作物间作对重金属吸收的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化的发展,大量的重金属被排入环境中,对土壤特别是耕地造成严重的污染。由于重金属可随食物链移动,最终积累在人体内,对人类健康造成危害,因此对重金属污染土壤的修复迫在眉睫。与传统的物理、化学修复手段相比,新型的植物修复方式具有成本低、对土壤扰动性小、不造成二次污染等优点,被誉为土壤重金属污染修复的最佳方法。但是由于常用于植物修复的高积累植物,往往生物量小、生长缓慢,修复效果并不理想。因此迫切需要寻找新方法来提高重金属污染土壤的修复效率,或者降低重金属在农作物中的积累,从而获得在污染土壤中也可实现安全食用的农产品的生产。
     1.本研究选择了四种Cd吸收能力显著差异的作物(Cd相对高积累青菜(杭州油冬儿)和番茄(中蔬4号);Cd相对低积累甘篮(京丰一号)和玉米(金珠蜜甜玉米)),在Cd污染土壤中进行间作试验。实验结果如下:
     1)在Cd 2.62 mg kg-1的污染水平下,青菜和甘蓝间作条件与单作相比,Cd在青菜中的积累浓度提高(地上部分从6.55 mg kg-1升高至9.29 mg kg-1,地下部分从4.45 mg kg-1升高至7.65 mg kg-1),而在甘蓝中的积累浓度下降(地上部分从3.70 mg kg-1降低至0.54 mg kg-1,地下部分从3.32 mg kg-1降低至1.99 mg kg-1)。在Cd 3.70 mg kg-1的污染水平下,番茄和玉米间作和限制性间作条件与单作相比,Cd在番茄中的积累浓度提高(叶部从13.52 mg kg-1分别升高至24.94 mg kg-1和27.30 mg kg-1)。表明采用间作方式可以同时实现提重金属污染的植物修复效率和污染土壤中产出可安全食用农产品的目的。
     2)与未种植作物的对照组相比,种植青菜和甘蓝后,土壤pH值有小量下降,酸性磷酸酶活性上升,脲酶活性下降,并且青菜单作组土壤pH值下降幅度最大,脲酶活性下降幅度最小;种植番茄和玉米后,番茄根围土壤pH值有所下降,酸性磷酸酶活性上升,脲酶活性下降,并且间作组土壤pH值下降幅度最大,酸性磷酸酶活性升高幅度最大,脲酶活性下降幅度最小。这些变化进一步影响到土壤中Cd的存在形式,最终导致作物对Cd的吸收能力发生变化。间作还能提高Cd高积累番茄根围土壤中,对重金属吸收有促进作用的微生物种群的丰度,而降低对重金属吸收有抑制作用的微生物种群的丰度,最终实现Cd高积累番茄对Cd的吸收能力提高。因此,不同作物间作影响其对重金属的吸收能力可能是通过改变土壤pH值、土壤酶活性、根围土中微生物种群分布而实现的。
     2.本研究选用青菜、甘蓝、番茄、玉米和重金属高积累植物鸡眼草,在多种重金属(Cd、Pb、Cr、Cu和Fe)低浓度复合污染的大田中进行单作、间作试验,研究不同植物种类、不同种植方式下对不同重金属的吸收特性。结果表明,番茄对土壤中重金属尤其是Cd的吸收能力较高,当番茄和其他作物间作时,番茄对重金属的吸收能力还会提高,因此番茄是一种适合修复土壤重金属污染的植物;玉米对Cr、Cu和Fe的积累较高,当玉米和其他植物间作时,玉米对重金属的吸收能力还会降低,因此玉米适合在重金属污染土壤中间作种植来产出可安全食用的产品;鸡眼草的地下部分易吸收土壤中的Cd和Pb,当鸡眼草和其他作物间作时,鸡眼草对重金属的吸收能力下降;青菜和甘蓝既不适用于修复土壤的重金属污染,也不适用于作为食品产出而种植在重金属污染土壤中。
     本研究为同时实现高效率的土壤重金属污染修复和在污染土壤中产出可安全食用的农产品提供了线索。
Along with the development of the industry, a great deal of heavy metal was released into the environment, causing serious pollution to soils especially the farmland soil. Heavy metal can transport through the food chain, and finally accumulate in the human body, resulting in serious human health concerns. So the remediation of heavy metal contamination is imminent. Compared with the traditional physical or chemical remediation methods, the new method, phytoremediation with advantages of inexpensive, causing fewer disturbances to the soil, and not lead to secondary pollution, is known as the best method for remediation of soil heavy metal contamination. Due to the hyperaccumulators which are often used in the phytoremediation are always of small biomass and grow slowly, the remediation efficiency is not ideal. Thus, it is urgent to develop new methods of enhancing the efficiency of remediation of contaminated soil, or decrease heavy metal extraction by crops for safe food production in contaminated soil.
     1. In this study, four plant species with significantly different Cd absorption ability were chosen (relatively Cd high-accumulator: greengrocery and tomato; relatively Cd low-accumulator:cabbage and maize) to intercropping in the soil of Cd contamination. The results indicated as follow:
     1) Compared with monoculture, intercropping of greengrocery and cabbage increased the Cd extraction by greengrocry (increased from 6.55 mg kg-1 to 9.29 mg kg-1 in shoot and from 4.45 mg kg-1 to 7.65 mg kg-1 in root), and decreased the Cd extraction by cabbage (decreased from 3.70 mg kg-1 to 0.54 mg kg-1 in shoot and from 3.32 mg kg-1 to 1.99 mg kg-1 in root), when cultured in soil with 2.62 mg kg-1 Cd. Compared with monoculture, intercropping and restricted intercropping of tomato and maize increased the Cd extraction by tomato (increased from 13.52 mg kg-1 to 24.94 mg kg-1 and 27.30 mg kg-1 in leaves). Thus, the remediation efficiency of Cd contamination was advanced while output from contaminated soil is safe to eat through intercropping.
     2) Compared with non-planted soil, after culture of greengrocery and cabbage, soil pH decreased a little, activities of acid phosphatase increased and activities of urease decreased. The most decrease of soil pH and the least decrease of urease activities were determined in monoculture of greengrocery. After culture of tomato and maize, soil pH decreased, activities of acid phosphatase increased and activities of urease decreased. The most alteration of soil pH and acid phosphatase activities, and the least decrease of urease activities were determined in intercropping of tomato and maize. All the alteration influenced the Cd form in soil, eventually leading to the alteration of Cd absorption ability by plants. At the same time, intercropping increased the microorganism species abundance which are beneficial to heavy metal extraction, and decreased the microorganism species abundance which will block the heavy metal extraction in the rhizosphere soil of tomato, finally achieved the enhancing of Cd absorption capability by tomato. Therefore, intercropping influenced the heavy metal absorption ability through the alteration of soil pH, soil enzyme activity, and microorganism species abundance in the rhizosphere soil.
     2. In this study, greengrocery, cabbage, tomato, maize, and Japan Clover Herb which is reported as a heavy metal high accumulator, were cultured in monoculture and intercropping, in field which is contaminated by a variety of heavy metal (Cd、Pb、Cr、Cu和Fe) in low concentrations. The study evaluated the heavy metal absorption status between different plant species, different heavy metals, and different planting patterns. The results showed that tomato absorbed a great amount of heavy metals (especially Cd). Furthermore, accumulation of heavy metals increased when tomato was intercropped with other plant species. Thus, tomato planted in intercropping is suitable for remediation of soil heavy metal contamination. Maize absorbed much Cr, Cu and Fe. The heavy metal concentrations were reduced when maize was intercropped with other plant species. Thus, maize planted in intercropping is suitable for producing safe products from heavy metal contaminated soil. The roots of Japan Clover Herb were easy to accumulate Cd and Pb. The heavy metal concentrations were reduced when Japan Clover Herb was intercropped with other plant species. Greengrocery and cabbage are neither suitable for repair the soil heavy metal contamination, nor for output of safe production from the heavy metal contaminated soil.
     This research provided clues for simultaneous efficient remediation of heavy metal contamination and output of safe production from contaminated soil.
引文
Akob DM, Mills HJ, Kostka JE,2007. Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95-107.
    Alloway BJ,1995. Heavy Metal in Soils (2nd edition). London UK:Blackie 11-17.
    Ames B, Shigenaga M, Hagen T,1993. Oxidants, antioxidants, and the degenerative diseases of ageing. Proceedings of the National Academy of Sciences, USA 90: 7915-7922.
    Antoniadis V, Robinson JS, Alloway BJ.2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludgeamended field. Chemosphere 71:759-764.
    Arao T, Ishikawa S,2006. Genotypic differences in cadmium concentration and distribution of soybean and rice. JARQ 40(1):21-30.
    Athur E, Crews, H, Morgan C,2000. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Int. J. Phytoremediation.2,1-21.
    Azcon R, del Carmen Perolvarez M, Biro B, Roldan A, Ruiz-Lozano JM,2009. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Applied Soil Ecology 41:168-177.
    Bao T, Sun TH, Sun LN,2011. Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and non-hyperaccumulator Solanum lycopersicum L. African Journal of Biotechnology 10(75):17180-17185.
    Becerra-Castro C, Prieto-Fernandez A, Alvarez-Lopez V, Monterroso C, Cabello-Conejo MI, Acea MJ, Kidd PS,2011. Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of alyssum serpyllifolium. International Journal of Phytoremediation 13(S1):229-244.
    Belyaeva ON, Haynes RJ, Birukova OA.2005. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils 41:85-94.
    Beolchini F, Fonti V, Anno AD, Veglio F,2011. Bio-mobilization of heavy metals from contaminated sediments by acidophilic microbial consortia. Chemical Engineering Transactions 24:883-888.
    Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I.1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ. Sci. Technol.31(3):860-865.
    Bolan NS, Adriano DC, Natesan R, Koo BJ,2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 32:120-128.
    Bolan NS, Duraisamy VP,2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals:a review involving specific case studies. Aust. J. Soil Res.41:533-556.
    Bollmann A, Palumbo AV, Lewis K, Epstein SS,2010. Isolation and physiology of bacteria from contaminated subsurface sediments. Applied and Environmental Microbiology 11:7413-7419.
    Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, and White PJ,2001. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist 152:9-27.
    Brown SL, Chaney RL, Angle JS, Baker AJM,1994. Phytorcmediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J. Environ. Qual.23:1151-1157.
    Bruce EP,2001. Phytoremediation of contaminated soil and groundwater at hazardous waste sizes. EPA 540 (S):01-500.
    Bruemmer GW, Gerth J, Tiller KG,1988. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of Soil Science 39 (1):37-52.
    Chaney RL,1983. Plant uptake of inorganic waste constituents. In:Parr James F, Marsh Paul Bruce, Kla Joanne M. Lund Treatment of Hazardous Wastes. USA, New Jersey, Park Ridge:Noyes Data Corporation 261-287.
    Chen HM,1996. Heavy metal pollution in soil-plant system. Science Press, Beijing, p: 344.
    Clark GJ, Dodgshun N, Sale PWG, Tang C,2007. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol. Biochem.39:2806-2817.
    Cobbett C, Goldsbrough P,2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol.53:159-185.
    Cobbett CS,2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123:825-832.
    Colin VL, Villegas LB, Abate CM,2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration and Biodegradation 69:28-37.
    Dai CC, Xie H, Wang XX, Li PD, Zhang TL, Li YL, Tan X,2009. Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical China. African Journal of Biotechnology 8(16):3739-3746.
    Damicone JP, Edelson JV, Sherwood JL, Myers LD, Motes JE.2007. Effects of border crops and intercrops on control of cucurbit virus diseases. Plant Dis. 91:509-516.
    Denny HJ, Ridge I,1995. Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants. New Phytol.130:251-257.
    Dhillon KS, Dhillon SK, Dogra R,2010. Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78:548-556.
    di Toppi LS, Gabbrielli R,1999. Response to cadmium in higher plants. Environ Exp Bot.41:105-130.
    Duan XJ and Min H,2004. Diversity of microbial genes in paddy soil stressed by cadmium using DGGE. Environmental Science,25(5):122-126.
    Duo LA, Gao YB, Zhao SL,2006. Growth responses of Poa pratensis to the stress of four heavy metals. Acta Botanica Sinica,26 (1):183-187.
    Duruibe JO, Ogwuegbu MOC, Egwurugwu JN,2007. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences 2 (5): 112-118.
    Effron D, de la Horra AM, Defrieri RL, Fontanive V, Palma PM,2004. Effect of cadmium, copper, and lead on different enzyme activities in a native forest soil. Comm Soil Sci Plant Anal 35:1309-1321.
    El-Kherbawy M, Angle JS, Heggo A, Chaney RL,1989. Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago saliva L.). Biol Fertil Soils 8:61-65.
    Elroy AC, Truelove B,1986. The rhizosphere. New York:Spring er-Verlag Beidelberg.
    Ernst WHO, Verkleij JAC, Schat H,1992. Metal tolerance in plants. Acta. Bot. Neerl. 41,229-248.
    Fabiani A, Gamalero E, Castaldini M, Cossa GP, Musso C, Pagliai M, Berta G,2009. Microbiological polyphasic approach for soil health evaluation in an Italian polluted site. Science of the Total Environment 407:4954-4964.
    Fischer SG and Lerman LS,1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:Correspondence with melting theory. Proc. Natl. Acad. Sci.80:1579-1583.
    Floriin PJ, Van Beusichem ML,1993. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil,150:25-32.
    Fontesa MPF and Gomes PC,2003. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Applied Geochemistry 18:795-804.
    Fu JJ, Zhou QF, Liu JM, Liu W, Wang T, Zhang QH, Jiang GB,2008. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71: 1269-1275.
    Gadd GM,2004. Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109-119.
    Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K,2006. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Journal of Microbiological Methods 66: 194-205.
    Geren H, Avcioglu R, Soya H, Kir B,2008. Intercropping of corn with cowpea and bean:Biomass yield and silage quality. African Journal of Biotechnology 7 (22): 4100-4104.
    Gove B, Hutchinson JJ, Young SD,2002. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. International Journal of Phytoremediation 4 (4):267-281.
    Gzyl J, Przymusinski R, Gwozdz EA,2009. Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber(Cucumis sativus L.). Plant Cell Tiss Organ Cult 99:227-232.
    Hajiboland R,2005. An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ.51:156-164.
    Hao F, Wang XC, Chen J,2006. Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Science 170: 151-158.
    Hart JJ, Welch RM, Norvell WA,2002. Transport interaction between Cd and Zn in roots of bread wheat and durum wheat seedlings. Physiologia Plantarum 116 (1): 73-78.
    Harter DR,1983. Effect of soil pH on adsorption of Lead, Copper, Zinc and Nickel. Soil Sci. Soc. Am.47:47-51.
    Heckathorn SA, Mueller JK, Laguidice S, Zhu B, Barrett T, Blair B, Dong Y,2004. Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. American Journal of Botany 91(9):1312-1318.
    Huang YZ, Zhu YG, Hu Y, Liu YX.2006. Absorption and accumulation of Pb, Cd by corn, lupin and chickpea in intercropping systems. Acta Ecologica Sinica 26(5).
    Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A,2004. Bacterial communities associated with flowering plants of the Ni Hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology,5:2667-2677.
    Inal A, Gunes A, Zhang F, Cakmak I,2007. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry 45:350-356.
    Jarup L,2003. Hazards of heavy metal contamination. British Medical Bulletin 68: 167-182.
    Jiang HM, Yang JC, Zhang JF,2007. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution 147:750-756.
    Johnson JL, Temple KL.1964. Some variables affecting the measurement of "catalase activity" in soil. Soil Sci. Soc. Am. Proc.28:207-209.
    Joner EJ, Briones R, Leyval C,2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil 226:227-234.
    Jones DL,1998. Organic acids in the rhizosphere-a critical review. Plant and Soil 205: 25-44.
    Kabata PA, Pendias H,1992. Trace elements in soil and plant. Florida:Florida CRC Press.
    Kamh M, Horst WJ, Amer F, Mostafa H, Maier P,1999. Mobilization of soil and fertilizer phosphate by cover crops. Plant and Soil 211:19-27.
    Kanazawa S, Sano S, Koshiba T,2000. Changes in antioxidative in cucumber cotyledons during natural senescence:comparison with those during dark-induced senescence. Physiol. Plant.109:211-216.
    Karaca A, Cetin SC, Turgay OC, Kizilkaya R,2010. Effects of heavy metals on soil enzyme activities. Soil Heavy Metals, Soil Biology 19:237-262.
    Kashem MA, Singh BR,2001. Metal availability in contaminated soils:Ⅰ. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 61:247-255.
    Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, and Sennhauser M,2003. Root development and heavy metal phytoextraction efficiency:comparison of different plant species in the field. Plant and Soil 249:67-81.
    Keltjens WG and van Beusichem ML,1998. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aeslivum L.):combined effects of copper and cadmium. Plant and Soil 203:119-126.
    Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A,2011. Metal-induced oxidative stress and plant mitochondria. Int. J. Mol. Sci.12:6894-6918.
    Khan AG, Keuk C, Chaudhry TM, Khoo CS, and Hayes WJ,2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197-207.
    Kholodova VP, Volkov KS, Kuznetsov VV,2005. Adaptation of common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russ. J. Plant Physiol.52:748-757.
    Kneer R, Zenk MH,1992. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochem.31 (8):2663-2667.
    Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A,2009. Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. Journal of Applied Microbiology 108:1471-1484.
    Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A,2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35-44.
    Lacombe S, Bradley RL, Hamel C, Beaulicu C,2009. Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agriculture, Ecosystems and Environment 131:25-31.
    Lasat MM,2002. Phytoextraction of toxic metals:a review of biological mechanisms. Journal of Environmental Quality 31:109-120.
    Lefebvre DD, Duff SMG, Fife CA, Inalsingh CJ, Plaxton WC,1990. Response to phosphate deprivation in Brassica nigra suspension cells. Plant Physiol.93: 504-511.
    Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang MG, Zhang FS,2007.Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. PNAS 104(27):11192-11196.
    Li NY, Li ZA, Zhuang P, Zou B, McBride M,2009. Cadmium uptake from soil by maize with intercrops. Water Air Soil Pollution 199:45-56.
    Li SM, Li L, Zhang FS, Tang C.2004. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany 94:297-303.
    Li YM, Chaney RL, Angle JS,1996. Genotypica differences in zinc and cadmium hyperaccumulation in Thlaspi. caerulescens. Agro. Abstr.27.
    Liao M, Xie XM,2004. Cadmium release in contaminated soils due to organic acids. Pedosphere 14:223-228.
    Liu XM, Wu QT, Banks MK,2005. Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int. J. Phytoremediation 7 (1):43-53.
    Lombi E, Zhao FJ, Dunham SJ, McGrath SP,2001. Phytoremediation of heavy metal-contaminated soils:natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual.30:1919-1926.
    Luo SL, Chen L, Chen JL, Xiao X, Xu TY, WanY, Rao C, Liu CB, Liu YT, Lai C, Zeng GM,2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere.
    Madhaiyan M, Poonguzhali S, Sa T.2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato {Lycopersicon esculentum L.). Chemosphere 69:220-228.
    Martinez-Alcala I, Walker DJ, Bernal MP,2010. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicology and Environmental Safety 73:595-602.
    Mattenberger H, Fraissler G, Joller M, Brunner T, Obernberger I, Herk P, Hermann L, 2010. Sewage sludge ash to phosphorus fertiliser (Ⅱ):Influences of ash and granulate type on heavy metal removal. Waste Management 30:1622-1633.
    McGrath SP, Shen ZG, Zhao FJ,1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153-159.
    McGrath SP, Sidoli CMD, Baker AJM, Reeves RD,1993. The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. Kluwer Academic Publ. Dordrecht, the Netherlands 673-676.
    McGrath SP, Zhao FJ, Lombi E,2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207-214.
    McIntyre T,2003. Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering/Biotechnology 78:97-123.
    Moreels D, Crosson G, Garafola C, Monteleone D, Taghavi & S, Fitts JP, van der Lelie D,2008. Microbial community dynamics in uranium contaminated subsurface sediments under biostimulated conditions with high nitrate and nickel pressure. Environ. Sci. Pollut. Res.15:481-491.
    Murakami M, Ae N, Ishikawa S, Ibaraki T, Ito M.2008. Phytoextraction by a high-Cd-accumulating rice:reduction of Cd content of soybean seeds. Environ. Sci. Techno.42:6167-6172.
    Muyzer G, de Waal EC, Uitierlinden AG,1993. Profiling of complex microbial populations by Denaturing Gradient Gel Electrophorcsis analysis of Polymerase Chain Reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 3:695-700.
    Muyzer,1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology,2:317-322.
    Nannipieri P.1994. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In:Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota:management in sustainable farming systems. CSIRO, Victoria, Australia,238-244.
    Nathalie ALM, Hassinen VH, Hakvoort IIWJ,2001. Enhanced copper tolerance in Silene vulgaris (Moench) garcke populations from copper mines is associated with increased transcript levels of a 2b type metal lothionein gene. Plant Physiology 126:1519-1526.
    Navarro-Noya YE, Jan-Roblero J, Gonzalez-Chavez M der C, Hernandez-Gama R, Hernandez-Rodriguez C,2010. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie van Leeuwenhoek 97:335-349.
    Noctor G, Foyer CH,1988. Ascorbate and glutathione:Keeping active oxygen under control. Ann Rev Plant Biol.49:249-279.
    Pan HM, Li FQ, Ye W, Wang JJ,2007. The impacts of dismantling electronic wastes on surrounding soil environment:Take Xiagu'ao of Luqiao, Taizhou as an example. Journal of Zhejiang Normal University 30(1).
    Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW,2011. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of Hazardous Materials 185:549-574.
    Passow H, Rothstein A, Clarteson TW,1961. The general pharmacology and heavy metals. Pharmac. Rev.13:185-224.
    Pellerin C, Booker SM,2000. Reflections on hexavalent chrom, health hazards of an industrial heavyweight. Environmental Health Perspectives,108.
    Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteage S, Rascon E, Parsons JG,2001. Uptake and effects of five heavy metals on seed germination and plant growth in Alfalfa (Medicago saliva L.). Bull. Environ. Contam. Toxicol,66:727-734.
    Peterson PJ,1969. The distribution of zinc-65 in Agrostis tenuis sibth and A. stolonifera L. tissues4. J. Experi. Bot.20:863-875.
    Philippe V, Cecile GM, Adnane H,2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563-1575.
    Pietrini F, Zacchini M, Iori V, Pietrosanti L, Ferretti M, Massacci A,2010. Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones. Plant Biology 12:355-363.
    Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P, 2003. Heavy metal-induced oxidative stress in algae. J. Phycol.39:1008-1018.
    Polacco JC, Krueger RW, Winkler RG,1985. Structure and possible ureide degrading function of the ubiquitous urease of soybean. Plant Physiol.79:794-800.
    Poschenrieder CH, Gunse B, Barcelo J,1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol.90:1365-1371.
    Prasad MNV,2003. Phytoremediation of metal-polluted ecosystems:hype for commercialization. Russian Journal of Plant Physiology 50 (5):686-700.
    Prasad SM, Dwivedi R, Zeeshan M,2005. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica,43:177-185.
    Pruden A, Messner N, Pereyra L, Hanson RE, Hiibel SR, Reardon KF,2007. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Water Research 41:904-914.
    Pulford ID, Watson C,2003. Phytoremediation of heavy metal-contaminated land by trees-a review. Environment International 29:529-540.
    Reddy KR, Graetz DA,1988. The influence of redox potential on the environmental chemistry of contaminants in soils and sediments. In:Hook D. (ed.), The Ecology and Management of Wetlands. Timber Press,307-318.
    Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A,2010. Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct. Plant Biol.37:532-544.
    Ren JP, Li DF, Zhang LY.2003. Advances of the toxicology of cadmium. Acta zoonutrimenta sinica 15(1):1-6.
    Renella G, Landi L, Nannipieni P,2004. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma 122:311-315.
    Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Leblanc R, Chateauneuf G, Sura C, Gallipeau C, Olsen C, Delisle S, Labrecque M, Greer CW,2005. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and Soil 272:277-290.
    Salemaa M, Derome J, Helmisaari H, Nieminen T, Vanha-Majamaa I,2004. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Science of the Total Environment 324, 141-160.
    Salt DE, Rauser WE,1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol.107:1293-1301.
    Salt DE, Smith RD, and Raskin I,1998. Phytoremediation. Plant Physiol. Plant Mol. Biol.49:643-68.
    Sauerbeck DR,1991. Plant, element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water, Air, and Soil Pollution 57-58:227-237.
    Schwab AP, Zhu DS, Banks MK,2008. Influence of organic acids on the transport of heavy metals in soil. Chemosphere 72:986-994.
    Selin HM, Amacher MC.1997. Reactivity and transport of heavy metals in soils. CRC, Lewis, Boca Raton, Flo.
    Serra A, Guasch H, Admiraal, van der Geest HG, van Beusekom SAM,2010. Influence of phosphorus on copper sensitivity of fluvial periphyton:the role of chemical, physiological and community-related factors. Ecotoxicology 19: 770-780.
    Sharma RK, Agrawala M, Marshall F,2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety 66:258-266.
    Shi GR, Cai QS,2009. Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environmental and Experimental Botany 67:112-117.
    Silvertown, JW, Charlesworth, D,2001. Introduction to plant population biology.
    Singh BR, Kristen M,1998. Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma 84:185-194.
    Smolders E, Mclaughlin MJ, Tiller KG,1996. Influence of chloride on Cd availability to swiss chard:a resin buffered solution culture system. Soil Science Society of America Journal 60:1443-1447.
    Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L,2007. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fertil Soils 43:565-574.
    Stuczynski TI, McCarty GW, Siebielec G.2003. Response of soil microbiological activities to Cadmium, Lead, and Zinc salt amendments. J. Environ. Qual.32: 1346-1355.
    Suzuki Y and Banfield JF,2004. Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiology Journal 21: 113-121.
    Szumigalski AR, Van Acker RC.2006. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agron. J.98:1030-1040.
    Tabatabai MA.1994. Soil enzymes. in:Mickclson SH, Bigham JM (eds) methods of soil analysis, part 2. Microbiological and biochemical properties. SSSA, Madison, Wis.
    Taub DR, Goldberg D,1996. Root system topology of plants from habitats differing in soil resource availability. Funct. Ecol.10:258-264.
    Tessier A, Campbell PGC, Bisson M.1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7).
    Teuchies J, Beauchard O, Jacobs S, Meire P,2012. Evolution of sediment metal concentrations in a tidal marsh restoration project. Science of the Total Environment 419:187-195.
    Tobin JM, Cooper DG, and Neufeld RJ,1984. Uptake of metal ions by Rhizopus arrhizus biomass. Applied and Environmental Microbiology 47(4):821-824.
    Tsai YP, You SJ, Pai TY, Chen KW,2005. Effect of cadium on composition and diversity of bacterial communities in activated sludges. International Biodeterioration & Biodegradation 55:285-291.
    Tyler G,1974. Heavy metal pollution and soil enzymatic activity. Plant and Soil 41:303-311.
    USEPA,2001. Best management practices for Lead at outdoor shooting ranges. EPA-902-B01-001.
    Wagner GJ.1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy 51.
    Wang J, Evangelou BP, Nielsen MT, Wagner GJ,1991. Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles I. Cadmium. Plant Physiol.97:1154-1160.
    Wang JZ,2006. In China, heavy metal contaminates twelve million tons production every year. NongCun ShiYong JiShu (11).
    Wu HJ, Li L, Zhang FS.2003. The influence of interspecific interactions on Cd uptake by rice and wheat intercropping. Journal of Agricultural Science and Technology 5.
    Xiao X, Feng QY, Ding Y, Zhang S, Jia HX,2009. The effect of Cd on ultrastructure of wheat. Procedia Earth and Planetary Science 1:1253-1257.
    Xue JH, Fei YX,2006. Effects of intercropping Cunninghamia lanceolata in tea garden on contents and distribution of heavy metals in soil and tea leaves. Journal of Ecology and Rural Environment 22(4):71-73,87.
    Yang JR, Bao ZP, Zhang SQ,1993. The distribution and binding of Cd and Pb in plant cell. China Environment Science 13 (4):263-268.
    Yang X, Baligar VC, Maertens DC, Clark RB,1995. Influx, transport and accumulation of cadmium in plant species grown at different Cd2+ activities. J. of Environ. Sci. and Health, Part B,30(4):569-583.
    Yang XE, Jin XF, Feng Y, Islam E,2005. Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology 47 (9):1025-1035
    Yang Z, Liu S, Zheng D, Feng S,2006. Effects of cadmium, zinc, and lead on soil enzyme activities. J Environ Sci 18:1135-1141.
    Yao CX, Yin XB, Song J, Li CX, Qian W, Zhao QG, Luo YM,2008. Arsenic contents in soil, water, and crops in an E-waste disposal area. Environmental Science 29(6).
    Yrasad MNV, Hagemeyer J,1999. Biogeochemical process in the rhizosphere:role in phytoremediation of metal polluted sites. Heavy Metal Stress in Plants from Molecules to Ecosystem.273-303.
    Yuan YX, Pei BH, Wang JL,1998. A review of research in agroforestry of the world. World Forestry Research 5.
    Zeng F, Ali S, Zhang HT, Ouyang YN, Qiu BY, Wu FB, Zhang GP,2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution 159:84-91.
    Zenk MH,1996. Heavy metal detoxification in higher plants-a review. Gene 179: 21-30.
    Zhang FQ, Wang YS, Lou ZP, Dong JD,2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings(Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44-50.
    Zhang J, Shu WS,2006. Mechanisms of heavy metal cadmium tolerance in plants. Journal of Plant Physiology and Molecular Biology 32(1):1-8.
    Zhao ZQ, Zhu YG, Li HY,2003. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat(Triticum aeslivum, L.). Environment International 29:973-978.
    Zhou JZ, Bruns MA, Tiedje JM,1996. DNA recovery from soils of diverse composition. Applied and Environment Microbiology,2:316-322.
    Zhou XG, Yu GB, Wu FZ,2011. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. European Journal of Soil Biology 47:279-287.
    Zu YQ, Li Y, Schvartz C, Langlade L, Liu F,2004. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environment International 30:567-576.
    鲍桐,廉梅花,孙丽娜,孙铁珩,苏磊,雷刚,2008.重金属污染土壤植物修复研究进展.生态环境17(2):858-865.
    柴强,黄鹏,黄高宝,2005.间作对根际土壤微生物和酶活性的影响研究.草业学报14(5):105-110.
    常学秀,文传浩,王焕校,2000.重金属污染与人体健康.云南环境科学,19(1):59-61.
    陈娟,何云晓,冉琼,2009.重金属污染下土壤酶活性的研究进展.安徽农业科学37(21):10083-10084.
    陈瑛,李延强,杨肖娥,金叶飞,2009.不同品种小白菜对镉的吸收积累差异.应用生态学报,20(3):736-740.
    顾继光,周启星,王新,2003.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报11(2):143-151.
    郭学军,黄巧云,赵振华,陈雯莉,2002.微生物对土壤环境中重金属活性的影响.应用与环境生物学报8(1):105-110.
    郝艳茹,劳秀荣,孙伟红,彭少麟,2003.小麦/玉米间作作物根系与根际微环境的交互作用.农村生态环境19(4):18-22.
    和文祥,朱铭莪,张一平,2000.土壤酶与重金属关系的研究现状.土壤与环境9(2):139-142.
    华络,自铃玉,韦东普,2002.土壤镉锌污染的植物效应与有机肥的调控作用.中国农业科学35(3):291-296.
    黄益宗,朱永官,胡莹,刘云霞,2006.王米和羽扇豆、鹰嘴豆间作对作物吸收积累Pb、Cd的影响,生态学报26(5):1478-1485.
    贾广宇,2004.重金属污染的危害与防治.有色矿冶20(1):39-42.
    江行玉,赵可夫,2001.植物重金属伤害及其抗性机理.应用与环境生物学报7(1):92-99.
    蒋彬,张慧萍,2002.水稻精米中铅镉砷含量基因型差异的研究.云南师范大学学报,22:3.
    匡石滋,田世尧,李春雨,易于军,彭群,2010.香蕉间作模式和香蕉秆堆沤还田对土壤酶活性的影响.中国生态农业学报18(3):617-621.
    黎健龙,涂攀峰,陈娜,唐劲驰,王秀荣,年海,廖红,严小龙,2008.茶树与大豆间作效应分析.中国农业科学41(7):2040-2047.
    李博文,杨志新,谢建治,2004.土壤Cd Zn Pb复合污染对植物吸收重金属的影响.农业环境科学学报23(5):908-911.
    李梦梅,龙明华,2005.植物抗镉胁迫的研究综述.广西农业科学36(4):319-322.
    李新博,谢建治,李博文,王伟,2009.印度芥菜-苜蓿间作对镉胁迫的生态响应.应用生态学报20(7):1711-1715.
    李元,王焕校,吴玉树,1992.Cd、Fe及其复合污染对草叶片几项生理指标的影响.生态学报12(2):147-153.
    梁丹涛,沈根祥,赵庆节,2007PCR-DGGE(?)分析技术在环境检测中的应用.上海环境科学,26(1):34-38.
    刘海军,陈源泉,隋鹏,高旺盛,姜莉,汪洪焦,张敏,2009.马唐与玉米间作对镉的富集效果研究初探.中国农学通报25(15):206-210.
    刘均霞,陆引罡,远红伟,焦学梅,崔保伟,2007.玉米、大豆间作对根际土壤微生物数量和酶活性的影响.贵州农业科学 35(2):60-61.
    龙新宪,杨肖娥,倪吾钟,2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报13(6):757-762.
    鲁艳,李新荣,何明珠,苏延桂,曾凡江,2011.重金属对盐生草光合生理生长特性的影响.西北植物学报,31(2):0370-0376.
    陆文龙,曹一平,张福锁,1999.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报10:379-382.
    沈德中,1998.污染土壤的植物修复.生态学杂志17(2):59-64.
    苏世鸣,任丽轩,霍振华,杨兴明,黄启为,徐阳春,周俊,沈其荣,2008.西瓜与早作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响.中国农业科学41(3):704-712.
    孙琴,王晓蓉,丁士明,2005.超积累植物吸收重金属的根际效应研究进展,生态学杂志24(1):30-36.
    孙瑞莲,周启星,2005.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报29(3):497-504.
    唐世荣,黄昌勇,朱祖祥,1996.利用植物修复污染土壤研究进展.环境科学进展4(6):10-16.
    唐寿印,1998.废水处理工程.北京:化学工业出版社.
    唐咏,王萍萍,张宁,2006.植物重金属毒害作用机理研究现状.沈阳农业大学学报,37(4):551-555.
    滕应,骆永明,李振高,2008.土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响.中国环境科学28(2):147-152.
    王焕校,1999.污染生态学.北京:高等教育出版社,p:44-68.
    韦朝阳,陈同斌,2001.重金属超富集植物及植物修复技术研究进展.生态学报21(7):1196-1203.
    魏树和,周启星,2004.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志23(1):65-72.
    吴凤芝,周新刚,2009.不同作物间作对黄瓜病害及土壤微生物群落多样性的影响.土壤学报46(5):899-906.
    徐华勤,肖润林,宋同清,罗文,任全,黄瑶,2008.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响.生物多样性 16(2):166-174.
    徐强,程智慧,孟焕文,张昱,2007.玉米线辣椒套作对线辣椒根际、非根际土壤微生物、酶活性和土壤养分的影响.干旱地区农业研究25(3):94-99.
    徐卫红,黄河,王爱华,熊治廷,王正银,2006.根系分泌物对土壤重金属活化及其机理研究进展.生态环境15(1):184-189.
    闫研,李建平,赵志国,2008.超富集植物对重金属耐受和宙集机制的研究进展.广西植物28(4):505-51().
    姚会敏,杜婷婷,苏德纯,2006.不同品种芸薹属蔬菜吸收累积镉的差异.中国农学通报,22(1):291-294.
    余贵芬,蒋新,孙磊,王芳,卞永荣,2002.有机物质对土壤镉有效性的影响研究综述.生态学报22(5):682-688.
    张英,周长民,2007.重金属铅污染对人体的危害.辽宁化工 36(6):395-397.
    章铁,刘秀清,孙晓莉,2008.栗茶间作模式对土壤酶活性和土壤养分的影响.中国农学通报24(4):265-268.
    赵丽红,杨宝玉,吴礼树,陈士云,2004.重金属污染的转基因植物修复—原理与应用.中国生物工程杂志24(6):68-73.
    赵中秋,朱永官,蔡运龙,2005.镉在土壤-植物系统中的迁移转化及其影响因索生态环境14(2):282-286.
    朱芳,方炜,杨中艺,2006.番茄吸收和积累Cd能力的品种间差异.生态学报,26(12):4071-4080.
    左元梅,陈清,张福锁,2004.利用14C东踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制.核农学报18(1):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700