抗菌类药物电化学传感器的构建及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗菌类药物是人类在医药领域取得的最伟大成就之一,对人类健康水平的提高和生命安全的保障起到了极其重要的作用。抗菌类药物广泛地应用于临床、兽药、农业等方面,对人类的生产生活具有巨大的促进作用。然而随着人类对抗菌类药物所引起的耐药性以及在动物性食品中的残留对人体的危害问题的持续关注,抗菌类药物滥用的问题已经引起了研究人员的浓厚兴趣,研究者们开始致力于开发研究分析测定方法来检测抗菌类药物的含量以及研究动植物体内药物残留的问题。目前已有报道的测定该类药物的分析手段有很多种,而电化学方法因其具有简单、灵敏、响应快、成本低等优点,在该类药物的分析中成为了新的研究热点。本论文主要研究了抗菌类药物电化学传感器的构建和性能、探索了电化学行为和电极反应机理,从而建立了一系列灵敏、简单、准确的定量分析方法。主要内容归纳如下:
     1.首次制备了磺基丙氨酸修饰碳糊电极用于氧氟沙星和加替沙星的同时测定。利用循环伏安法成功地将半胱氨酸氧化成磺基丙氨酸修饰到碳糊电极表面,通过傅里叶变换红外光谱和电化学阻抗谱的表征证明了磺基丙氨酸膜已经成功地修饰在碳糊电极表面,并且该膜可以有效地降低修饰电极的阻抗以及加速分析物和电极之间的电子传递速率。同时利用循环伏安法研究了该修饰电极对氧氟沙星和加替沙星的催化性能。研究表明磺基丙氨酸膜修饰电极与裸电极相比,不仅使分析物氧氟沙星和加替沙星的电位分开116mV,更使分析物氧氟沙星和加替沙星的氧化电流增大了5倍,十二烷基苯磺酸钠的出现则可以把氧氟沙星和加替沙星的电流进一步增加到8倍,从而实现同时测定。实验结果表明,氧氟沙星和加替沙星的氧化电流与其浓度之间的线性范围分别为0.06–10μM和0.02–200μM,对应的检出限分别为0.02μM和0.01μM。此外将该修饰电极用于实际药品和血清中氧氟沙星和加替沙星含量测定,结果令人满意。此电化学生物传感器为同时测定氧氟沙星和加替沙星提供了一种非常便利的方法。
     2.首次制备了基于β-环糊精和L-精氨酸聚合物修饰电极的喹诺酮类药物电化学传感器。该传感器利用了β-环糊精和L-精氨酸的协同作用来检测喹诺酮类药物。扫描电镜表征图证明β-环糊精和L-精氨酸聚合物膜已经成功地聚合在碳糊电极表面。阻抗图和循环伏安图进一步证实了β-环糊精和L-精氨酸聚合物膜有效地降低了电极的电子转移电阻并且促进了被测物和电极之间的电子转移动力。在最佳条件下,该修饰电极用来测定环丙沙星、氧氟沙星、诺氟沙星和加替沙星。差分脉冲伏安图显示被测物的氧化电流随着其浓度的增大呈现线性关系,线性范围分别为:环丙沙星0.05–100μM,氧氟沙星0.1–100μM,诺氟沙星0.1–40μM,加替沙星0.06–100μM。该传感器还被用来测定实际药片和血清中喹诺酮类药物的含量,并取得了令人满意的结果。
     3.构建了基于Au纳米粒子和聚精氨酸修饰电极的头孢噻肟电化学传感器。通过扫描电镜图和傅里叶变换红外光谱图证明L-精氨酸已经聚合到电极表面,从扫描电镜图上还可以看到电沉积上的Au纳米粒子呈球状结构。电化学阻抗图和循环伏安图进一步说明了Au纳米粒子/聚精氨酸膜有效地提高了电极表面的电子转移速率。头孢噻肟在修饰电极上的电化学氧化是通过循环伏安图和线性循环伏安图来展示的。结果得到,与裸电极相比,头孢噻肟在修饰电极上的氧化峰电流提高了17倍,说明了该修饰电极能够应用到头孢噻肟的定量测定中。电极上的峰电流与头孢噻肟的浓度之间呈现出良好的线性关系。线性范围为0.01–100μM,最低检出限为2.3nM。
     4.构建尿嘧啶共价键合修饰碳糊电极用于定量测定抗艾滋病药物奈韦拉平。通过电化学沉积将尿嘧啶修饰到电极表面,利用电化学交流阻抗和循环伏安法证实了尿嘧啶已经共价键合到电极上,并且有效地提高了电极的电子转移速率。奈韦拉平在修饰电极上的电化学现象主要是通过循环伏安法和差分脉冲伏安法进行考察的。考察了支持电解质的pH和扫速对被测物氧化峰的影响,从而得知奈韦拉平在电极上的反应为吸附控制过程。在最佳条件下,奈韦拉平的氧化峰电流与浓度之间呈现良好的线性关系。线性范围为0.1–70μM,该电极对被测物的灵敏度为2.073μA mM-1cm-2(S/N=3)。
     5.制备了一种基于手性聚吡咯修饰玻碳电极手性识别丙氨酸对映体的电化学传感器。该手性聚吡咯是利用L-丙氨酸阴离子表面活性剂作为模板分子合成的,表征结果也显示了该手性聚吡咯具有手性结构。将该修饰电极应用到丙氨酸对映体的定量检测中,取得了良好的结果。证实了利用电化学传感器识别手性对映体分子的可能性。
Antibiotics are one of the great achivement of the human. They hold an importentrole in human healthy and safity. Antibiotics have been widely used to treat peopleand animal diseases and promote animal growth. However, the misuse of thesemedicines may have some adverse affects, such as allergic reactions and antibioticresistance. Therefore, sensitive and selective methods for their determination inbiological fluids are highly advisable. A series of analytical methods have beenreported for the determination of antibiotics.Among these methods, electrochemicalmethod has been widely accepted due to the advantages of considerable simplicity,quick response and low cost. The electrochemical sensors are used to study theelectrochemical propoties and electrode reaction mechanism and thereupon establishselective, simple and precise quantification analytical method. In this paper, weprepared different modified electrodes for the analysis of antibiotics includingofloxacin, norfloxacin, ciprofloxacin, gatifloxacin, cefotaxime and nevirapine, whichhas been summarized as follows:
     1. A novel cysteic acid modified carbon paste electrode (Cysteic acid/CPE) based onelectrochemical oxidation of L-cysteine was developed to simultaneously determineofloxacin and gatifloxacin in the presence of sodium dodecyl benzene sulfonate(SDBS). Fourier transform infrared spectra (FTIR) indicated that L-cysteine wasoxidated to cysteic acid. Electrochemical impedance spectroscopy (EIS) and cyclicvoltammograms (CV) indicated that cysteic acid was successfully modified onelectrode. The large peak separation (116mV) between ofloxacin and gatifloxacinwas obtained on cysteic acid/CPE while only one oxidation peak was found on bareelectrode. And the peak currents increased5times compared to bare electrode.Moreover, the current could be further enhanced in the presence of an anionicsurfactant, sodium dodecyl benzene sulfonate. The differential pulse voltammograms(DPV) exhibited that the oxidation peak currents were linearly proportional to their concentrations in the range of0.06–10μM for ofloxacin and0.02–200μM forgatifloxacin, and the detection limits of ofloxacin and gatifloxacin were0.02μM and0.01μM (S/N=3), respectively. This proposed method was successfully applied todetermine ofloxacin and gatifloxacin in pharmaceutical formulations and humanserum samples.
     2. An electrochemical sensor for fluoroquinolones (FQs) based on polymerization ofβ-cyclodextrin (β-CD) and L-arginine (L-arg) modified carbon paste electrode (CPE)(P-β-CD-L-arg/CPE) was built for the first time. Synergistic effect of L-arg andβ-CD was used to construct this sensor for quantification of these importantantibiotics. Scanning electron microscope (SEM) image shows that polymer of β-CDand L-arg has been successfully modified on electrode. Electrochemical impedancespectroscopy (EIS) and cyclic voltammograms (CV) further indicate that polymer ofβ-CD and L-arg efficiently decreased the charge transfer resistance value ofelectrode and improved the electron transfer kinetic between analyte and electrode.Under the optimized conditions, this modified electrode was utilized to determinethe concentrations of ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. Thedifferential pulse voltammograms (DPV) exhibits the oxidation peak currents werelinearly proportional to their concentration in the range of0.05–100μM forciprofloxacin,0.1–100μM for ofloxacin,0.1–40μM for norfloxacin and0.06–100μM for gatifloxacin, respectively. This method was also successfully used todetect the concentrations of each drug in pharmaceutical formulations and humanserum samples. In addition, this proposed fluoroquinolones sensor exhibited goodreproducibility, long-term stability and fast current response.
     3. A simple and sensitive electrochemical sensor based on Au nanoparticles/poly(L-arginine) modified carbon paste electrode (AuNPs/Parg/CPE) was constructedand utilized to determine cefotaxime. Scanning electron microscope (SEM) imageshowed that the L-arginine (L-arg) had been electropolymerized on the CPE and theimmobilized Au nanoparticles (AuNPs) were spherical in shape. Fourier transform infrared spectra (FTIR) indicated that the Poly (L-arginine)(Parg) film wassuccessfully modified on CPE. Electrochemical impedance spectroscopy (EIS) andcyclic voltammogram (CV) illustrated the Parg and AuNPs efficiently decreased thecharge transfer resistance value of electrode and improved the electron transferkinetic between analytes and electrode. The electrooxidation of cefotaxime on themodified electrode was performed by cyclic voltammetry (CV) and linear sweepvoltammetry (LSV). The results showed the response current of cefotaxime atAuNPs/Parg/CPE increased17times than that of bare CPE. The calibration curvewas linear over the cefotaxime concentration range of0.01–100.0μM with adetection limit (S/N=3) of2.3nM. This proposed method has been applied todetermine cefotaxime in pharmaceutical formulations and human serum samples,and the results were satisfactory.
     4. A novel uracil covalently grafted carbon paste electrode (Ura/CPE) based onelectro-deposition of uracil on CPE was prepared for the quantitative determinationof nevirapine. The records of electrochemical impedance spectroscopy (EIS) andcyclic voltammograms (CV) in K3Fe(CN)6/K4Fe(CN)6solution illustrated that uracilgrafted on CPE efficiently decreased the charge transfer resistance value of electrodeand improved the electron transfer kinetic between analyte and electrode. Theelectrochemical properties of Ura/CPE towards the oxidation of nevirapine wereinvestigated by cyclic voltammetry and differential pulse voltammetry (DPV) in0.1M NaOH. The effects of pH and scan rates on the oxidation of nevirapine werestudied. The results indicated the participation of the same protons and electrons inthe oxidation of nevirapine, and the electrochemical reaction of nevirapine onUra/CPE is an adsorption-controlled process. Under optimized conditions, thelinearity between the oxidation peak current and nevirapine concentration wasobtained in the range of0.1–70.0μM with detection limit of0.05μM and thesensitivity of2073μA·mM–1·cm–2(S/N=3). The proposed method was alsosuccessfully applied to detect the concentration of nevirapine in human serum samples.
     5. A new chiral recognition of alanine enantiomers sensor was built based on chiralmesopores polypyrrole modified on glass carbon electrode. chiral mesoporespolypyrrole was prepared by using N-myristoyl-L-alanine to be chiral lipid ribbontemplating and "seeding" route. SEM image illustrated the the morphology of chiralmesopores polypyrrole was helical structure. This material was modified on theelectrode to recognize the alanine enantiomers in solution. The result wassatisfactory.
引文
[1]卢柏梁.抗生素与抗药性[J].高医医讯.高雄市:高医医讯杂志社.22(2003)11-12.
    [2]林天送.抗生素的研究[J].科学发展.台北市:行政院国家科学委员会.452(2010)72-75.
    [3] D.G. Kennedy, R.J. McCracken, A. Cannavan, et al. Use of liquidChromatography-mass spectrometry in the analysis of residues of antibiotics inmeat and milk [J], J. Chromatogr. A.812(1998)77-98.
    [4]刘文英.药物分析[M].北京:人民卫生出版社,1999.11-12.
    [5] D.M. Livermore, et al. The β-Lactamase threat in enterobacteriaceae pseudomonasand acinetobacter [J], Trends. Microbiol.14(2008)412-419.
    [6]郭春柳,王朝,彭向前,β-内酰胺类抗生素的发展概述,河北化工,10(2006)11-13.
    [7]黄志东,郭福庆,杨洁.高效毛细管电泳法分离土霉素及其相关物质的方法研究[J].中国抗生素杂志,26(2001)184-186.
    [8] A. Goldstein, L. Aronow, S.M. Kalman著,王振铖译,药物作用原理[M].北京:科学出版社,1981,141.
    [9]金有豫,药理学(第五版)[M],北京:人民卫生出版社,2001,955-957.
    [10]张石革,马国辉.第2代大环内酯类抗生素的进展.中国药业,12(2003)37-40.
    [11]袁天烁.大环内酯类抗生素的研究与应用进展[J].现代中西医结合杂志,14(2005)2620-2621.
    [12] G. Palu, S. Valisena, M. Peracchi, et al. Quinolone binding to DNA is mediatedby magnesium ions [J]. Proc. Natl. Acad. Sci.,89(1992)9671-9675.
    [13] G.W. Son, J. A. Yeo, M. S. Kim, et al. Binding mode of norfloxacin to calfthymus DNA [J]. J. Am. Chem. Soc.,120(1998)6452-6457.
    [14] J.A. Yeo, T. S. Cho, S.K. Kim, et al. Interaction between norfloxacin and singlestranded DNA [J]. Bull. Kor. Chem. Soc.,19(1998)449-457.
    [15] C. Bailly, P. Coson, C. Houssier. The orientation of norfloxacin bound todouble-strandeDNA [J]. Biochem. Biophys. Res. Commun,243(1998)844-848.
    [16] G.W. Son, J.A.Yeo, J.M. Kim, et al. Base specific complex formation ofnorfloxacin with DNA [J].Biophys.Chem.,74(1998)225-236.
    [17]何品刚,刘祥萍,余惠,方禹之.电致化学发光法测定药剂中盐酸表阿霉素的含量[J].分析化学,28(2000)1062-1065.
    [18] C. Manegold, Docetaxel (Taxotere) in nonsmall celllung cancer:ongoing studiesin heidelberg and future eplans [J]. Semin Oncol.26(1999)23-27.
    [19] C.M. Simbulan-Rosenthal, D.S. Rosenthal, A.H. Boulares, et al. Regulation ofthe expression or rescruitment of components of the DNA synthesome bypoly(ADP-ribose) polymerase [J]. Biochemistry.37(1998)9363-9370.
    [20] C.Y. Sasaki, P.Q. Patek, Transformation is associated with an increase insenstitivity to tnf-mediated lysis as a result of an increase in tnf-induced proteintyrosine phosphatase activity [J]. Int J Cancer.81(1999)141-147.
    [21]徐小薇,姜萍,免疫抑制作用的抗生素–霉酚酸酯[J],中国药学杂志,34(1999)570-571.
    [22]王家银,李明菊,刘玉彬,等.抗生素类药剂防治烟草野火病应用研究[J].云南农业科技,1(2000)11-12.
    [23]蒋细良,朱昌雄,杨怀文,等.抗生素除草剂M-22除草效果的初步研究[J].中国生物防治,17(2001)47-49.
    [24] J.A Lasota, D.R.A. Avermectins, A novel class of compounds: implication for usein arthroped pest control [J]. AnnuRev. Entomol.,36(1991)91-117.
    [25]胡桂兵,陈大成,郑启发,等.抗生素对台:湾青枣茎段和愈伤组织生长的影响[J].华南农业大学学报,22(2001)21-23.
    [26]张镇福,苏忠厚,李德发,等.不同抗生素对早期断奶仔猪腹泻和生产性能的影响[J].饲料加工,20(1999)12-13.
    [27]黄夺先,赵伟,戴杏庭,等.国产双氢阿弗菌素注射液对奶牛寄生虫的驱除试验[J].中国奶牛,2(1998)59-61.
    [28]赵智华,刘安芳,章元明,等.肉鸭先后使用抗生素和益生素效果[J].中国饲料,16(2000)25-26.
    [29] F.J. Schenek, P.S. Callery, Chromatographic methods of analysis of antibiotics inmilk [J]. J. Chromatogr. A.812(1998)99-109
    [30] E. Home, G. Harding, A comparison of protocols for the optimisation of detectionof bacteria using a surface acoustic wave (SAW)[J]. Biosen. Bioelectron.15(2000)641-649.
    [31]周启星,王美娥,罗义.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2(2007)243-251.
    [32] L.T. Pauliukonis, D.G. Missun, W. F. Bayne, Quantitation of norfloxacin, a newantibacterial agent in human plasma and urine by ion-pair reverse-phasechromatography [J], J Pharm Sci,73(1984)99-102.
    [33] L.A. Shervington, M. Abba, B. Hussain, et al. The simultaneous separation anddetermination of five quinolone antibotics using isocratic reversed-phase HPLC:Application to stablity studies on an ofloxacin tablet formulation [J]. J Pharmbiomed Anal,39(2005)769-775.
    [34]施耀国,张青,王子平,等.环丙沙星及其代谢物体液浓度的高效液相色谱测定法[J],中国抗生素杂志,18(1993)206-209.
    [35] N. Preu, D. Guyot, M. Petz, Development of a gas chromatography-massspectrometry method for the analysis of aminoglycoside antibiotics usingexperimental design for the optimization of the derivatisation reaction [J]. J.Chromatogr. A.,818(1998)95-101.
    [36] K.F. Clifton, R.L. Alan, J.L. Steven, Confirmatory and quantitative analysis of β-Lactan antibiotics in bovine kidney tissue by dispersive solid phase extractionand liquid chromatography tandem mass spectrometry [J]. Anal. Chem.,77(2005)1473-1478.
    [37]王君玲,贾淑梅.薄层色谱法及其在药物、色素分离等方面的应用[J].锦州师范学院学报(自然科学版).24(2003)14-16.
    [38] M. Huhel-Gaugain, J.P. Abjean, Screening of quinolone resvidues in pig muscleby planar chromatography [J]. Chromatographia,47(1998)101-104.
    [39] D.M. Rackham. Recent applications of quantitative, nuclear magnetic resonancespectroascopy in pharmaceutical research, Talanta.23(1976)269-274.
    [40] Z. Bian, Y. Tian, Z. Zhang, F. Xu, J. Li, X. Cao, High performance liquidchromatography-electrospray ionization mass spectrometric determination ofbalofloxacin in human plasma and its pharmacokinetics. J. Chromtogr. B.850(2007)68-73.
    [41]张秀玲.高效毛细管电泳法在药物分析中的应用[J].药学学报,16(2004)56-60.
    [42]涂志强,杨沂铭.差示分光光度法测定强力维C银翘片中对乙酰胺基酚的含量[J].中成药,20(1998)13-14.
    [43] T.C. Lalhriatpuii, R.K. Jatav, P.K. Goel, et al. Simultaneous estimation ofmetronidazole and ofloxacin in suspension dosage form using UV-visible.spectrophotometer. Asian. J. Chem,18(2006)559-565.
    [44] S.C. Baratieri, J.M. Barbosa, M.P. Freitas, et al. Multivariate analysis of nystatinand metronidazole in a sSemi-solid matrix by means of diffuse reflectance NIRspectroscopy and PLS regression [J]. J. Pharm. Biomed. Anal,40(2006)51-55.
    [45] M.L. Ramos, D.J. Curran, J.F. Tyson Determination of acetaminophen by flowinjection with on-line chemical derivatization: investigations using visible andFTIR spectrophotometry [J]. Anal. Chim. Acta,364(1998)107-116.
    [46]廖群,丁世家.血清中微量奎尼丁的固相萃取及荧光分析[J].中国药业,11(2002)40-41.
    [47]蔡富春,黄玉明,章竹君.基于鲁米诺的流动注射化学发光法测定硫酸链霉素[J].西南师范大学学报.自然科学版,29(2004)79-83.
    [48] J. Kracmar, J. Kracmarvova, A. Kovarov, et al. UV spectrophotometry in drugcontrol, part37: New active substances containing benzene, pyridine andchinoline chromophores. Part8: Impact of substitution and solvent [J].Pharmazie.43(1988)173-176.
    [49] Y.W. Chi, J.L. Xie, G.N. Chen Electrochemiluminescent Behavior of Allopurinolin the Presence of Ru (bpy)(3)(2+)[J]. Talanta.68(2006)1544-1549.
    [50] N.D. Zhang, F. Xiao, J. Bai, J. Lai, et al. Label-free immunoassay forchloramphenicol based on hollow gold nanospheres/chitosan composite [J].Talanta.87(2011)100-105.
    [51] H.M.V. Oliveira, F.T.C. Moreira, M.G.F. Sales, Ciprofloxacin-imprintedpolymeric receptors as ionophores for potentiometric transduction [J].Electrochim Acta.56(2011)2017-2023.
    [52] M.B. Gholivand, N. Karimian, Development of piroxicam sensor based onmolecular imprinted polymer-modified carbon paste electrode [J]. Mat. Sci. Eng.C.31(2011)1844-1851.
    [53]魏复盛等,国家环境保护局水和废水检测分析方法(第3版)[M],北京:中国环境科学出版社,1989.6
    [54] L. Gorski, A. Saniewska, P. Parzuchowski, et al. Zirconium (Ⅳ)-salophens asfluoride-selective ionophores in polymeric membrane electrodes [J], Anal. Chim.Acta.551(2005)37-44.
    [55] B.H. Lee, Y. B. Shim, S.B. Park Alipophilic sol-gel matrix for the developmentof a carbonate-selective electrode [J], Anal. Chem.76(2004)6150-6155.
    [56] J.H. Shin, H.L. Lee, S.H. Cho, et al. Characterization of epoxy resin-basedanion-responsive polymer: applicability to chloride sensing in physiologicalsamples [J], Anal. Chem.76(2004)4217-4222.
    [57] D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz, J.S. Harris Jr, Correlationsbetween ground and excited State Spectra of a quantum dot [J]. Science.278(1997)1784-1788.
    [58] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materialssynthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem.95(1991)525-532.
    [59] P.A. Raymundo-Pereira, C.S. Martin, M.F. Bergamini, N. Bocchi, M.F.S. Teixeira,Electrochemical evaluation of the a carbon-paste electrode modified with spinelmanganese (IV) oxide under flow conditions for amperometric determination oflithium [J]. Electrochim. Acta.56(2011)2552-2558.
    [60] N.G. Patel, A. Erlenkotter, K. Cammann, G.C. Chemnitius, Fabrication andcharacterization of disposable type lactate oxidases sensors for dairy productsand clinical analysis [J]. Sens. Actuators. B.67(2000)134-141.
    [61] H.C. Shu, N.P. Wu, A chemically modified carbon paste electrode with D-lactatedehydrogenase and alanine aminotranferase enzyme sequences for D-lactic acidanalysis [J]. Talanta.54(2001)361-368.
    [62] A.K. Singh, A.W. Flounders, J.V. Volponi, et al. Aevelopment of sensors fordirect detection of organophosphates. Part Ⅰ: immobilization, characterizationand stabilization of acetyl-cholinesterase and organophosphate hydrolase onsilica [J]. Biosen. Bioelectron.14(1999)323-329.
    [63]安富强.新型螯合吸附材料的制备及其对重金属离子吸附性能的研究[D].中北大学,200615-19.
    [64]刘有芹,颜芸,沈含熙,化学修饰电极的研究及其分析应用[J].化学研究与应用,18(2006)337-343.
    [65] R.F. Lane, A.T. Hubbard, Electrochemistry of chemisorbed molecules. I.Reactants connected to electrodes through olefinic substituents [J]. J. Phys.Chem.77(1973)1401-1410.
    [66] B.F. Watkins, J.R. Behling, E. Kariv, L.L. Miller, A chiral electrode [J]. J. Am.Chem. Soc.97(1975)3549-3550.
    [67] P. R. Moses, L. Wier, R.W. Murry, Chemically modified tin oxide electrode [J].Anal. Chem.47(1975)1882-1886.
    [68]金利通,全威,徐金瑞,化学修饰电极[M].华东师范人学出版社,1992.15-18
    [69]董绍俊,车广礼,谢远武,化学修饰电极[M].科学出版社1995.20-21
    [70] M. Wen, H. Qi, W. Zhao, et al. Phase transfer catalysis: Synthesis ofmonodispersed feptnanoparticles and its electrocatalytic activity [J]. Colloid.Surface. A.312(2008)73-78.
    [71] Y.T. Xu, X.L. Peng, H.T. Zeng, et al. Study of an anti-poisoning catalyst formethanol electro-oxdation based on Pan-C composite [J]. C. R. Chim.11(2008)147-151.
    [72]杨辉,李长志,陆天虹,等.甲醛在铂微粒修饰的聚硫荃电极上的电催化氧化[J].物理化学学报,13(1997)542-547.
    [73] H.Z. Yu, Y.Q. Wang, et al. Fabricating electroactive azobenzene sele-assembleedmonolayers and their characterization [J]. J. Electroanal. Chem.395(1995)327-330.
    [74]王永强,王建,于华中,等.金表面偶氮苯自组装莫的光电化学响应[J].高等学校化学学报,17(1996)1130-1132.
    [75] K.W. Par, Y.J. Song, J.M. Lee, et al. Infuluence of Pt and Au nanophaseselectrochromism of WO3in nanostructure thin-film electrodes [J]. Electrochim.Commun.9(2007)2111-2115.
    [76] M.K. Rahul, B.D. Purvi, K.S. Ashwini, Behavior of riboflavin on plain carbonpaste and azamacrocycles based chemically modified electrodes [J]. Sens. Actuat.B.124(2007)90-98.
    [77] P. Wang, Z. B. Mai, Z. Dai, Y. X. Li, X. Y. Zou. Construction of Au nanoparticleson choline chloride modified glassy carbon electrode for sensitive detection ofnitrite [J], Biosens. Bioelectron.24(2009)3242-3249.
    [78] J. Wang, G. Cepria, P. V. A. Pamidi. Electrocatalysis and amperpmetric detectionof aliphatic aldehydes at platinum-palladium alloy coated glassy carbon electrode[J]. Anal. Chim. Acta.330(1996)151-158.
    [79] W. Song, L. Zhang, L. Shi, D. Li, et al. simultaneous determination of cadmium(Ⅱ), Lead (Ⅱ) and copper (Ⅱ) by using a sreen-printed electrode modified withmercury nano-droplets [J]. Microchim. Acta.168(2010)321-326.
    [80] M. Manzano, V. Aina, C.O. Arean, F. Balas, V. Cauda, M. Colilla, Delgado m. r.,vallet-regi m., studies on mcm-41mesoporous silica for drug delivery: effect ofparticle morphology and amine functionalization [J]. Chem. Eng. J.137(2008)30-37.
    [81] M.H. Yang, F.L. Qu, Y.S. Lu, Y. He, G.L. Shen, R.Q. Yu Platinum nanowirenanoelectrode array for the fabrication of biosensors [J]. Biomaterials.27(2006)5944-5948.
    [82] K. Hashimoto,K.Y. Ishimori. Microfabricated disPosablecDNAcsensor fordetection of hepatitis B virus DNA [J]. Sens. Actuat. B.46(1998)429-430.
    [83] C.S. Shan, H.F. Yang, D.X. Han, et al. Electrochemical determination of NADHand ethanol based on ionic liquid-functionalized graphene[J]. Biosens.Bioeletron.25(2010)1504-1508
    [84] Q. Rui, K. Komori, Y. Tian, H.Q. Liu, Y.P. Luo, Y. Sakai Electrochemicalbiosensor for the detection of H2O2from living cancer cells based on ZnOnanosheets [J]. Anal. Chim. Acta.670(2010)57-63.
    [85] C.M. Yu, J.W. Guo, H.Y. Gu, Electrocatalytical oxidation of nitrite and itsdetermination based on Au@Fe3O4nanoparticles [J]. Electroanalysis.22(2010)1005-1009.
    [86] R.N. Liang, R.M. Zhang, Q. Wei, Potentiometric sensor based on molecularlyimprinted polymer for determination of melamine in milk [J]. Sens. Actuat. B.141(2009)544-550.
    [87] B. Xu, M.L. Ye, Y.X. Yu, W.D. Zhang, A highly sensitive hydrogenperoxideamperometric sensor based on MnO2-modified vertically alignedmultiwalled carbon nanotubes.[J]. Anal. Chim. Acta.674(2010)20-24.
    [88]蔡定域,郭鼎力,方闻一,吕太平,张艳,吴桂仙,谷氨酸生物传感器的研制及谷氨酸发酵液中谷氨酸含量的测定[J],化学传感器,9(1989)20-25.
    [89] J.A. Munoz Leyva, J.L. Hidalgo Hidalgo de Cisneros, D. Garcia GomezdeBarreda, A coated piezoelectric crystal sensor for acetic acidvapourdetermination [J], Talanta.40(1993)1725-1729.
    [90] Y. Bai, W. Yang, Y. Sun, C.Q. Sun, Enzyme-free glucose sensor based on athree-dimensional gold film electrode [J], Sens.Actuat.B.134(2008)471-476.
    [91] E. LeszczyAska, K. Dzie, R. Rokieka, R. Koncki. Potentiometric biosensor forcontrol of bioteehnological Production of Penieillin G [J]. Anal.Chim.Aeta.368(1998)205-210
    [92] M. Nishizawa, T. Matsue, I.Uehida. Penicillin sensor based on a mieroarrayelectrode coated with PH-resPonsive Polypyrrole [J]. Anal. Chem.64(1992)2642-2644.
    [93]. vorc, J. Sochr, M. Rievaj, P. Tom ík, D Bustin,Voltammetric determinationof penicillin V in pharmaceutical formulations and human urine using aboron-doped diamond electrode [J]. Bioelectrochemistry.88(2012)36–41.
    [94]刘平,马洁,薛颖,吴国华.氧化苏木精复合电极测定牛奶中残留青霉素[J].应用化学,23(2006)519-523.
    [95]朱亚琦,刘平,马洁.用聚合亚甲蓝修饰的酶电极对牛奶中青霉素残留测定研究[J].现代科学仪器,l (2006)57-59.
    [96] B.G. Knecht, A. Strasser, R. Dietrich. Automated microarray system for thesimultaneous detection of antibiotics in milk [J]. Anal. Chem,76(2004)646-654.
    [97] B. Chen, M. Ma, X.L. Su, An amperometric penicillin biosensor with enhancedsensitivity based on co-immobilization of carbon nanotubes, hematein, andbeta-lactamase on glassy carbon electrode [J], Anal. Chim. Acta.674(2010)89-95.
    [98] X.Liu, X.Wang, F.Tan, et al. An electrochemically enhanced solid-phasemicroextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction offluoroquinolones in aqueous samples [J], Anal. Chim. Acta.727(2012)26-33.
    [99]钱永贵,鲁毅强,尚军,李启隆,单扫示波极谱法测定氧氟沙星[J].分析试验室,20(2001)83-88.
    [100] M.A.G. Trindade, G. Maria da Silva, V.S. Ferreira, Determination ofmoxifloxacin in tablets and human urine by square-wave adsorptive voltammetry[J], Microchem. J.81(2005)209-221.
    [101] H.M.V. Oliveira, F.T.C. Moreira, M.G.F. Sales, Ciprofloxacin-imprintedpolymeric receptors as ionophores for potentiometric transduction [J].Electrochim. Acta.56(2011)2017-2023.
    [102] F.T.C. Moreira, V.A.P. Freitas, M.G.F. Sales, Biomimetic norfloxacin sensorsmade of molecularly-imprinted materials for potentiometric transduction [J].Microchim. Acta.172(2011)15-23.
    [103] K.J. Huang, X. Liu, W.Z. Xie, H.X. Yuan,Voltammetric behavior of ofloxacinand its determination using a multi-walled carbon nanotubes-Nafion film coatedelectrode [J]. Microchim. Acta.162(2008)227-233.
    [104] M.M. Ayad, M. Yousef, Dc. polarographic determination of certainaminoglycosides [J]. Analyst.110(1985)963-965.
    [105] I. Szymanska, H. Radecka, J. Radecki, Electrochemical impedancemeasurements for the investigation of odorants interaction with thiol layerimmobilized onto gold electrode [J]. Sens. Actuators. B.75(2001)95-100.
    [106] E.G. Kulapina, V.V. Baraguzina, O.I. Kulapina, Rapid potentiometricdetermination of aminoglycoside antibiotics in drug dosage forms and biologicalfluids using ion-selective electrodes [J]. J. Anal. Chem.60(2005)523-527.
    [107] M.H. Mashhadizadeh, M. Akbarian, Voltammetric determination of someanti-malarial drugs using a carbon paste electrode modified with Cu(OH)2nano-wire [J]. Talanta.78(2009)1440-1445.
    [108] H.T. Wang, H.M. Zhao, X. Quan, S. Chen,Electrochemical Determination ofTetracycline Using Molecularly Imprinted Polymer Modified CarbonNanotube-Gold Nanoparticles Electrode [J], Electroanalysis,23(2011)1863-1869.
    [109]肖理文,四环素类阻抗型免疫电化学检测方法的研究[D].2008.
    [110] F.J.J. Palacios, M.C. Mochon, J.C.J. Sanchez, Adsorptive strippingvoltammetric determination of cefepime at the mercury electrode in human urineand cerebrospinal fluid, and differential pulse polarographic determination inserum [J], J. Pharm. Sci.92(2003)1854-1859.
    [111] O. Reza, R. Jahan-Bakhsh, Z. Saeed, A novel sensor for cephalosporins basedon electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon pasteelectrode [J], Tanata.81(2010)1522-1528.
    [112] P. Nigam, S. Mohan, S. Kundu, R.Prakash, Trace analysis of cefotaxime atcarbon paste electrode modified with novel Schiff base Zn(II) complex. Talanta.77(2009)1426-1431
    [113] A.H. Al-ghamdi, M.A. Al-shadokhy, A.A. Al-warthan, Electrochemical
    determination of Cephalothin antibiotic by adsorptive stripping voltammetric
    technique, J. Pharm. Biomed. Anal.35(2004)1001-1009.
    [1] B. Suh, B. Lorber, Quinolones. Med. Clin. N. Am.79(1995)869-894.
    [2] V.F. Samanidou, C.E. Demetriou, I.N. Papadoyannis. Direct determination of fourfluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, inpharmaceuticals and blood serum by HPLC[J]. Anal. Bioanal. Chem.375(2003)623-629.
    [3] J.J. Bertino, D. Fish, The safety profile of the fluoroquinolones [J]. Clin Ther.22(2000)798-817.
    [4] C. Fierens, S. Hillaert, W. van-den-Bossche, The qualitative and quantitativedetermination of quinolones of first and second generation by capillaryelectrophoresis [J]. J. Pharm. Biomed. Anal.22(2000)763-772.
    [5] P. Dellamonica, V. Calvez, A.G. Marcelin, A. Tran, P.M. Roger, M.C. Mazeron,B. Lina, The Antivirogram and the Modes of Action of Antiviral Agents, HIV,Hepatitis, Influenza,and Cytomegalovirus, in V. Lorian (Eds), Antibiotics inLaboratory Medicine.Lippincott Williams&Wilkins, Baltimore1996pp:591-592.
    [6] J.G. Hardman, L.E. Limbird, P.B. Molinoff, R.W. Ruddon, A.G. Gilman (Eds.),Goodman and Gilman’s: The Pharmacological Basis of Therapeutics,9th ed.,McGraw-Hill, NY,1996pp:1065-1068.
    [7] J.S. Wolfson, D.C. Hooper. The fluoroquinolones: structures, mechanisms ofaction and resistance, and spectra of activity in vitro [J]. Antimicrob. Agents.Chemother.28(1985)581-586.
    [8] M. Imamura, I. Shibamura, I. Hayakawa, Y. Osada. Inhibition of DNA gyrase byoptically active ofloxacin [J]. Antimicrob. Agents. Chemother.31(1987)325-327.
    [9] M. Tanaka, K. Sato, Y. Kimura, I. Hayakawa, Y. Osada, and T. Nishino,Inhibition by quinolones of DNA gyrase from Staphylococcus aureus [J].Antimicrob. Agents. Chemother.35(1991)1489-1491.
    [10] G. Carlucci, Analysis of fluoroquinolones in biological fluids byhigh-performance liquid chromatography [J]. J. Chromatogr. A812(1998)343-367.
    [11] F. Belal, A.A. Al-Majed, A.M. Al-Obaid, Methods analysis of4-quinoloneantibacterials [J]. Talanta50(1999)765-786.
    [12] K. Venugopal, R.N. Saha, New, simple and validated UV-spectrophotometricmethods for the estimation of gatifloxacin in bulk and formulations [J].Farmaco60(2005)906-912.
    [13] C.Y. Sun, H. Ping, M.W. Zhang, H.K. Li, F.R. Guan, Spectroscopic studies onthe lanthanide sensitized luminescence and chemiluminescence properties offluoroquinolone with different structure [J]. Spectrochimica. Acta. Part. A.82(2011)375-382.
    [14] L.A. Shervington, M. Abba, B. Hussain, J. Donnelly, The simultaneousseparation and determination of five quinolone antibotics using isocraticreversed-phase HPLC: Application to stability studies on an ofloxacin tabletformulation [J], J. Pharm. Biomed. Anal.39(2005)769-775.
    [15] S. Joshi, HPLC separation of antibiotics present in formulated and unformulatedsamples [J]. J. Pharm. Biomed. Anal.28(2002)795-809.
    [16] Y.X.H. Chang, A. Jia, J.Y. Hu, Trace analysis of quinolone and fluoroquinoloneantibiotics from wastewaters by liquid chromatography-electrospray tandemmass spectrometry [J]. J. Chromatogr. A.1214(2008)100-108.
    [17] J. Tuerk, M. Reinders, D. Dreyer, T.K. Kiffmeyer, K.G. Schmidt, H.M. Kuss,Analysis of antibiotics in urine and wipe samples from environmental andbiological monitoring--comparison of HPLC with UV-, single MS-and tandemMS-detection [J]. J. Chromatogr. B.831(2006)72-80.
    [18] A. Espinosa-Mansilla, A. Mu oz de la Pe a, F. Salinas; D. González Gómez,Partial least squares multicomponent fluorimetric determination offluoroquinolones in human urine samples [J]. Talanta62(2004)853-860.
    [19] D. Barrón, E. Jiménez-Lozano, J. Cano, J. Barbosa, Determination of residuesof enrofloxacin and its metabolite ciprofloxacin in biological materials bycapillary electrophoresis [J], J. Chromatogr. B.759(2001)73-79.
    [20] Y.N. Ni, Y.R. Wang, S. Kokot, Simultaneous determination of threefluoroquinolones by linear sweep stripping voltammetry with the aid ofchemometrics [J], Talanta.69(2006)216-225.
    [21] K. Min, Y.J. Yoo, Amperometric detection of dopamine based ontyrosinase-SWNTs-Ppy composite electrode [J], Talanta.80(2009)1007-1011.
    [22] E. P. Krinichnaya, A. P. Moravsky, O. Efimov, J. W. Sobczak, K. Winkler, W.Kutner, A. L. Balch, Mechanistic studies of the electrochemical polymerizationof C60in the presence of dioxygen or C60O [J], J. Mater. Chem.15(2005)1468-1476.
    [23] C.Y. Wang, Y.D. Mao, D.Y. Wang, Voltammetric determination of terbinafine inbiological fluid at glassy carbon electrode modified by cysteic acid/carbonnanotubes composite film [J]. Bioelectrochemistry72(2008)107-115.
    [24] J. Guan, Z.X. Wang, C.Y. Wang, Voltammetric determination of sinomenine atglassy carbon electrode modified by cysteic acid based on electrochemicaloxidation of L-cysteine [J], Int. J. Electrochem. Sci.2(2007)572-582.
    [25] C.Y. Wang, Q.X. Liu, X.Q. Shao, Voltammetric determination of dopamine inhuman serum and urine at a glassy carbon electrode modified by cysteic acidbased on electrochemical oxidation of L-cysteine [J]. Anal. Lett.40(2007)689-704.
    [26] C.Y. Wang, X.Q. Shao, Q.X. Liu, Differential pulse voltammetric determinationof nimesulide in pharmaceutical formulation and human serum at glassy carbonelectrode modified by cysteic acid/CNTs based on electrochemical oxidation ofL-cysteine [J]. J. Pharm. Biomed. Anal.42(2006)237-244.
    [27] C.Y. Wang, Z.X. Wang, J. Guan, Voltammetric determination of meloxicam inpharmaceutical formulation and human serum at glassy carbon electrodemodified by cysteic acid formed by electrochemical oxidation of L-cysteine [J].Sensors.6(2006)1139-1152.
    [28] Q. Xu, M. Sun, Q.X. Du, Tailoring the electrode by cysteic acid for sensitivedetermination of adenine in Vitamin B(4) tablet [J], Curr. Pharm. Anal.5(2009)190-196.
    [29] B. Brunetti, E. Desimoni, Determination of theophylline at a cysteic acidmodified glassy carbon electrode [J]. Electroanalysis21(2009)772-778.
    [30] P.P. Xie, X.X. Chen, F. Wang, C.G. Hu, S.S. Hu, Electrochemical behaviors ofadrenaline at acetylene black electrode in the presence of sodium dodecylsulfate [J]. Colloid. Surface B.48(2006)17-23.
    [31] D. Zheng, J.S. Ye, W.D. Zhang, Some properties of sodium dodecyl sulfatefunctionalized multiwalled carbon nanotubes electrode and its application ondetection of dopamine in the presence of ascorbic acid [J], Electroanalysis20(2008)1811-1818.
    [32] M.P. Chair, E. Niranjana, B.E. Kumara Swamy, B.S. Sherigara, K.V. Pai,Electrochemical studies of amaranth at surfactant modified carbon pasteelectrode: A Cyclic Voltammetry [J], Int. J. Electrochem. Sci.3(2008)588-596.
    [33] N. Spataru, B.V. Sarada, E. Popa, D.A. Tryk, A. Fujishima, Voltammetricdetermination of L-cysteine at conductive diamond electrodes [J], Anal. Chem.73(2001)514-519.
    [34] A. Salimi, R. Hallaj, Catalytic oxidation of thiols at preheated glassy carbonelectrode modified with abrasive immobilization of multiwall carbon nanotubes:applications to amperometric detection of thiocytosine, l-cysteine andglutathione [J]. Talanta66(2005)967-975.
    [35] J. Zagal, C. Fierro, R. Rozas, Electrocatalytic effects of adsorbed cobaltphthalocyanine tetrasulfonate in the anodic oxidation of cysteine [J]. J.Electroanal. Chem.119(1981)403-408.
    [36] T.R. Ralph, M.L. Hitchman, J.P. Millington, F.C. Walsh, The electrochemistryof L-cystine and L-cysteine: Part1: Thermodynamic and kinetic studies [J]. J.Electroanal. Chem.375(1994)1-15.
    [37] S.D. Fei, J.H. Cheng, S.Z. Yao, G.H. Deng, D.L. He, Y.F. Kuang,Electrochemical behavior of l-cysteine and its detection at carbon nanotubeelectrode modified with platinum [J]. Anal. Biochem.339(2005)29-35.
    [38] Y.T. Lai, A. Ganguly, L. Chen, K.H. Chen, Direct voltammetric sensing ofL-cysteine at pristine GaN nanowires electrode [J]. Biosens. Bioelectron,26(2010)1688-1691.
    [39] I. Feliciano-Ramos, M. Caban-Acevedo, M. Aulice Scibioh, C.R. Cabrera,Self-assembled monolayers of L-cysteine on palladium electrodes [J], J.Electroanal Chem.650(2010)98-104.
    [40] Q. Cao, H. Zhao, L. Zeng, J. Wang, R. Wang, X. Qiu, Y. He. Electrochemicaldetermination of melamine using oligonucleotides modified gold electrodes [J],Talanta.80(2009)484-488.
    [41] M.J. Rosen, Surfactants and interfacial phenomena Wiley, New York (1989)39.
    [42] X.H. Zhang, S.M. Wang, J. Wu, X.J. Liu, Electropolymerization of PoPD fromaqueous solutions of sodium dodecyl benzene sulfonate at conducting glasselectrode [J], J. Appl. Polym. Sci.104(2007)1928-1932.
    [43] L. Fotouhi, M. Alahyari, Electrochemical behavior and analytical application ofciprofloxacin using a multi-walled nanotube composite film-glassy carbonelectrode [J], Colloid. Surface. B.81(2010)110-114.
    [44] W.F. Smyth and A. Ivaska, A study of the electrochemical oxidation of some1,4-benzodiazepines [J], Analyst110(1985)1377-1379.
    [45] Y.H. Sun, Z.J. Zhang, Z.J. Xi, Direct electrogenerated chemiluminescencedetection in high-performance liquid chromatography for determination ofofloxacin [J]. Anal. Chim. Acta.623(2008)96-100.
    [46] K.J. Huang, X. Liu, W.Z. Xie, H.X. Yuan, Voltammetric behavior of ofloxacinand its determination using a multi-walled carbon nanotubes-Nafion film coatedelectrode [J], Microchim. Acta.162(2008)227–233.
    [47] S.N. Ding, J.J. Xu, W.J. Zhang, H.J. Chen, Tris(2,2′-bipyridyl)ruthenium(II)-Zirconia-Nafion composite modified electrode applied as solid-stateelectrochemiluminescence detector on electrophoretic microchip for detectionof pharmaceuticals of tramadol, lidocaine and ofloxacin [J]. Talanta.70(2006)572-577.
    [48] M.S. Attia, A.A. Essawy, A.O. Youssef, Europium-sensitized and simultaneouspH-assisted spectrofluorimetric assessment of ciprofloxacin, norfloxacin andgatifloxacin in pharmaceutical and serum samples [J]. J. Photochem. Photobiol.A.236(2012)26-34.
    [49] Y.M. Yu, Y. Liu. Fluorescent microscopic determination of gatifloxacin in milk,injection, human urine, and rabbit serum samples by self-ordered ring techniqueon glass slides support [J]. J. Anal. Chem.66(2011)728-733.
    [50] A.A. Ramadan, H. Mandil, Determination of gatifloxacin in pure form andpharmaceutical formulations by differential pulse polarographic analysis [J].Anal Biochem.404(2010)1-7.
    [1] V.F. Samanidou, C.E. Demetriou, I.N. Papadoyannis, Direct determination of fourfluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, inpharmaceuticals and blood serum by HPLC [J]. Anal. Bioanal. Chem.375(2003)623–629.
    [2] J.J. Bertino, D. Fish, The safety profile of the fluoroquinolones [J]. Clin Ther.22(2000)798–817.
    [3] C. Fierens, S. Hillaert, W. Van-den-Bossche, The qualitative and quantitativedetermination of quinolones of first and second generation by capillaryelectrophoresis [J]. J. Pharm. Biomed. Anal.22(2000)763–772.
    [4] V. Lorian, Antibiotics in Laboratory Medicine, fouth ed., Williams and Wilkins,Baltimore,1996.
    [5] J.G. Hardman, L.E. Limbird, P.B. Molinoff, R.W. Ruddon, A.G. Gilman (Eds.),Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, ninth ed.,McGraw-Hill, New York,1996.
    [6] D. Barrón, E. Jiménez-Lozano, S. Bailac, J. Barbosa, Simultaneous determinationof flumequine and oxolinic acid in chicken tissues by solid phase extraction andcapillary electrophoresis [J]. Anal. Chim. Acta.477(2003)21–27.
    [7] M. Tanaka, K. Sato, Y. Kimura, I. Hayakawa, Y. Osada, T. Nishino, Inhibition byquinolones of DNA gyrase from Staphylococcus aureus [J]. Antimicrob. Agents.Chemother.35(1991)1489–1491.
    [8] O. Ballesteros, I. Toro, V. Sanz-Nebot, A. Navalón, J.L. Vílchez, J. Barbosa,Determination of fluoroquinolones in human urine by liquid chromatographycoupled to pneumatically assisted electrospray ionization mass spectrometry [J].J. Chromatogr. B.798(2003)137–144.
    [9] W. H. Sheng, Y. C. Chen, J. T. Wang, S. C. Chang, K. T. Luh, W. C. Hsieh,Emerging fluoroquinolone-resistance for common clinically importantgram-negative bacteria in Taiwan, Diagn [J]. Microbiol. Infect. Dis.43(2002)141-147.
    [10] S. Pakpinyo, J. Sasipreeyajan, Molecular characterization and determination ofantimicrobial resistance of Mycoplasma gallisepticum isolated from chickens[J], Vet. Microbiol.125(2007)59–65.
    [11] Y.N.Ni, Y. Wang, S. Kokot, Multicomponent kinetic spectrophotometricdetermination of pefloxacin and norfloxacin in pharmaceutical preparations andhuman plasma samples with the aid of chemometrics [J]. Spectrochim. Acta. A.70(2008)1049–1059.
    [12] Y.D. Liang, C.X. Yu, J.F. Song, Cathodic electrochemiluminescence of theperoxydisulphate-ciprofloxacin system and its analytical applications [J].Luminescence.26(2011)662–669.
    [13] C.L. Tong, G.H. Xiang, Sensitive Determination of norfloxacin by thefluorescence probe of terbium (Ⅲ)-sodium dodecylbenzene sulfonate and itsluminescence mechanism [J]. J. Fluoresc.16(2006)831–837.
    [14] J.A. Oca a, F.J. Barragán, M. Callejón, Spectrofluorimetric andmicelle-enhanced spectrofluorimetric determination of gatifloxacin in humanurine and serum [J]. J. Pharm. Biomed. Anal.37(2005)327–332.
    [15] L.M. Du, Y.Q. Yang, Q.M. Wang, Spectrofluorometric determination of certainquinolone through charge transfer complex formation [J]. Anal. Chim. Acta.516(2004)237–243.
    [16] K.J. Huang, X. Liu, W.Z. Xie, H.X. Yuan, Electrochemical behavior andvoltammetric determination of norfloxacin at glass carbon electrode modifiedwith multiwalled carbon nanotubes/nafion [J]. Colloid. Surface. B.64(2008)269–274.
    [17] A.M. Pimenta, M.R.S. Souto, R.I.L. Catarino, M.F.C. Leal, J.L.F.C. Lima,Determination of Ofloxacin in Pharmaceuticals, Human Urine and Serum Usinga Potentiometric Sensor [J]. Electroanalysis.23(2011)1013–1022.
    [18] L. Fotouhi, M. Alahyari, Electrochemical behavior and analytical application ofciprofloxacin using a multi-walled nanotube composite film-glassy carbonelectrode [J]. Colloid. Surface. B.81(2010)110–114.
    [19] M. Rizk, F. Belal, F.A. Aly, N.M. El-Enany, Differential pulse polarographicdetermination of ofloxacin in pharmaceuticals and biological fluids [J]. Talanta.46(1998)83–89.
    [20] G.H. Wan, H. Cui, Y.L. Pan, P. Zheng, L.J. Liu, Determination of quinolonesresidues in prawn using high-performance liquid chromatography withCe(IV)-Ru(bpy)(3)(2+)-HNO3chemiluminescence detection [J]. J. Chromatogr. B.843(2006)1–9.
    [21] K.J. Huang, X. Liu, W.Z. Xie, H.X. Yuan, Voltammetric behavior of ofloxacinand its determination using a multi-walled carbon nanotubes-Nafion film coatedelectrode [J]. Microchim. Acta.162(2008)227–233.
    [22] C.H. Yang, Y.X. Xu, C.G. Hu, Voltammetric detection of ofloxacin in humanurine at a Congo red functionalized water-soluble carbon nanotube filmelectrode [J]. Electroanalysis.20(2008)144–149.
    [23] A.A. Ensafi, M. Taei, T. Khayamian, Simultaneous voltammetric determinationof enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbonnanotubes modified glassy carbon electrode by least-Squares support vectormachines [J]. Anal. Sci.26(2010)803–808.
    [24] A.A.J. Torriero, E. Salinas, J. Rabaa, J.J. Silber, Sensitivedetermination ofciprofloxacin and norfloxacin in biological fluids using an enzymatic rotatingbiosensor [J]. Biosens. Bioelectron.22(2006)109–115.
    [25] A.H. Kamel, W.H. Mahmoud, M.S. Mostafa [J], Anal. Methods.3(2011)957–964.
    [26] F. Giroud, K. Gorgy, C. Gondran, S. Cosnier, D. Pinacho, M. Marco. F.J.Sánchez-Baeza, Impedimetric immunosensor based on a polypyrrole antibioticmodel film for the label-free picomolar detection of ciprofloxacin [J]. Anal.Chem.81(2009)8405–8409.
    [27] C.M. Li, C.Q. Sun, W. Chen, L. Pan, Electrochemical thin film deposition ofpolypyrrole on different substrates [J]. Surf. Coat. Technol.198(2005)474–477.
    [28] P.G. Pickup, W. Kutner, C.R. Leidner, R.W. Murray, Redox conduction insingle and bilayer films of redox polymer [J]. J. Am. Chem. Soc.106(1984)1991–1998.
    [29] D.P. Santos, M.F. Bergamini, M.V.B. Zanoni, Voltammetric sensor foramoxicillin determination in human urine using polyglutamicacid/glutaraldehyde film [J]. Sensor Actuat B.133(2008)398–403.
    [30] T.H. Tsai, S. H. Wang, S. M. Chen, Electrodeposited indigotetrasulfonate filmonto glutaraldehyde-cross-linked poly-l-lysine modified glassy carbonelectrode for detection of dissolved oxygen [J]. J. Electroanal. Chem.659(2011)69–75.
    [31] R. Thangamuthu, Y.C. Pan, S.M. Chen, Iodate sensing electrodes based onphosphotungstate-doped-glutaraldehyde-cross-linked poly-L-lysine coatings [J].Electroanalysis.22(2010)1812–1816.
    [32] Z.H. Sun, W.M. Sun, C.T. Chen, G.H. Zhang, X.Q. Wang, D. Xu, L-Argininetrifluoroacetate salt bridges in its solid state compound: The low-temperaturethree dimensional structural determination of L-arginine bis(trifluoroacetate)crystal and its vibrational spectral analysis [J]. Spectrochim. Acta. A.83(2011)39–45.
    [33] B.N. Chandrashekar, B.E. Swamy, M. Pandurangachar, T.V. Sathisha, B.S.Sherigara, Electropolymerisation of l-arginine at carbon paste electrode and itsapplication to the detection of dopamine, ascorbic and uric acid [J]. Colloid.Surface. B.88(2011)413–418.
    [34] Z.J. Wu, H. Zhao, Y. Xue, X. Li, Y. He, Z. Yuan, Simultaneous determinationof3,4-dihydroxyphenylacetic acid, uric acid and ascorbic acid bypoly(L-Arginine)/multi-walled carbon nanotubes composite film [J]. J. Nanosci.Nanotechno.11(2011)1013–1018.
    [35] W. Ma, D.M. Sun, Simultaneous determination of epinephrine and dopamineatwith poly(L-arginine) modified electrode [J]. Chin. J. Anal. Chem.35(2007)66–70.
    [36] F.Y. Zhang, Z.H. Wang, Y.Z. Zhang, Simultaneous electrochemicaldetermination of uric acid, xanthine and hypoxanthine based onpoly(L-Arginine)/Graphene composite film modified electrode [J]. Talanta.93(2012)320–325.
    [37] Q. Cao, H. Zhao, Y.M. Yang, Y.J. He, N. Ding, J. Wang, Z.J. Wu, K.X. Xiang,G.W. Wang, Electrochemical immunosensor for casein based on goldnanoparticles and poly(l-Arginine)/multi-walled carbon nanotubes compositefilm functionalized interface [J]. Biosens. Bioelectron.26(2011)3469–3474.
    [38] M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of cyclodextrins [J].Chem. Rev.98(1998)1875–1918.
    [39] R. Freeman, T. Finder, L. Bahshi, I. Willner, β-Cyclodextrin-modifiedCdSe/ZnS quantum dots for sensing and chiroselective analysis [J]. Nano Lett.9(2009)2073–2076.
    [40] R. Martín, A. Fragoso, R. Cao, Complexation of bis(morpholyldithio-carbamato)-Copper(II), a superoxide scavenger in β-Cyclodextrins [J].Supramol. Chem.15(2003)171–175.
    [41] E. Almirall, A. Fragoso, R. Cao, R. González-Jonte, Molecular recognition ofaromatic nitrocompounds at cyclodextrin dithiocarbamate modified electrodes[J]. Supramol. Chem.15(2003)417–423.
    [42] A. Fragoso, J. Caballero, E. Almirall, R. Villalonga, R. Cao, Immobilization ofadamantane-modified cytochrome C at electrode surfaces throughsupramolecular interactions [J]. Langmuir.18(2002)5051–5054.
    [43] S.C. Ng, T. Sun, H.S.O. Chan, Chiral discrimination of enantiomers with aself-assembled monolayer of functionalized beta-cyclodextrins on Au surfaces[J]. Tetrahedron. Lett.43(2002)2863–2866.
    [44] G. Alarcón-ángeles, M. Guix, W.C. Silva, M.T. Ramírez-Silva, M.Palomar-Pardavé, M. Romero-Romo, A. Merko i, Enzyme entrapment byβ-cyclodextrin electropolymerization onto a carbon nanotubes-modifiedscreen-printed electrode [J]. Biosens. Bioelectron.26(2010)1768–1773.
    [45] Y. Liu, B.H. Han, S.X. Sun, T. Wada, Y. Inoue, Molecular recognition study onsupramolecular system.20. Molecular recognition and enantioselectivity ofaliphatic alcohols by L-tryptophan-modified β-cyclodextrin [J]. J. Org. Chem.64(1998)1487–1493.
    [46] Y. Matsui, M. Fujie, L. Hanaoka, Host–guest complexation ofmono[6-(1-pyridinio)-6-de-oxy]-α-cyclodextrin with several inorganic anions[J]. Bull. Chem. Soc. Jpn.62(1989)1451–1457.
    [47] M.X. Zhao, Q. Xia, X.D. Feng, X.H. Zhu, Z.W. Mao, L.N. Ji, K. Wang,Synthesis, biocompatibility and cell labeling of L-arginine-functionalbeta-cyclodextrin-modified quantum dot probes [J]. Biomaterials.31(2010)4401–4408.
    [48] Z.S. Wu, F. Zheng, G.L. Shen, R.Q. Yu, A hairpin aptamer-basedelectrochemical biosensing platform for the sensitive detection of proteins [J].Biomaterials.30(2009)2950–2955.
    [49] S.D. Fei, J.H. Chen, S.Z. Yao, G.H. Deng, D.L. He, Y.F. Kuang,Electrochemical behavior of L-cysteine and its detection at carbon nanotubeelectrode modified withplatinum [J]. Anal. Biochem.339(2005)29–35.
    [50] R.N. Goyal, A.R. Rana, H. Chasta, Electrochemical sensor for the sensitivedetermination of norfloxacin in human urine and pharmaceuticals [J].Bioelectrochemistry.83(2012)46–51.
    [51]A. Abbaspour, A. Noori, A cyclodextrin host–guest recognition approach to anelectrochemical sensor for simultaneous quantification of serotonin anddopamine [J]. Biosens. Bioelectron.26(2011)4674–4680.
    [52] V. Rahemi, J.J. Vandamme, J.M.P.J. Garrido, Enhanced host–guestelectrochemical recognition of herbicide MCPA using a β-cyclodextrin carbonnanotube sensor [J]. Talanta.99(2012)288–293.
    [53] A. Abbaspour, A. Noori, A cyclodextrin host–guest recognition approach to alabel-free electrochemical DNA hybridization biosensor [J]. Analyst.137(2012)1860–1865.
    [54] G.B. Zhu, P.B. Gai, Y. Yang, X.H. Zhang, J.H. Chen, Electrochemical sensor fornaphthols based on gold nanoparticles/hollow nitrogen-doped carbonmicrosphere hybrids functionalized with SH-β-cyclodextrin [J]. Anal. Chim.Acta.723(2012)33–38.
    [55] W.F. Smyth, A. Ivaska, A study of the electrochemical oxidation of some1,4-benzodiazepines [J]. Analyst.110(1985)1377–1379.
    [56] A.A. Ramadan, H. Mandil, Determination of gatifloxacin in pure form andpharmaceutical formulations by differential pulse polarographic analysis [J].Anal. Biochem.404(2010)1–7.
    [57] F.F. Zhang, S.Q.Gu, Y.P. Ding, L. Li, X. Liu, Simultaneous determination ofofloxacin and gatifloxacin on cysteic acid modified electrode in the presence ofsodium dodecyl benzene sulfonate [J]. Bioelectrochemistry.89(2013)42–49.
    [58] A.A. Ensafi, A.R. Allafchian, R. Mohammadzadeh, Characterization ofMgFe2O4nanoparticles as a novel electrochemical sensor: application for thevoltammetric determination of ciprofloxacin [J]. Anal. Sci.28(2012)705–710.
    [1] S.R. El-Shaboury, G.A. Saleh, F.A. Mohamed, A.H. Rageh, Analysis ofcephalosporin antibiotics [J], J. Pharm. Biomed. Anal.45(2007)1–19.
    [2] P. Garzone, J.A. Lyon, V.L. Yu, Third-generation and investigationalcephalosporins: I. Structure-activity relationships and pharmacokinetic review[J], Drug. Intell. Clin. Pharm.17(1983)507–515.
    [3] P. Garzone, J.A. Lyon, V.L. Yu, Third-generation and investigationalcephalosporins: II. Microbiologic review and clinical summaries [J], Drug.Intell. Clin. Pharm.17(1983)615–622.
    [4] D.S. Reeves, M. J. Bywater, D.W. Bullock, H.A. Holt, Pharmacokinetic study ofa sulfametopyrazine/trimethoprim combination (Kelfiprim) in humanvolunteers [J], J. Antimicrob. Chemother.6(1980)647–656.
    [5] T. Kamimura, Y. Matsumoto, N. Okada, Y. Mine, M. Nishida, S. Goto, S.Kuwahara, Ceftizoxime (FK749), a new parenteral cephalosporin: in vitro andin vivo antibacterial activities [J], Antimicrob. Agents. Chemother.16(1979)540–548.
    [6] K.P. Fu, H.C. Neu, Antibacterial activity of ceftizoxime, a beta-lactamase-stablecephalosporin [J], Antimicrob. Agents Chemother.17(1980)583–590.
    [7] F.J. Schenck, P.S. Callery, Chromatographic methods of analysis of antibiotics inmilk [J], J. Chromatogr. A.812(1998)99–109.
    [8] B. Morelli, Derivative spectrophotometry in the analysis of mixtures ofcefotaxime sodium and cefadroxil monohydrate [J], J. Pharm. Biomed. Anal.32(2003)257–267.
    [9] N.V. Shvedene, S.V. Borovskaya, Determination of beta-Lactam antibiotics bypotentiometry with ion-selective electrodes [J], J. Anal. Chem.58(2003)1085–1090.
    [10] T. Scanes, A.F. Hundt, K.J. Swart, H.K.L. Hundt, Simultaneous determinationof cefortaxime and desacetylcefotaxime in human plasma and cerebralspinalfluid by high performance liquid chromatography [J]. J. Chromatogr. B.750(2001)171–176.
    [11] V.F. Samanidou, E.D. Tsochatzis, I.N. Papadoyannis, HPLC determination ofcefotaxime and cephalexine residues in milk and cephalexine in veterinaryformulation [J], Microchim. Acta.160(2008)471–475.
    [12] M. T Rosseel, K.H. Vandewoude, Liquid chromatographic determination of theplasma concentrations of cefotaxime and desacetylcefotaxime in plasma ofcritically ill patients [J], J. Chromatogr. B.811(2004)159–163.
    [13] S.S.N. Ling, K.H. Yuen, S.A. Barker, Simple liquid chromatographic methodfor the determination of cefotaxime in human and rat plasma [J], J. Chromatogr.B.783(2003)297–301.
    [14] F. Buhl, B.S. Sroka, Spectrophotometric determination of cephalosporins with.Leuno crystal violet Chemia Analityczna.(Warsaw)48(2003)145–149.
    [15] K.S. Lakshmi, K. Ilango. N. Nithya Mathi, S. Balaji, D. Kibe Victor, and V.Sathish Kumar,. Visible spectrophotometric determination of Ceftriaxonesodium in vials [J], Asian. J. Chem.19(2007)2517–2520.
    [16] D.L. Chen, H.Y. Wang, Z.J. Zhang, Chemiluminescence determination ofcefotaxime sodium with flow-injection analysis of cerium (IV)-rhodamine6Gsystem and its application to the binding study of cefotaxime sodium to proteinwith on-line microdialysis sampling [J], Spectrochim. Acta. Part A.78(2011)553–557.
    [17] M.D. Blanchin, M.L. Rondot-Dudragne, H. Fabre, Determination of cefotaxime,desacetylcefotaxime, cefmenoxime and ceftizoxime in biological samples byfluorescence detection after separation by thin-layer chromatography [J],Analyst.113(1988)899–902.
    [18] S. Shahrokhian, S. Rastgar, Construction of an electrochemical sensor based onthe electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbonnanotubes film for voltammetric determination of cefotaxime [J], Analyst.137(2012)2706–2715.
    [19] B. Dogan, A. Golcu, M. Dolaz, Anodic oxidation of antibacterial drugcefotaxime sodium and its square wave and differential pulse voltammetricdetermination in pharmaceuticals and human serum [J], Curr. Phrm. Anal.5(2009)197–207.
    [20] M.M. Aleksic, V. Kapetanovic, Voltammetric behavior and square-wavevoltammetric determination of cefotaxime in urine [J], J. Electroanal. Chem.593(2006)258–266.
    [21] P. Nigam, S. Mohan, S. Kundu, Trace analysis of cefotaxime at carbon pasteelectrode modified with novel Schiff base Zn(II) complex [J], Talanta.4(2009)1426–1431
    [22] D.P. Santos, M.F. Bergamini, M.V.B. Zanoni, Voltammetric sensor foramoxicillin determination in human urine using polyglutamicacid/glutaraldehyde film [J], Sensor. Actuat. B-Chem.133(2008)398–403.
    [23] T.H. Tsai, S.H. Wang, S.M. Chen, Electrodeposited indigotetrasulfonate filmonto glutaraldehyde-cross-linked poly-L-lysine modified glassy carbonelectrode for detection of dissolved oxygen [J], J. Electroanal. Chem.659(2011)69–75.
    [24] R. Thangamuthu, Y.C. Pan, S.M. Chen, Iodate sensing electrodes based onphosphotungstate-doped-glutaraldehyde-cross-linked poly-L-lysine coatings [J],Electroanalysis.22(2010)1812–1816.
    [25] B.N. Chandrashekar, B. E. Swamy, M. Pandurangachar, T. V. Sathisha, B.S.Sherigara, Electropolymerisation of L-arginine at carbon paste electrode and itsapplication to the detection of dopamine, ascorbic and uric acid [J], Colloid.Surface. B.88(2011)413–418.
    [26] Z.J. Wu, H. Zhao, Y. Xue, X. Li, Y. He, Z. Yuan, Simultaneous determinationof3,4-dihydroxyphenylacetic acid, uric acid and ascorbic acid bypoly(L-Arginine)/multi-walled carbon nanotubes composite film [J], J. Nanosci.Nanotechno.11(2011)1013–1018.
    [27] W. Ma, D.M. Sun, Simultaneous determination of epinephrine and dopamineatwith poly(L-arginine) modified electrode, Chin [J]. J. Anal. Chem.35(2007)66–70.
    [28] F.Y. Zhang, Z.H. Wang, Y.Z. Zhang, Simultaneous electrochemicaldetermination of uric acid, xanthine and hypoxanthine based onpoly(L-arginine)/graphene composite film modified electrode [J], Talanta.93(2012)320–25.
    [29] Q. Cao, H. Zhao, Y.M. Yang, Y.J. He, N. Ding, J. Wang, Z.J. Wu, K.X. Xiang,G.W. Wang, Electrochemical immunosensor for casein based on goldnanoparticles and poly(l-Arginine)/multi-walled carbon nanotubes compositefilm functionalized interface [J], Biosens. Bioelectron.26(2011)3469–3474.
    [30] Z.H. Sun, W.M. Sun, C.T. Chen, G.H. Zhang, X.Q. Wang, D. Xu, L-Argininetrifluoroacetate salt bridges in its solid state compound: The low-temperaturethree dimensional structural determination of L-arginine bis(trifluoroacetate)crystal and its vibrational spectral analysis [J], Spectrochim. Acta A.83(2011)39–45.
    [31] L. Zhang, R. Yuan, Y. Chai, X. Li, Investigation of the electrochemical andelectrocatalytic behavior of positively charged gold nanoparticle and L-cysteinefilm on an Au electrode [J], Anal. Chim. Acta.596(2007)99–105.
    [32] T. Mallik, T. Kar, Growth and characterization of nonlinear optical L-argininedehydrate single crystals [J], J.Cryst. Growth.285(2005)178–182.
    [33] S.V.P. Barreira, F. Silva, Surface modification chemistry based on theelectrostatic adsorption of poly-L-arginine onto alkanethiol modified goldsurfaces [J], Langmuir.19(2003)10324–10331.
    [34] P. Sharma, N.K. Misra, P. Tandon, V.D. Gupta, Phonon dispersion inpoly(l-arginine)[J], J. Macromol. Sci. B.41(2002)319–340.
    [35] M. I. Prodromidis, A. B. Florou, S. M. Tzouwara-karayanni, M. I. Karayannis,The importance of surface coverage in the electrochemical study of chemicallymodified electrodes [J], Electroanalysis.12(2000)1498–1501.
    [36] S.A. zkan, B. Uslu, P.Zuman.Electrochemical reduction and oxidation of theantibiotic cefepime at a carbon electrode [J], Anal. Chim. Acta.457(2002)265–274.
    [37] M.Y. Wang, X.Y. Xu, J. Yang, X.J. Yang, Z.W. Tong, Investigation of theelectrocatalytic function of Fe3O4nanoparticles and the application ascefotaxime sodium sensor [J], Micro. Nano. Letters.6(2011)284–288.
    [38] N. Y lmaz, I. Biryol, Anodic voltammetry of cefotaxime [J], J. Pharm. Biomed.Anal.17(1998)1335–1344.
    [39] A. Golcu, B. Dogan, S.A. Ozkan, Anodic voltammetric behavior and
    determination of cefixime in pharmaceutical dosage forms and biological fluids
    [J], Talanta.67(2005)703–712.
    [1] R. Gomez, S.J. Jolly, T. Williams, J.P. Vacca, et al, Design and synthesis ofconformationally constrained inhibitors of non-nucleoside reverse transcriptase[J]. J. Med. Chem.54(2011)79207933.
    [2] E. De Clercq, Anti-HIV drugs:25compounds approved within25years after thediscovery of HIV [J]. Int. J. Antimicrob. Agents.33(2009)307320.
    [3] S. Alcaro, C. Alteri, A. Artese, F. Ceccherini-Silberstein, et al, Molecular andstructural aspects of clinically relevant mutations related to the approvednon-nucleoside inhibitors of HIV-1reverse transcriptase [J]. Drug. Resist.Updat.14(2011)141149.
    [4] R.M.F. Hollanders, E.W.J. van Ewijk-Beneken Kolmer, D.M. Burger, E.W.Wuis, P.P. Koopmans, Y.A. Hekster, Determination of nevirapine, an HIV-1non-nucleoside reverse transcriptase inhibitor, in human plasma byreversed-phase high-performance liquid chromatography [J]. J. Chromatogr. B.744(2000)65–71.
    [5] P.W. Mui, S.P. Jacober, K.D. Hargrave, J. Adams, Crystal structure of nevirapine,a non-nucleoside inhibitor of HIV-1reverse transcriptase, and computationalalignment with a structurally diverse inhibitor [J]. J. Med. Chem.35(1992)201202.
    [6] J. Ren, C.E. Nichols, P.P. Chamberlain, K.L. Weaver, S.A. Short, D.K. Stammers,Crystal structures of HIV-1reverse transcriptases mutated at codons100,106and108and mechanisms of resistance to non-nucleoside inhibitors [J]. J. Mol.Biol.336(2004)569578.
    [7] J. Ren, J. Milton, K.L. Weaver, S.A. Short, D.I. Stuart, D.K. Stammers, Structuralbasis for the resilience of efavirenz (DMP-266) to drug resistance mutations inHIV-1reverse transcriptase [J]. Structure.8(2000)10891094.
    [8] D.K. Stammers, D.O. Somers, C.K. Ross, I. Kirby, P.H. Ray, J.E. Wilson, M.Norman, J.S. Ren, R.M. Esnouf, E.F. Garman, Crystals of HIV-1reversetranscriptase diffracting to2·2resolution [J]. J. Mol. Biol.242(1994)586588.
    [9] R.L.T Parreira, O. Abrahao, S.E. Galembeck, Conformational preferences ofnon-nucleoside HIV-1reverse transcriptase inhibitors [J]. Tetrahedron.57(2001)32433253.
    [10] P.P. Mager, ChemInform abstract: a check on rational drug design: molecularsimulation of the allosteric inhibition of HIV-1reverse transcriptase [J]. Med.Res. Rev.17(1997)235276.
    [11] R.P.G. van Heeswijk, R.M.W. Hoetelmans, P.L. Meenhorst, J.W. Mulder, J.H.Beijnen, Rapid determination of nevirapine in human plasma by ion-pairreversed phase high-performance liquid chromatography with ultravioletdetection [J]. J. Chromatogr. B.713(1998)395399.
    [12] S. Notari, C. Mancone, T. Alonzi, M. Tripodi, P. Narciso, P. Ascenzi,Determination of abacavir, amprenavir, didanosine, efavirenz, nevirapine, andstavudine concentration in human plasma by MALDI-TOF/TOF [J]. J.Chromatogr. B.863(2008)249257.
    [13] J. Chi, A.L. Jayewardene, J.A. Stone, F.T. Aweeka. An LC-MS-MS method forthe determination of nevirapine, a non-nucleoside reverse transcriptase inhibitor,in human plasma [J]. J. Pharm. Biomed. Anal.31(2003)953959.
    [14] R. Sekar, S. Azhaguvel, MEKC determination of antiretroviral reversetranscriptase inhibitors lamivudine, stavudine, and nevirapine in pharmaceuticalformulations [J]. Chromatographia.67(2008)389398.
    [15] W. Chen, W. Li, X. Ling, X. Wang, J. Liu, Study on the interaction between HIVreverse transcriptase and its non-nucleoside inhibitor nevirapine by capillaryelectrophoresis [J]. J. Chromatogr. B.878(2010)17141717.
    [16] N. Kaul, H. Agrawal, A.R. Paradkar, K.R. Mahadik, HPTLC method fordetermination of nevirapine in pharmaceutical dosage form [J]. Talanta.62(2004)843852.
    [17] J.W. Pav, L.S. Rowland, D.J. Korpalski, HPLC-UV method for the quantitationof nevirapine in biological matrices following solid phase extraction [J]. J.Pharm. Biomed. Anal.20(1999)9198.
    [18] S. Kaul, B. Stouffer, V. Mummaneni, N. Turabi, S. Mantha, P. Jayatilak, R.Barbhaiya, Specific radioimmunoassays for the measurement of stavudine inhuman plasma and urine [J]. J. Pharm. Biomed. Anal.15(1996)165174.
    [19] A.A. Castro, R.Q. Aucélio, N.A. Rey, E.M. Miguel, P.A. Farias, Determinationof the antiretroviral drug nevirapine in diluted alkaline electrolyte by adsorptivestripping voltammetry at the mercury film electrode [J]. Comb Chem High TScr.14(2011)2227.
    [20] A. Radi, Accumulation and trace measurement of chloroquine drug atDNA-modified carbon paste electrode [J]. Talanta.65(2005)271-275.
    [21] M.H. Mashhadizadeh, M. Akbarian, Voltammetric determination of someanti-malarial drugs using a carbon paste electrode modified with Cu(OH)2nano-wire [J]. Talanta.78(2009)14401445.
    [22] E. Hammam, Behavior and quantification studies of amiloride drug using cyclicand square-wave adsorptive stripping voltammetry at a mercury electrode [J]. J.Pharmaceut. Biomed. Anal.34(2004)11091116.
    [23] R.N. Goyal, V.K. Gupta, M. Oyama, N. Bachheti, Differential pulsevoltammetric determination of paracetamol at nanogold modified indium tinoxide electrode. Electrochem Commun.7(2005)803807.
    [24] J.Y. Ma, Y.S. Zhang, X.H. Zhang, G.B. Zhu, B. Liu, J.H. Chen, Sensitiveelectrochemical detection of nitrobenzene based on macro-/meso-porous carbonmaterials modified glassy carbon electrode [J]. Talanta.88(2012)696700.
    [25] B. Fabre, C. Samorì, A. Bianco, Immobilization of double functionalized carbonnanotubes on glassy carbon electrodes for the electrochemical sensing of thebiotin–avidin affinity [J]. J. Electroanal. Chem.665(2012)9094.
    [26] X.Q. Lin, X.H. Jiang, L.P. Lu, DNA Deposition on carbon electrodes undercontrolled DC potentials [J]. Biosens Bioelectron.20(2005)17091717.
    [27] R. Saladino, P. Carlucci, M.C. Danti, C. Crestini, E. Mincione, Selectiveoxidation of uracil and adenine derivatives by the catalytic systemMeReO3/H2O2and MeReO3/Urea hydrogen peroxide [J]. Tetrahedron.56(2000)1003110037.
    [28] K.G. Grozinger, V. Fuchs, K.D. Hargrave, S. Mauldin, J. Vitous, S. Campbell, J.Adams, Synthesis of nevirapine and its major metabolite [J]. J. HeterocyclicChem.32(1995)259263.
    [29] X.Q. Lin, G.F. Kang, X.H. Zhu, Uracil grafted carbon electrode: electrocatalyticbehavior of tryptophan, tyrosine, catecholamine and related compounds [J].Chinese J Chem.26(2008)681688.
    [30] Q. Cao, H. Zhao, L. Zeng, J. Wang, R. Wang, X. Qiu, Y. He, Electrochemicaldetermination of melamine using oligonucleotides modified gold electrodes [J],Talanta.80(2009)484488.
    [31] A.M.M. Antunes, D.A. Novais, J.L. Ferreira da Silva, et al. Synthesis andoxidation of2-hydroxynevirapine, a metabolite of the HIV reverse transcriptaseinhibitor nevirapine [J]. Org. Biomol. Chem.9(2011)78227835.
    [32] A.M.M. Antunes, M. Sidarus, D.A. Novais, et al. Oxidation of2-Hydroxynevirapine, a phenolic metabolite of the anti-HIV drug nevirapine:evidence for an unusual pyridine ring contraction [J]. Molecules.17(2012)26162627.
    [33] H. Heli, M. Zarghan, A. Jabbari, A. Parsaei, A.A. Moosavi-Movahedi,Electrooxidation of dextromethorphan on a carbon nanotube–carbonmicroparticle–ionic liquid composite: applied to determination inpharmaceutical forms [J]. J. Solid. State. Electrochem.14(2010)787795.
    [1] E. Yashima, K. Maeda, Chirality-Responsive Helical Polymers [J],Macromolecules,41(2008)3-12.
    [2] T.Q. Yan, C. Orihuela, Resolution of pharmaceutical intermediates [J]. J.Chromatogr. A.,1156(2007)220-227.
    [3] L.J. Zhang, M.F. Song, Q. Tian, S.G. Min, Chiral separation of l,d-tyrosine andl,d-tryptophan by ct DNA [J]. Sep. Purif. Technol.55(2007)388-391.
    [4] Z.X. Zheng, J.M. Lin, F. Qu, Chiral separation of underivatized and dansyl aminoacids by ligand-exchange micellar electrokinetic capillary chromatographyusing a copper(II)-L-valine complex as selector [J]. J. Chromatogr. A.1007(2003)189-196.
    [5] X.N. Lu, Y. Chen, L. Guo, Y.F. Yang, Chiral separation of underivatized aminoacids by ligand-exchange capillary electrophoresis using a copper(II)-L-lysinecomplex as selector [J]. J. Chromatogr. A.945(2002)249-255.
    [6] J. Elek, D. Mangelings, T. Iványi, I. Lázár, Y.V. Heyden,Enantioselectivecapillary electrophoretic separation of tryptophane-and tyrosine-methylesters ina dual system with a tetra-oxadiaza-crown-ether derivative and a cyclodextrin[J]. J. Pharm. Biomed.38(2005)601-608.
    [7] L. Qi, G.I. Yang, H.Z. Zhang, J. Qiao, A chiral ligand exchange CE essay withzinc(ii)-L-valine complex for determining enzyme kinetic constant of L-aminoacid oxidase [J], Talanta.81(2010)1554-1559.
    [8] L. Chi, J.Z. Zhao, T.D. James,Chiral Mono Boronic Acid As FluorescentEnantioselective Sensor for Mono α-Hydroxyl Carboxylic Acids [J]. J. Org.Chem.73(2008)4684-4687.
    [9] Y.L. Wei, S.F. Wang, S.M. Shuang, C. Dong,Chiral discrimination between D-and L-tryptophan based on the alteration of the fluorescence lifetimes by thechiral additives [J]. Talanta.81(2010)1800-1805.
    [10] V. Schurig, W. Lindner, G. Uray, In Houben-Weyl, Methods of organicchemistry
    [M], G. Helmchen, R. W. Hoffmann,, J. Mulzer,, E.Schaumann,, Eds. Thieme:Stuttgart, Germany.21(1995)147-292.
    [11] L. Pu, Fluorescence of Organic Molecules in Chiral Recognition [J]. Chem. Rev.104(2004)1687-1716.
    [12] S. Allenmark, Induced circular dichroism by chiral molecular interaction [J].Chirality.15(2003)409-422.
    [13] F. Liu, X. Liu, S.C. Ng, H.S. Chan,Enantioselective molecular imprintingpolymer coated QCM for the recognition of l-tryptophan. Sens. Actuators. B.113(2006)234-240.
    [14] H.S. Guo, J.M. Kim, S.M. Chang, W.S. Kim, Chiral recognition of mandelicacid by L-phenylalanine-modified sensor using quartz crystal microbalance [J].Biosens. Bioelectron.24(2009)2931-2934.
    [15] G. Gubitz, M.G. Schmid, Chiral separation by chromatographic andelectromigration techniques. A review. Biopharm. Drug. Dispos.22(2001)291-336.
    [16] R.I. Stefan, J.F. van Staden, H.Y. Aboul-Enein, Molecular recognition in chiraldiscrimination [J]. Cryst. Eng.4(2001)113-118.
    [17] A.S. Pagliara, I.E. Karl, D.C. DeVivo, R.D. Feigin, D.M. Kipnis,Hypoalaninemia: a concomitant of ketotic hypoglycemia [J]. J. Clin. Invest.51(1972)1440-1449.
    [18] O. Matsushima, H. Katayama, K. Yamada, Y. Kado, Occurrence of freed-alanine and alanine racemase activity in bivalve mollusks with specialreference to intracellular osmoregulation [J], Mar. Biol. Lett.5(1984)217-225.
    [9]A. Yamada, O. Matsushima, The regulation of d-alanine and alanine racemaseactivity in mollusks [J], Comp. Biochem. Physiol.,103(1992)617-621.
    [20] Y. Inaba, N. Hamada-Sato, T. Kobayashi, C. Imada, E. Watanabe, Determinationof d-and l-alanine concentrations using a pyruvic acid sensor [J], Biosens.Bioelectron.18(2003)963-971.
    [21] R. Marchelli, A. Dossena, G. Palla, The potential of enantioselective analysis asa quality control tool [J], Trends Food Sci. Technol.7(1996)113-119.
    [22] H. Kneifel, A.S. Jandel, Rapid amino acid analysis in biotechnology:determination of alanine and aspartic acid [J], J. Liq. Chromatogr.6(1983)1395-1405.
    [23] K.J.Shea, D.Y.Sasaki, On the control of microenvironment shape offunctionalized network polymers prepared by template polymerization [J].J.Am. Chem. Soc.,111(1989)3442-3444.
    [24] G. Wullf, J. vietmeier, Enantioselective synthesis of amino acids using polymerspossessing chiral cavities obtained by an imprinting procedure with templatemolecules [J]. Makromol. chem,190(1989)1727-1735.
    [25] H. Okuno, H.Yakabe, Characterization of overoxidized Polypyrrole colloidsimprinted with L-lacrate and their application to enantioseparation of aminoacids [J]. Anal. Chem,74(2002)4184-4190.
    [26] H.H. Yang, S.Q. Zhang, F. Tan, et al. Surface molecularly imprinted nano wiresfor biorecognition [J]. J. Am. Chem. Soc.127(2005)1378-1379.
    [27] A. Mehdinia, M.O. Aziz-Zanjani, M. Ahmadifar, A. Jabbari,Design andsynthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15for recognition of ascorbic acid [J], Biosens. Bioelectron.39(2013)88-93.
    [28] X.W. Kan, H. Zhou, C. Li, A.H. Zhu, et al. Imprinted electrochemical sensor fordopamine recognition and determination based on a carbonnanotube/polypyrrole film [J], Electrochim. Acta.63(2012)69-75.
    [29] J.Y. Huang, Z.X. Wei, J.C. Chen, Molecular imprinted polypyrrole nanowiresfor chiral amino acid recognition [J], Sens. Actuators. B.134(2008)573-578.
    [30] X.R.Xing, S, Liu, J.H.Yu, W.J.Lian, J.D.Huang, Electrochemical sensor basedon molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronicacid-multiwalled carbon nanotubes modified electrode for determination oftryptamine [J], Biosens. Bioelectron.31(2012)277-283.
    [31]范荏兴,手性介孔导电高分子的合成及其机理探究,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700