岩溶隧道突水灾害与防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国岩溶地区幅员辽阔,地下水环境复杂,随着铁路隧道建设向长、大、深方向发展,在这些地区修建铁路隧道,岩溶构造突水是人为激发的最严重的施工地质灾害。岩溶地区修建长大隧道,往往遭遇到富水、高水压、暗河、溶洞及断层等问题,开挖施工极易诱发大规模的突水、突泥等灾害;同时,突水、突泥会严重破坏地下水环境,改变地下水渗流场及补排关系,造成地下水资源减少和枯竭,导致水质污染和破坏。
     本文结合岩溶地区隧道工程建设实例,分析总结了岩溶隧道突水灾害发生规律与特征;运用断裂力学和突变理论分析了岩溶隧道突水发生机理和过程,在岩溶构造与隧道间最不利平面关系分析基础上,提出了防突岩层概念,并从断裂破坏和失稳破坏的角度阐述了岩溶构造防突岩层安全厚度问题,推导出有关结论;针对岩溶隧道突水注浆防治关键技术,进行了注浆材料室内模拟实验;基于浆液粘度时变特性,研究分析了浆液在砂层及裂隙中的扩散机理,可根据浆液扩散机理进行控制注浆;同时,对岩溶隧道突水灾害的“避、绕、堵、排和固”的防治措施进行了案例分析。本文的研究结果主要包括以下几个方面:
     (1)以岩溶隧道为研究对象,结合施工现场发生的突水突泥情况,分析总结了突水突泥的基本规律、灾害特征、防治方法及处理措施。
     (2)通过对多个工程工况分析,应用断裂力学原理,研究了岩溶构造防突岩层处于压剪、拉剪应力状态下,其裂隙方向、裂隙长度、围压及水压力对岩体强度的影响;将岩溶构造防突岩层简化为平面应变固支梁,推导了了简化模型的应力状态公式;岩溶构造防突岩层的裂隙可能处于拉剪、或压剪应力状态,根据裂隙应力状态及裂隙断裂判定方法,可得到防突岩层裂隙断裂的临界厚度。
     (3)提出了“防突岩层”的概念,并分析了岩溶构造防突岩层失稳突水机理,及参数变化对岩溶构造防突岩层失稳突水的影响;分析了水压、岩溶充填体重力及岩溶构造防突岩层重力作用下的岩溶构造防突岩层失稳突水的安全厚度。
     (4)分析了岩溶隧道突水灾害发生的后果;由于钻孔等地质预报手段存在误差和局部性,将岩溶构造防突岩层分为若干承载梁板力学模型,运用可靠度理论研究了岩溶构造防突岩层破坏的突水风险;通过比较交通、大坝等灾害风险标准,建立了岩溶隧道突水灾害的风险标准;利用VISUAL BASIC 6.0编制了数据管理系统,可以对灾害的数据信息资料进行收集、管理,并对突水灾害风险进行评定。
     (5)对普通硅酸盐水泥添加纳米灌注剂进行了不同水灰比的浆液流动性试验,并和普通硅酸盐水泥的浆液流动性进行了比较,给出了添加纳米灌注剂的普通硅酸盐水泥水灰比建议值;基于相同流动性,将普通硅酸盐水泥和添加纳米灌注剂的普通硅酸盐水泥的浆液析水收缩性进行了比较研究;添加不同纳米灌注剂掺量进行了试验,给出了普通硅酸盐水泥浆液的纳米灌注剂参量建议。采用充填砂模拟了浆液在砂体中的渗透扩散;分别用铁板、玻璃板模拟裂隙,进行了浆液在裂隙中的注浆效果研究。
     (6)针对岩溶隧道大裂隙涌水及钻孔涌水的注浆封堵,进行了添加纳米灌注剂的水泥水玻璃双液浆凝胶试验,测试了不同水泥水玻璃体积比的浆液凝胶时间;对水泥水玻璃体积比1:1的浆液,测试了不同波美度的浆液凝胶时间,并分析了该双液浆凝胶时间变化随波美度变化关系。
     (7)基于浆液粘度时变特性,建立了粘时变体浆液在充填砂体、裂隙中的扩散模型;分析了浆液扩散范围与充填砂体的渗透系数、岩溶构造防突岩层裂隙宽度、注浆压力、注浆钻孔孔径及凝胶时间的关系;依据粘时变流体模型,可以进行岩溶构造防突岩层、溶腔充填体注浆的合理选材、合理注浆压力、钻孔孔径和浆液扩散范围控制,防止跑浆、串浆。
     (8)根据岩溶隧道突水灾害发生机理及突水风险,对排水降压、注浆封堵相结合的岩溶隧道涌突水灾害防治方法进行了研究,结合工程实例进行了分析。将粘时变浆液扩散理论应用在大支坪隧道“990”溶腔异常体注浆,串浆、跑浆、注浆压力不上升等问题得到了较好的解决。
The water inrush scourge was a very serious problem for karst existing in most areas of our country. Longer、bigger and deeper tunnels would be built with the railway running faster and faster. Karst water inrush scourge might come forth when the tunnel was excavated, if the tunnel was built in these areas, where existed plentiful water, high pressure of water, karst cave and faultage, and which could lead to the loss and pollution of groundwater.
     In this paper, the basic law of tunnel hazard was summarized. The water inrush mechanism of tunnel karst was analyzed by fracture mechanics and catastrophe theory, and the safe thickness of rock wall, which to prevent the water inrush, was educed respectively from fracture failure and instability theory. The grout pervasion mechanism was inferred based on viscosity varying characteristics with time and laboratory simulation test, which could be used to control the grout pervasion areas. The prevention measures, which included“avoiding, bypass, block water up, drainage and reinforce”, was discussed in combination with engineering construction. This paper mainly included the following aspects:
     (1) The karst water inrush was summarized in combination with the tunnel construction, which included the law, scourge characteristics, prevention methods and treatment measures of karst water inrush.
     (2) The rock strengthσ1 was affected by some factors that included the fissure direction、fissure length、confine pressureσ3 and fissure water pressure, when it suffered from pressure shear stress states or tensile shear stress states respectively. The rock wall to prevent the water inrush was simplified plane strain fixed end beam, and its stress states was answered by simplified model. The critical states of fissure rupture was analyzed when it suffered from different stress states, which included pressure shear stress or tensile shear stress respectively, and the safe thickness of the rock between karst and tunnel was determined by the fissured fracture critical state of karst water inrush.
     (3) Based on catastrophe theory, two aspects were analyzed, one was instability mechanism of the rock between karst and tunnel, the other was the parameter variation that influenced on the rock instability, then the safe thickness of the rock could be anwsered.
     (4) The karst inrush disaster results were analyzed firstly, then the risk of water inrush disasters was studied by reliability theory to meet with the errors and local of drilling hole and other geological prediction methods. By comparing with different risk criteria, which of karst water inrush was established, and data management system was developed by use of VISUAL BASIC 6.0, which could be used to manage the data information, determine the disaster risk.
     (5) Firstly, mixing nano perfusion agents with portland cement together, and adding different water cement ratio to test its mobility that was compared with portland cement’s mobility, which gave the water cement ratio recommendatory values of mixing nano perfusion agents with portland cement together. Secondly, based on the same grout mobility, grout shrinkage was tested and compared between mixing nano perfusion agents with portland cement together and portland cement, and gave the recommendatory values, which blended nano perfusion agents with portland cement. Sand was used to simulate the seepage of grout filling, and the used to simulate the grouting effect of rock cranny.
     (6) In order to overcome the inflow of fissure and drilling hole, having carried out a experiment to test the two liquid grout gel time of cement and water glass that added nano perfusion agent, and test the gel time of different cement ratio and water glass, and test the gel time of different baume degrees when the ratio of cement and water glass was 1:1, and analyzed the change law of gel time.
     (7) Based on the viscosity varying characteristics with time, a pervasion model of sand or fissure grouting was established, and some affection factors to pervasion areas, which included pervasion coefficient of different sand, fissure length, grouting pressure, grouting drill hole diameter, gel time, were analyzed. The reasonable grouting parameter, which included material, grouting pressure, drilling hole diameter and pervasion areas, could be adopted to prevent the grout diffusing to more areas when grouting in the rock between tunnel karst cave.
     (8) According to the mechanism of karst water inrush, the application technology about water buck and grouting of karst water inrush scourge with engineering congstruction.
引文
[1]吕康成,崔凌秋.隧道防排水工程指南[M].北京:人民交通出版社,2005
    [2]李彪,梁高清.高速公路隧道施工中的岩溶研究[J].工程力学,2000,17(增刊)
    [3]石文慧.论铁路隧道涌水灾害的防治[J].中国地质灾害与防治学报.1993,4(1):46
    [4] zojer H. The Effects of Tunnelling on Nature Resource, Felsbau 1997, 15(2):104~107
    [5] Lemmerer J.Lofer Northern by pass-the Larchberg Tunnel, Felsbau 996,14(3):134~139
    [6]方俊波.圆梁山隧道向斜段地表及地下连通性分析.隧道建设,2004,24(5):16~20
    [7] Synanon LY.The tunnel back.New York:Macmillan,1965
    [8] Lee IM,Park KJ,Nam S W.Analysis of an underwater tunnel with the consideration of seepage forces. Tunnels and Metropolises, 1998, (5): 315~319
    [9] Lo KW,Leung LF,Lee S L,Makino H,Tajima H.Field instrumentation of a multiple tunnel interaction problem.tunnels and tunneling.1998,35(12):44~46
    [10] Smits AA.tunnel junctions.Eindhoven:eindhoven university of technology,2001
    [11] Megaw Tm,Bartlett JV.Tunnels-planning,design,construction.New York:Halsted press,1981
    [12] Li G,zhou W.Sinkholes in karst mining areas in china and some methods of prevention.Environmental Geology,1999,52(1-2):45~50
    [13] Prokopy J G.Quarrying in karst.Environmental Geology,2003,106(3):34~37
    [14]邓宜明等.大瑶山隧道深层岩溶水地段洞内长期排水所引起的水文地质变化特征及其整治措施[J].水文地质工程地质,1992,19(6):44~46
    [15]张可成,窦培松等.大瑶山隧道岩溶涌水连通试验[J].工程勘察,1993(1):37~39
    [16]杨保安,张红军等.华鉴山隧道西段泄水洞工程及其对治理隧道暴雨涌突水的作用[J].现代隧道技术,1999(5):24~27
    [17]石文慧.论铁路隧道涌水灾害的防治[J].中国地质灾害与防治学报.1993,4(1):46
    [18]刘丹,关宝树.铁路隧道涌(突)水基本特征及地质环境效应[J].科技动态报告文集铁路隧道及地下工程.西南交通大学出版社,1995:212~219
    [19]王建秀.腐蚀损伤岩体中的水化—水力损伤及其在隧道工程中的应用研究[D].西南交通大学研究生学位论文,2002,4
    [20]张素芳.长隧洞工程调研综述[J].科技动态报告文集(铁路隧道及地下工程分册).铁道部建设司,1990:26~28
    [21]王梦恕.大瑶山隧道—20世纪隧道修建技术[M].广东科技出版社,1994
    [22]中国科学院地质研究所岩溶研究组.中国岩溶研究[M].科学出版社,1979,3
    [23]袁道先,刘再华.碳循环与岩溶地质环境[M].科学出版社,2003,10
    [24] Ann B.Tihansky and Lari A.Knochenmus,Karst features and hydrogeology in west-central Florida-A field perspective,2001,us,Geologcial survey karst interest group proceeding,water-resources investigation report 01~4011,p198~211
    [25] Groundwater Sensitivity Regions of Kentucky by Kentucky Departmetn for Environment Protection Division of Water Groundwater Branch 1994,interpreted by Joseph A.Ray James S.Webb Phillip W.O dell.
    [26]金新锋,夏日元,梁彬.宜万铁路马鹿箐隧道岩溶突水来源分析[J].水文地质工程地质,2007(2):71~80
    [27] Laurent Eisenloth,Mahmoud Bouzelboudjen,Laszlo Kiraly,Yvan Rossier,Numerical versus statistical modeling of natural response of a karst hrdrogeological system,Journal of hydrology,1997,244~262
    [28]王国斌,晏鄂川,杨文东.乌池坝隧道岩溶发育特征与突水机理研究[J].武汉理工大学学报,2008,30(8):152~156
    [29]中国生,徐国元,闫长斌,熊正明.基于尖点突变模型的承压水底板突水研究[J].矿业研究与开发,24(6):88~90
    [30]王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,22(4):573~577
    [31]王勇,孙彩虹.岩溶隧道隧洞顶板安全厚度预测探讨[J].现代隧道技术,2005,42(2):17~22
    [32]易志雄.醴陵市区岩溶发育规律与岩溶地基工程分类[J].湖南地质,1995(2)
    [33] Pascal Fenart,N.N.Cat,Claude Drogue,Doan VanCanh,Sverin Pistre,influence ofteetonies and neoteetonics on the morphogenesis of the peak kars of Halong Bay,Vietnam,Geodinamiea Aeta(Paris),1999.12:3~4
    [34] Randall C. Orndorff ,David J. weary,Stanka Sebela,geologic framework of the ozarka of south-entral Missouri—contributions to a conceptual model of karst,geological survey karstinterest group proceedings water-resources investigations report 01~4011,2001
    [35]王勐,许兆义,王连俊,李治国.圆梁山毛坝向斜段隧道涌突水灾害及对地下水的影响[J].中国安全科学学报,2004,14(5):6~10
    [36]白明洲,许兆义,王连俊,王勐.深埋隧道岩溶突水灾害的地质条件研究[J].铁道工程学报,2006,93(3):21~24
    [37]司海宝.岩溶陷落柱岩体结构力学特征及其突水风险预测的研究[D].成都:西南交大硕士学位论文,2006
    [38]刘丹,杨立中.利用环境同位素预测秦岭特长隧道的突水风险[J].西南交通大学学报,2003,38(6):629~632
    [39]刘丹.铁路隧道涌水研究的发展趋势[J].铁道工程学报,1998(增刊):599~603
    [40]黄鸿渐,张民庆.宜万铁路隧道工程岩溶及岩溶水分析与应对[J].现代隧道技术,2009,46(2):22~33
    [41]吴治生,付伯森.南岭隧道突发性涌泥介绍及成因分析[J].铁道工程学报,1987(2):100~103
    [42]]吴治生,付伯森.南岭隧道岩溶注浆概况及经验教训[J].铁道工程学报,1989(2):168~176
    [43]梅志荣,张军伟,李传富.铁路长大隧道建设中地下水防治有关问题研究进展[J].铁道工程学报,2909,9,132(9)
    [44]马士伟,梅志荣,张军伟.长大隧道突发性地质灾害预警信息系统研究[J].中国安全科学学报,2009,5,19(5)
    [45]马士伟,梅志荣,张军伟.长大隧道突水突泥灾害的地质构造量化评价与监测预警[J].现代隧道技术,2009,1,46(2)
    [46]郭惟嘉.地压作用对煤层底板突水的影响[J].采矿与安全工程程学报,1991(03):32~33
    [47]郭维嘉.地质构造应力对底板突水影响初探[J].煤田地质与勘探, 1990(01):14~15
    [48]刘招伟,张民庆,王树仁.岩溶隧道灾变预测与处治技术[M].科学出版社,2007
    [49]马士伟.岩溶隧道涌突水地质灾害破坏机理与预警技术研究[D].中国铁道科学研究院,2009,11
    [50]韩行瑞.岩溶隧道涌水及其专家评判系统[J].中国岩溶,2004,9,23( 3)
    [51]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997
    [52] SIHG C.A special theory of crack propagation//SIHG C Mechanics of fracture,Volume 1:Mechods of analysis an solutions of crack probems[M].Leyden:Noordhoff International Publishing,1973
    [53]库贵华,张少雄.断裂力学教程[M].西安:西北工业大学出版社,1994
    [54]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[J].北京:地质出版社,1997,8
    [55] Brace W F J B,Frangos W F. Permeability of Granite under high pressure. Journal of Geophysical Research,1968,73(6).March 15][Ojo O. The effect of moisture on some mechanical properties of rock. Mining Science and Technology,1990,(10):140~156
    [56]黄克智,余寿文,程莉.大变形与损伤力学[J].力学与实践,1989,11(2)
    [57] Ahmed,R.R., b.m., U.W., 1996. Numerical solution of both ends fixed deep beams. Computer & Structures,61(1):21~29
    [58] Ding Hao-jiang,HUANG De-jin,WANG Hui-ming.Analytical solution for fixed-end beam subjected to uniform load,Journal of Zhejiang University Science,20056A(8):779~783
    [59]徐芝纶.弹性力学[M].高等教育出版社,1990,5(3)
    [60]黄炎.工程弹性力学[M].清华大学出版社,1982,9
    [61]薛强,马士进,童智能,杨晓华,盛谦.弹性力学[M].北京大学出版社,2006,1(1)
    [62] Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, 3rd edition. McGraw Hill, New York
    [63]黄炎.工程弹性力学[M].清华大学出版社,1982,9
    [64]孙训方,方孝淑,关来泰.材料力学[M].高等教育出版社,1982,1
    [65]龚晓南.土力学[M].中国建筑工业出版社,2002,6
    [66]邵爱军.矿区地下水渗流理论与应用研究[D].武汉:武汉水利电力大学,1998
    [67]张春山,吴满路,张业成.地质灾害风险评价方法及展望[J].自然灾害学报,2003,12(1):95~102
    [68] IUGS working Group on landslides, Committee on Risk Assessment. Quantitative Risk Assessment for Slopes and Landslides-The State of the Art. Landsides Risk Assessment. Cruden&Fell(eds), A.A.Balkema, Rotterdam, p3~12,1977
    [69]张业成,张梁.正在兴起的地质灾害风险评价[A].当代地质科学进展.武汉:中国地质大学出版社,1996
    [70]高兴和.地质灾害承灾体易损性研究[J].中国地质矿产经济,2000(4)
    [71]王伟,杨敏,刘德富.基于经济风险分析的边坡稳定性评价[J].同济大学学报(自然科学版).2004, 32(12):1603~1607
    [72]公安部,劳动部,国家统计局.火灾统计管理规定[Z].中国标准出版社,1996,11,11
    [73]交通部.船舶交通事故统计规则[Z],1990,6,16
    [74] ANCOLD (Australian National Commitee on Large Dams).Guidelines on Assessment of the Consequences of Dam Failure, May 2000
    [75] Chen Zaitie,Ren Qingwen. Research on standard of acceptable risk for high arch dam in developing countries[J].Key Engineering Materials,2007,348(15):597~600
    [76]陈在铁.高拱坝的主要失效模式与失效风险研究[D].河海大学博士学位论文,2007,12,1
    [77]中国中铁二院工程集团有限责任公司.铁路隧道风险评估与管理暂行规定[C].中国铁道出版社,2007
    [78]董聪.现代结构系统可靠性理论及其应用[M].科学出版社,2001,3
    [79]黄祥瑞.可靠性工程[M].清华大学出版社,1989,6
    [80]景诗庭,朱永全,宋玉香.隧道结构可靠度[M].中国铁道出版社,2002,11
    [81] Cornell C A, Structural Safety Specification Based on Second-Moment Reliability, Sym. Int. Assoc. of Bridge and Struct. Engr., London, 1969
    [82] Hasofer A M, Lind N C. Exact and Invariant Second-Moment Code Format, J. Eng.Mech. Div. , ASCE, 1974,100(1),111~121
    [83]燕静,李祖奎,李春城,赵秀菊,翟应虎,王克雄.用声波速度预测岩石单轴抗压强度的试验研究[J].西南石油学院学报,1999,Vol.21(2):37~40
    [84] Aydan O.,Akagi T., Kawamoto T., The Squeezing Potential of Rocks around Tunnels, Theory and Perdiction. Rock Mechanics and Rock Engineering,1993,Vol.26 (2):137~163
    [85]李大心.探地雷达方法与探地雷达的应用[M].北京:地质出版社,1999
    [86]李德栋.影响硫铝酸盐水泥凝结时间的因素[J].新世纪水泥导报,2002,(4):36~37
    [87]陈娟,李北星,卢亦炎.硅酸盐-酸硫铝酸盐水泥混合体系的试验研究[J].重庆:重庆建筑大学学报,2007,29(4):121~124
    [88]王复生,杨海艳,汤仕发.硫铝酸盐水泥与硅酸盐水泥混合对复合水泥性能的影响[J].北京:北京建材,1996,(2):17~22
    [89] J.Péra,J.Ambroise.New Applications of Calcium Sulphoaluminate Cement[J]. Cement and Concrete Research.2004,34:67l~676
    [90]符平,赵卫全,杨晓东等.水泥基速凝灌浆材料研究[J].北京:水利水电技术,2004,(4):85~87
    [91]王遇国,梅志荣,张志华.岩溶隧道充填溶腔注浆试验研究[J].现代隧道技术增刊,2009,12:257~262
    [92]叶青.纳米SiO 2与硅灰的火山灰活性比较[J].混凝土,2001(3):19~22
    [93] Bl Wanli,Tang Ming,Li Ying,et a1.Study on hish performance color concrete with superfine wollastonite[J].Iron Steel Research,2002(special issue):133~138
    [94]王芳.XPM水泥基防水复合型外加剂在混凝土结构工程中的应用[M].铁道标准设计,2003(5):54~55
    [95]马国彦,常振华.岩体灌浆排水锚固理论与实践[M].中国水利水电出版社,2003,6
    [96] Bannister C E.Rheological evaluation of cement slurries:methods andmodels[R].SPE 9284,1980
    [97] Jones T E R.Taylor S.A mathematical model relating the flow curve of a cement paste toits water ration[J].May.of con. Res.,1987,29(109.12):207~212
    [98]杨晓东,刘嘉材.水泥浆材灌入能力研究[M].北京:水利电力出版社,1987,184~191
    [99]阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1)
    [100]阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709~2714
    [101]杨光煦.砂砾地层防渗工程[M].北京:水利电力出版社,1993. 68~69
    [102]张顺金.砂砾地层渗透注浆的可注性及应用研究[D].中南大学,2007,5
    [103]《地基处理手册》编写委员会.地基处理手册[M].北京:中国建筑工业出版社,2000
    [104]孔祥言.高等渗流力学[M].北京:中国科学技术大学出版社,1999
    [105]杨秀竹,雷金山,夏力农,王星华.幂律型浆液扩散半径研究[J].岩土力学, 2005(11)
    [106]杨秀竹.静动力作用下浆液扩散理论与试验研究[D].长沙:中南大学,2005
    [107]徐东强,刘熙媛,李艳春.土力学[M].北京:中国建材工业出版社,2006,9(76~83)
    [108]冯志强.破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究[D].北京:煤炭科学研究总院,2007
    [109] Jens Mittag.The use of microfzne cements for the horizontal sealing of construction pits in Berlin[A].In:The proceedings of the International conference on Anchoring and Grouting Towards the New Century[C].Guang zhou,China,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700