯、甲苯、二甲苯的识别研究[J].传感技术学报,2006,19(3):552-555.
    [69] Barber, T.E. Fisher,W.G. Wachter, E.A. Online monitoring of aromatic hydrocarbons using anear-ultraviolet fiber-optic absorption sensor[J]. Environ. Sci. Technol.1995,29(6):1576-1580.
    [70] Lanyon, Y.H. Marrazza, G. Tothill, I.E. Mascini, M. Benzene analysis in workplace air usingan FIA-based bacterial biosensor[J]. Biosens. Bioelectronics.2005,20:2089-2096.
    [71]洪家敏.甲醛污染的危害及检测方法研究进展综述[J].安徽预防医学杂志,2007,13(1):44-47.
    [72] Liang P. Qi D. Z. De J. W. Jia L. Z. Ping W. Shan P. Teng F. X. Ultraviolet-assisted gassensing: A potential formaldehyde detection approach atroom temperature based on zincoxide nanorods[J]. Sens. Actuators B,2009,136:80-85.
    [73]杨庆,郭奋,邢颖,咸才军,郭保文. TiO2多孔性薄膜光催化降解低浓度甲醛[J].环境科学,2005,26(4):35-39.
    [74]饶志明,蔡亚萍,方良周,修福荣,李顺兴.基于氧化钛、氧化钇粉体催化发光甲醛气体传感器的研究[J].分析化学.2006,34(6):832-834.
    [75]崔九思.室内空气污染监测方法[M].北京:化学工业出版社,2002.11:289-322.
    [76]林洪,胡平,吴献花,李俊,邵丹,李明.苯乙烯的快速气相色谱测定[J].玉溪师范学院学报,21(3):17-18.
    [77]尹松年,王淑洁,毕文芳.工业化学品毒性件等规范及实验方法[M].北京:人民卫生出版社,1998,10:40-52.
    [78]张放,邵华.苯乙烯职业暴露危害研究进展[J].中国公共卫生,2006,22(9):1145-1146.
    [79]汪光焘,肖绍雍,宋仁元.城市供水行业技术进步发展规划[M].北京:中国建筑工业出版社,1993,74-77.
    [80]朱杰,聂振绑,马晓河.21世纪中国粮食问题[M].北京:中国计划出版社,1999.
    [81]毛惠忠.新阶段中国粮食问题研究[M].中国农业出版社,2005.
    [82]刘晓梅.我国粮食安全战略研究[M].中国市场出版社,2004.
    [83]孙宝元,杨宝清.传感器及其应用手册[M].北京:机械工业出版社,2005,294-295
    [84] Bernini. R. Campopiano. S. Zeni. L. Sarro. P.M. ARROW optical waveguides based onsensor[J]. Sens. Actuators. B.2004,100:143-146.
    [85] Hideaki Hisamotoa. Kyung-Ho Kimb. Yukiko Manabea. Keisuke Sasaki. HaruyukiMinamita-anib. Koji Suzukia. Ion-sensitive and selective active waveguide optodes[J]. Anal.Chim. Acta.1997,342:31-39.
    [86] Peter. J., Skrdla. S. Scott Saavedra., Neal R., Armstrong. Sergio B., Mendes. N.Peyghambarian. Sol-gel-based planar waveguide sensor for water vapor[J]. Anal.Chem.,1999,71(7):1332-1337.
    [87] Cadarso, V.J. Fernndez-Snchez, C. Llobera, A. Darder, M. Domnguez, C. Optical biosensorbased on hollow integrated wavegides[J]. Anal. Chem.,2008,80(9):3498-3501.
    [88] Kim, K.T. Jung, I. S. Mah, J.P.Sohn, K.R. Investigation of the fiber-to-planar waveguidecoupler as a sensor for seasuring the optical properties of metal films[J]. Sens. Actuator A,2005,117:82-87.
    [89]初凤红,韩秀友,庞扶飞.集成光波导传感器的研究进展[J].激光与光电子学进展,2006,43(3):21-27.
    [90]马少杰,李玉善.集成光波导电磁场传感器[J].光机电信息,2001,6(12):25-28.
    [91]章燕申,胡朝阳,张斌,田芋,马新宇.集成光学角速度传感器及其关键器件的研制[J].中国惯性技术学报,2000,2(3):2-26.
    [92]阿布力孜·伊米提,迪丽努尔·塔力甫,艾尔肯吐尔逊.高灵敏度复合光波导在检测臭氧的应用研究[J].分析化学,2005,11(33):1663-1663.
    [93]徐国雄,黄振.生物芯片检测系统中荧光信号强度[J].光子学报,2004,3(11):1192-1195.
    [94]海日沙·阿不来提,买买提依明·马合木提,阿布力孜·伊米体.高灵敏度复合光波导传感器及其研究进展[J].化学传感器,2008,2(28):15-20.
    [95]杜春雷,苗景奇. Ta2O5平面波导湿度传感器的研究[J].光学学报,1994,14(6):662-667.
    [96]李育洪,王克逸.基于平面光波导的光学传感器[J].安徽教育学院学报,2001,19(6):23-26.
    [97]禹忠,汪敏强,姚熹.光通讯波段聚合物光波导材料的研究进展[J].化学通报,2001,1:5-10.
    [98]饶春芳,叶志清,胡友德.反对称模平面光波导生物传感器的研究与设计[J].光电子激光,2007,5(18):578-581.
    [99] Qi zhi mei, Abliz yimit, Kiminori itoh, Murabayashi Masayuki, Matsuda Naoki. Takatsu,Akiko. Kato, Kenji. Composite optical waveguide composed of a tapered film of bormothymolblue evaporated onto a potassium ion-exchanged waveguide and itsapplication as a guidedwave absorption-based ammonia-gas sensor[J]. Opt. Lett.,2001,26(9):629-631.
    [100]西原浩,春名正光.栖原敏明.集成光路[M].梁瑞林译.北京:科学出版社,2004,153-154.
    [101] Ramaswamy R V, Srivastav R. A. Ion-exchanged glass waveguides: A review[J]. LightwaveTech.1998,6(6):984-1002.
    [102]程根水,胡继文,张明秋.聚合物膜基信息传感材料[J].高分子材料科学与工程,2005,21(2):11-12.
    [103] A.Airoudj, D.Debamo, E.Gaviot. Integrated SU-8photonic gas sensors based on PANIpolymer devices: Comparison between metrological parameters[J]. Opt. Commun.,2009,7:56-63.
    [104] F.Rehouma, D.Persegol, A.Kevorkian, Optical waveguides for evanescent field sensing[J].Applied Physics Letters,1994,12(65):1477-1480.
    [105]张放.苯乙烯DNA化学损伤机制及遗传易感性生物标志物的研究[D].山东:山东省医学科学院,2007.
    [106]林洪,胡平,吴献花,李俊,邵丹,李明.苯乙烯的快速气相色谱测定[J].玉溪师范学院学报,2005,21(3):17-18.
    [107]钟迪生,王鲁川,于疑沚.用分光光度法测量薄膜的光学常数[J].辽宁大学学报,1996,23(2):1-13.
    [108] Bradshaw J T, Mendes S B, Saavedra S S. Planar integrated optical waveguide spectroscopy[J]. Anal. Chem,2005,77(1):28-36.
    [109] Gerard B. Electroconducting conjugated polymers: New sensitive matrices to build upchemical or electrochemical sensors [J]. Sens. Actuators B: Chemical,1992,6(1-3):45-46.
    [110] Tong A J, Yamauchi A, Hayashita T. Boronic acid fluorophore/β-cyclodextrin complexsensors for selective sugar recognition in water [J]. Anal. Chem.,2001,73(7):1530-1536.
    [111] Tanabe T, Touma K, Hamasaki K. Immobilized fluorescent cyclodextrin on a cellulosemembrane as a chemosensor for molecule detection[J]. Anal. Chem.,2001,73(13):3126-3130.
    [112]郑朝俊,黄晓冬,孔亮. β-环糊精交联聚合物对胆红素吸附性能的研究[J].色谱,2004,22:128-130.
    [113]郝爱友,童林荟.环糊精在环境保护中的功能应用[J].化学试剂,1997,19(5):302-303.
    [114] Yang Do-Hyeon, Ju Myung-Jong, Maeda Aya. Enhanced sensor capability of juxtaposedβ-cyclodextrin rings in TiO2ultrathin matrix as determined by cyclic surface-polarizationimpedance measurement [J]. Sens. Mater.,2008,20(4):191-200.
    [115] Ablat H, Yimit A, Mahmut M, Itoh K. A Nafion Film/K+-exchanged glass OpticalWaveguide sensor for BTX Detection[J]. Anal.Chem.,2008,80(20):7678-7683.
    [116]麦麦提依明·马合木提,阿布力孜·伊米提.刚果红交联聚乙烯醇薄膜/K+交换玻璃光波导检测HCl气体[J].分析化学,2008,36(10):1435-1439.
    [117] Gopa Ghosh, Milan Kanti Naskar, Amitava Patra. Sythesis and characterization ofPVP-encapsulated ZnS nanoparticels[J]. Opt. Mater.,2006,28:1047-1053
    [118] G. Van den Mooter, P. Augustijns, N. Blaton. Physico-chemical characterization of soliddispersions of temazepam with polyethylene glycol6000and PVP K30[J]. Int. J. Pharm.,1998,164:67-80
    [119] Seiichi K., Tatsuo I., Iruo A. Absorb science [M]. Beijing: Chemical industry press,2006:154-155.
    [120] Kadir R., Yimit A., Ablat H. Optical waveguide BTX gas sensor based on polyAcrylate resinthin film[J]. Environ. Sci.Technol.,2009,43(13):5113-5116.
    [121]黄载福,解玉华卢贤.压电晶体传感器用于检测二甲苯气体的研究[J].武汉大学学报,1996,42(6):705-710.
    [122] D.Gorlo, L.Wolska, B.Zygmunt. Calibration procedure for solid phase microextraction gaschromatographic analysis of organic vapours in air[J]. Talanta,1997,44:1543-1550.
    [123]李静,左莹,拖超欧.离子色谱法同时检测微环境中的酸性气体[J].环境化学,2008,27(5):658-661.
    [124]陈伟,罗红斌,林新华.聚溴酚蓝修饰玻碳电极的制备及电化学性质[J].电化学,2005,11(1):92-95.
    [125] Fu X.H., Yu A.R., Chai Y.Q., Zhang L.Y., Chen S.H., Tang M.Y. Enzyme freeamperometric hydrogen peroxide biosensor based on electro-polymerization of bromophenolblue[J]. Journal of Southwest China Normal University (Natural Science),2006,31(6):77-83.
    [126] Gong J.Y., Xi L.Q., Ai P. Z., Cheng Y.W., Qi Sh.Q., Xiao Y.H. Characterization, growthmechanism and application of network poly(bromophenol blue)[J]. J. Electroanal. Chem.,2007,604:48-56.
    [127]郭勋,刘芳,陆国远.杯芳烃衍生物研究进展[J].有机化学,2005,25(9):1021-1028.
    [128]赵帮屯,张衡益,刘育.基于杯芳烃主体的分子自组装研究进展[J].有机化学,2005,25(8):913-925.
    [129]吕晖,曹丙庆,潘勇.杯芳烃在SAW化学传感器中的应用[J].化学传感器,2007,27(2):7-11.
    [130] Hughes, R.C., Rocco, A.J., Buttler, M.A. Chemical microsensors[J]. Science.1991,254(5028):74-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700