凝胶电解质的性质与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅酸蓄电池是目前使用最广泛、最古老的蓄电池系统。由于硫酸电解液的种种缺点,采用凝胶电解质(Gelled Electrolyte,简称GE)成为研究的热点。本文即是研究用于铅酸蓄电池的GE的性质与制备。关于GE物理化学性质的研究存在很多空白,文献很少;测试方法也少见报道。本文探索各种手段测试GE的物理化学性质,对其进行分析;在此基础上,提出合理的制备GE的条件和方法,并对GE灌入铅酸蓄电池后的电性能进行了测试分析。结果表明以下方法是成功的。
     一、首次详细而全面地测试了GE的物理化学性质。
     1.已胶凝的GE,在受外力破坏后静置,仍可复凝,实验条件下可以反复大约7次。加入PVA、PAM等添加剂可在一定程度上改善GE的胶凝、复凝特性。
     2.GE放置一段时间后,会老化析出所包裹的部分液体。本文首次利用离心机加速GE老化,以GE的析水量来衡量其稳定性。结果表明,SiO_2含量在6%左右,PVA、PAM在5×10~(-4)g/1左右时,GE的析水量最少。
     3.首次对GE的触变性进行了较详细的测试研究。结果发现,各种条件下GE的触变曲线的趋势相同,添加剂PVA、PAM、磷酸等对GE的触变性影响并不显著。
     4.首次用电子显微镜观察硅溶胶和GE的微观形态,发现GE胶凝后,硅溶胶的颗粒联结而形成了凝胶的网络结构;添加剂PAM可使GE的网络结构均匀而致密。
     二、对GE的导电性能及凝胶电解质铅酸蓄电池的电性能进行了测试分析。
     1.分别测试了各种配方条件下GE的电导率,结果表明电解质形成凝胶后,电导率降低了2.5~14.8%,添加剂(PVA、PAM等)的加入,
    
     可使GE的电导率略有提高。
    二.对GE的制备和灌装工艺进行了实验,并讨论了影响GE及GELAB
     的几个因素,如使用PE隔板、在低于50℃条件下使用等对之有利。
    3.对GE灌装入电池后的电容量、充放电特性等进行了初步测试研
     究,GELAB的初期容量略低于液体电池,充放电特性相近。
Lead acid battery (LAB) is employed now most widely and originally for storage battery. Because of various shortcomings of liquid electrolyte of sulfuric acid, the gelled electrolyte employed was becoming hot focus of research for lead acid battery. The research content of the thesis was properties and preparation of gelled electrolyte (GE). The research of those properties of GE was still many empties, and literatures of them less. The methods of measurements of GE were not often reported. The thesis explored some methods of measurements for physical and chemical properties of GE, and then analyzed them, which we suggested the reasonable condition and method of preparation of GE on the base of. Moreover we measured and analyzed the electric properties of lead acid battery filled GE. The following results indicate that those methods and the results related were successful.
    1. Physical and chemical properties of GE were measured in details for the first time.
    (1) While GE was destroyed by outside pressure, and then not mobile, it was gelled again, which was up to 7 times. Additives, such as PVA or PAM, could promote to some degree the properties of gelation and regelation.
    (2) GE could be aging when it was immobile for a long time and released a little liquid wrapped by itself. We took advantage of centrifuge for the first time accelerate aging of GE,
    -3-
    
    
    
    and judged the stability of GE by the quantity of liquid released from it when centrifuged for about half an hour. The results show that when the content of SiO2 was 6%, and PVA or PAM added was 5 X 10"4g/l, the quantity of liquid released from GE was the least.
    (3) The thixotropy of GE was measured and researched in details for the first time. The results show that the tendency of the thixotropic curve of GE at various condition and ingredient was the same. PVA or PAM added could not influence the thixotropy of GE remarkably.
    (4) The microstructure of GE and silica sol was observed for the first time through electric microscope. It indicated that while GE was gelled, the particles of silica sol was disappearing and transforming the net structure of gel. The net structure became symmetrical and compact.
    2. Measure and analyze the electric properties of GE and electrical properties of GE lead acid battery (GELAB).
    (1) The conductance of GE at various ingredients was measured respectively. The results show that the conductance fall 2.5~14.8?o after the electrolyte became gel. Additives, such as PVA, PAM et al. added could not influence the conductance of GE remarkably.
    (2) We took some experiments for preparation and filling process of GE, and discussed several factors affecting GE and GELAB. It is beneficial to GE and GELAB that PE separator was used and GE and GELAB under 50癈.
    (3) The electrical content and charge and discharge property of lead acid battery filled GE were primarily measured and researched. The electrical content of GELAB was almost
    -4-
    
    
    the same to battery filled liquid electrolyte and so did the charge and discharge property.
引文
1.沈钟,王果庭.胶体与表面化学(第二版).北京:化学工业出版社.1997,105
    2.陈宗淇,王光信,徐桂英.胶体与界面化学.北京:高等教育出版社.2001,433
    3.周祖康,顾惕人,马季铭.胶体化学基础.北京:北京大学出版社.1987,320
    4.付献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社.1990,1070
    5.朱伟,黄宗卿.凝胶性聚合物电解质电化学性质的研究.重庆大学学报.1998,21(1):102~106
    6.汪国杰,周震涛,潘惠铭.聚合物锂离子蓄电池用凝胶聚合物电解质.电源技术.2001,25(1):60~64
    7.吴金坤.聚偏氟乙烯系树脂在锂离子二次电池中的应用.化工新型材料.2000,28(12):3~6
    8.M.A.达索杨,И.А.阿古夫.铅蓄电池现代理论.北京:机械工业出版社.1981,2
    9.D. PAVLOV. Development of lead-acid batteries in the first decade of the new millennium. 电源技术.2001,25(1):2~9
    10.D. PAVLOV. Development of lead-acid batteries in the first decade of the new millennium.电源技术.2001, 25(2):0107~0117
    11.李荻.电化学原理(修订版).北京:北京航空航天大学出版社.1999,469
    12.Hans Tuphorn. Valve-regulated lead/acid batteries: systems, properties and applications.J. Power Sources. 1993, 46:361~373
    13.吴寿松.我国固定用铅蓄电池发展史.电池.2000,20(4):175~177
    14.张立新,黄志刚,杭瑚.铅酸蓄电池的过去、现在和未来.蓄电池.1997,(3):28~30
    
    
    15.王金良,马扣祥.化学电源科普知识(Ⅳ),电池工业.2001,6(1):0040~0043
    16.N.J.塞勒.电化学的研究方法.北京:科学出版社.1985
    17.武振国.胶体电解质在铅蓄电池中应用的研究.电池.1993,23(4):175~176
    18.钱学楼,李强,韩国强等.一种配制触变性胶体电解质的方法.CN1007736.1987,01.24
    19.梁志超.一种硅质胶状铅酸蓄电池电解质.CN1051107.1991.05.01
    20.于文学.一种胶体电解质.CN1097263.1995.01.11
    21.周连财.阀控式胶体蓄电池.CN1165409.1997.11.19
    22.王莲香,郑安臣,郑硕等.高电容量胶体电解质及其制法.CN1056019.1991.11.06
    23.周连财.高放电胶体蓄电池.CN申请号:97244497.授权公告日:1999.02.10
    24.于文学.硅胶体蓄电池.CN申请号:99222813.授权公告日:2000.03.15
    25.穆凤荣,张承宪.硅凝胶电解质铅酸蓄电池(丙三醇作稳定剂).CN 申请号:86209279.授权公告日:1988.10.19
    26.穆凤荣,张承宪.硅凝胶电解质铅酸蓄电池.CN申请号:86200821.授权公告日:1988.03.16
    27.李建文.胶体电解液组合物.CN1128807.1996.8.14
    28.李即明.胶体电解质及其配置工艺.CN1080435.1994.01.05
    29.宋国永,齐敏辉,汪昌华.矿灯用铅酸蓄电池固体电解质.CN1059804.1992,03.25
    30.张士杰.硫酸固化剂及胶体蓄电池生产工艺.CN1066532.1992.11.25
    31.杨万成.铅酸电池用胶体电解质.CN1084319.1994.03.23
    32.董保光,辛本校,马玉华等.电解液添加剂对密封铅酸蓄电池自放电的影响.蓄电池.1992,(2):2
    
    
    33.华寿南,袁光志,陈义军等.无机添加剂对铅蓄电池负极的影响研究.蓄电池.1992,(4):6
    34.史鹏飞,夏保佳,尹鸽平等.铅蓄电池正极添加剂的研究.蓄电池.1992,(4):2~5,16
    35.史鹏飞.炭素材料对电极性能的影响.蓄电池.1991,(4):2~4
    36.孙成.电解液添加剂.蓄电池.1997,(1):35
    37.陈德芳,周心艳,李云康等.电解液添加剂的作用与评价.蓄电池.1997,(2):22
    38.陈子超.添加剂(RSO3H)对铅酸蓄电池正极循环寿命的影响.蓄电池.1997,(3):3
    39.孙成.有机物在铅酸蓄电池中的应用.蓄电池.1998,(3):38
    40.俞马金,张铮,顾全荣.铅酸型蓄电池添加剂.CN1196585.1998.10.21
    41.李泽强.铅蓄电池的添加剂.CN1088713.1994.06.29
    42.康建钦.添加剂对胶体电解质的影响.蓄电池.1998,(2):14
    43.吴寿松.对胶体铅蓄电池的更新认识.蓄电池.1998,(4):28
    44.王景川,王泽力.电动车用铅酸蓄电池的现状及发展.蓄电池.2000,(1):5
    45.刘广林.电动车电池的现状和未来.蓄电池.2000,(1):3
    46.钱学楼.胶体蓄电池适用于电动车辆.蓄电池.2000,(1):23
    47.钱学楼,钱学海.再谈胶体蓄电池适用于电动车辆.蓄电池.2000,(4):15
    48.Hagen Batteries AG(德国哈根电池公司).OPzV—阀控式胶体电解质工业蓄电池.蓄电池.1996,(2):45
    49.陆安民.铅蓄电池硅固电解质及制造方法.CN1065557.1992.10.21
    50.李小科.铅蓄电池硅凝胶剂的制备方法.CN1036497.1989.10.18
    51.肖宝林.少维护储能硅胶蓄电池的制作方法.CN1031448.1989.03.01
    
    
    52.钱倚剑,崔清晨.双胶层胶体电解质蓄电池.CN申请号:88219562.授权公告日:1990.08.08
    53.周连财.蓄电池胶体电解质及其制备方法.CN1169040.1997.12.31
    54.陈敏.蓄电池用胶体电解液及其制备方法.CN1163492.1997.10.29
    55.张国民.一种高电容量胶体电解质及制法.CN1167345.1997.12.10
    56.M. P. Vinod, K. Vijayamohanan. Effect of gelling on the impedance parameters of Pb/PbSO4 electrode in maintenance-free lead-acid batteries. J. Power Sources. 2000, 89:88~92
    57.H. Dietz, J. Garche, K. Wiesener. J. Power Sources. 1985, 14:305
    58.W. Bohanstedt. New developments in separators for valve-regulated lead-acid batteries. J. Power Sources.1999, 78:34~40
    59.刘庆国,余渡元.用交流阻抗法研究胶体电解质的导电性能.化学通报.1990,(4):27~30
    60.Hans Bode.Lead-acid batteries.A wiley-interscience publication.Princetion,New Jersy:1977,76
    61.吴寿松.胶体铅蓄电池的现状及前景.蓄电池.1996,(1):15
    62.吴寿松.胶体铅酸蓄电池.电世界.1993,(10):4~5
    63.钱学楼.胶体电解质的改进及胶体蓄电池的性能.蓄电池.1998,(3):13~17
    64.吴寿松.发展胶体铅酸蓄电池的看法与建议.电池.1992,22(5):235~237
    65.赵延龄,钱国美,袁新国等.铅酸电池胶体电解质的研究.电池.1994,24(10):24~26
    66.李中军,申小清,赵秦生.硅凝胶电解液的制备及性能.电池.2000,30(6):
    67.关风楼.LN-4型硫酸凝固剂.农家机械化.1989,(5):28
    68.王兴业.胶体蓄电池的制备.材料工程.1994,(1):24~26
    69.关凤楼.一种新型的能源材料—LN-4型硫酸凝固剂.农业机械.1990,(4):16
    
    
    70.钱学楼.胶体电解质铅蓄电池的容量探析.蓄电池.1999,(1):33~35
    71.郭志刚、董自川、杨少萍等.胶体的制备、灌注与电池结构及性能的关系.蓄电池.1998,(1):6
    72.Hans Tuphom. Gelled-electrolyte batteries for electric vehicles. J.Power Sources. 1992,40(1-2): 47~61
    73.W. Greite. Developments in stationary maintenance free lead/acid batteries. J. Power Sources. 1987,19(2-3): 201-9
    74.P. C. Wariyar, Rao P. V. Vasudeva. Characterization of samples of silica for use in gel-type remaintenance-free lead acid batteries. Bull. Eelectrochem. 1988,4(8): 731~6
    75.马宗禹.硫酸凝固剂与胶体蓄电池.农村电气化.1992,(1):47~48
    76.周梅素,阎文宏,胡永钢.矿灯用蓄电池的胶体电解液的研制.山西大学学报(自然科学版).1996,19(1):56-59
    77.刘军贤,杨秀敏.蓄电池用胶体电解质.电池.1995,25(3):132
    78.周龙瑞,朱俭,周明明.硅粉密封蓄电池的试制.蓄电池.1994,(4):26~27
    79.武振国,郭群先.胶体电解质及其在矿灯蓄电池中的应用.郑州工学院学报.1991,12(4):99~102
    80.刘洪根.车船用硅凝胶体蓄电池研制总结.江苏船舶.1989,6(1):17~29
    81.胡心一,刘喜生,杨立臣.胶体电解液在机车铅蓄电池上的应用及应用前景分析.内燃机车.1993,(11):46~49
    82.张绍成,武仲,宋永昌.风力发电储能胶体电池的研究.河北农业大学学报.1994,17(2):69~72
    83.黄裕后.胶体蓄电池.汽车运输.1993,6:24~26
    84.李耀.硫酸凝固剂在铅酸蓄电池中的应用.电信技术.1992,(12):18~19
    85.胡芸,靳春林.新型蓄电池电解液的研究.山东化工.1989,(2):38~40
    
    
    86.周绍付.新型胶体蓄电瓶的研究.内燃机车.1990,(9):17~19
    87.杨孝伦.把握电动车发展机遇.中国机电工业.2000,(23):19~20
    88.阎凤才.胶体电解质蓄电池的使用与监测方法的探讨.蓄电池.1993,(1):21
    89.李金荣,马安仁,解东明等.一种硅胶蓄电池及其制作方法.CN1066937.1992.12.09
    90.丁策.胶体电解质的研究与应用.蓄电池.1992,(4):30
    91.李运康,陈德芳.SiO2胶体颗粒的表面状态对凝胶电解液性能的影响。蓄电池.1993 ,(4):5
    92.陈德芳,周心艳,李云康.胶体电池用硅溶胶的质量控制与监制.蓄电池.1996,(4)3~6
    93.陈德芳,周心艳,李云康.电解液添加剂的作用与评价.蓄电池.1997,(2):22
    94.魏若周,潘悦.有机添加剂对密封铅酸蓄电池电性能的影响.电源技术.1995,19(2):15~19
    95.A.Tokunaga, M. Tsubotz, K. Yonezu, et al. Effect of anisotropic graphite on discharge performance of positive plates in pasted-type lead-acid batteries. J. Electrochem Soc. 1987, 134(3):525~529
    96.赵秉英,蒋洪寿,陈宁等.铅酸蓄电池添加剂的研究.电源技术.2000,24(2):87~89
    97.冯文辉,张公正,王正刚等.铋和锡作为铅蓄电池正极添加剂的研究.电源技术.1999,23(1):17~18
    98.C. S. Ramanathan. Influence of calium sulphat in the positive material on the discharge performance of lead/acid batteries. J. Power Sources. 1991, 35:83~89
    99.董为毅,朱松然.铅酸蓄电池正极添加剂综述.蓄电池.1995,(4):3
    100.A. Kozawa, H. Oho, M. Sano. Beneficial effect of carbon-PVA colloid additives for lead-acid batteries.J.Power Sources. 1999,80:12~16
    
    
    101.魏杰,王东田,翟淑放等.最近10年铅酸电池添加剂研究概况.电池.2000,31(1):40~43
    102.康建钦.添加剂对胶体电解质的影响.蓄电池.1995,(2):14
    103.巩永校.军械储运管理.第一版.石家庄:军械工程学院.1992,82~98
    104.贾英江,王立冬,王维斌.铅酸蓄电池充电方法初探.电源技术.2001,25(1):27~28
    105.B.L.McKnney.大型胶体电解液铅蓄电池的充电方法(苗莉译).蓄电池.1990,(3):21~26
    106.邱波等.铅蓄电池胶体电解质及电池性能的研究.蓄电池.1990,(1):14~17
    107.陈卫东,张新华,陈红雨.启动用胶体蓄电池性能的初步研究.蓄电池.1993,(2)9~10,14
    108.吴寿松.胶体铅蓄电池评议.通信电源技术.1999,(3):5~8
    109.宋慧,胡骅.电动汽车的现状及发展(Ⅱ).汽车电器.2000,(2):53~57
    110.王景川,从志贤,孙学礼.关于胶体和贫液密封铅酸蓄电池的讨论.蓄电池.1997,(2)29~31
    111.ZB K84 003铅酸蓄电池用电解液
    112.JB/T 4282-92摩托车用铅酸蓄电池
    113.李运康,陈德芳.凝胶电解液的水化分层现象.蓄电池.1994,(4):11~13
    114.HG/T 2521—93工业硅溶胶
    115.ZNN-D_6型六速旋转粘度计说明书
    116.吴贵生,于治富,于淑政等.实验设计与数据处理.北京:冶金工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700