车辆弹性元件振动冲击波动机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆的振动和噪声是影响汽车行驶舒适性的两个最主要的因素。随着车速的提高,路面不平度的激振力也不断加大。高频段的振动能量成为激发车身部件振动并辐射噪声的主要能源。为此,对悬架系统隔振的研究必须向更高的频率范围扩展。在车辆中,弹性元件的特性是影响车辆振动的主要因素,要研究车辆的高频振动,必须分析车辆各种隔振元件的高频传递特性,它是车辆振动研究的基础。论文尝试用冲击波动理论去分析车辆的高频振动,揭示车辆高频振动的一些现象,以提高车辆的振动控制能力。论文把车辆隔振元件作为具体的研究对象,也就是把理论研究直接面对实际产品,可以提高我国车辆产品的设计水平及竞争力。基于上述观点,进行下面的研究工作。
     1、建立了车辆常用三种弹性元件的波动方程,提出求解其传递特性的方法,并推导出弹性波在三种弹性元件中的传递速度,对沿弹性元件传播的位移、速度、应力、应变和作用力的传递特性进行了探讨,分析了弹性单波沿弹性元件传播时的求解方法及波动干涉问题,对钢板弹簧横向振动三个波动方程的应用范围进行分析,利用直杆状模型推导了螺旋弹簧的波阻公式。探讨了三种弹性元件波动传递特性的异同。可以得出,螺旋弹簧的传递特性与长直弹性杆的传递特性相同,钢板弹簧弯曲波动方程不适合分析高频振动,其剪切波动方程及转动惯量波动方程可以描述高频振动,但应该注意应用范围,在实际车辆中螺旋弹簧与扭杆弹簧的剪切波动传递速度相差很大。
     2、应用三种弹性元件的波动传递特性,探讨其单自由度系统受短波冲击的求解方法。并对它们的响应进行分析,探讨了弹簧刚度变化对其响应的影响。得出不同的模型对位移、速度的响应影响比较小,对加速度响应影响比较大。
     3、应用古典振动理论及冲击波动理论,对三种弹性元件悬架车辆的振动进行模拟并对响应进行分析。提出用冲击波动力学分析车辆振动的理论依据,由此建立车辆的波阻力及变形力振动模型。通过冲击波影响弹簧的长度及其对应的质量,建立了弹簧惯性力及变形力车辆振动模型。综合多种因素,建立螺旋弹簧悬架车辆振动的波动理论模型,探讨了模型的求解方法,并对各种模型从理论和解法两个方面进行对比。仿真验证冲击波动理论模型与古典振动理论模型在低频段的一致性及弥补后者不能表达高频振动的缺陷。提出了在波动理论下弹簧多参数的应用方法及悬架高频响应的模拟方法。并以螺旋弹簧悬架为代表,对车辆振动的时域响应进行分析。
     4、应用螺旋弹簧的波动传递特性,依据波动冲击理论建立车辆受冲击两自由度模型。在考虑弹性元件的具体结构的情况下,模拟车辆在不同频率冲击下的稳态响应。揭示了车辆地板及车桥在一些频带有过大响应的原因。
     5、应用古典振动理论及冲击波动理论,分别对扭杆悬架车辆、螺旋弹簧悬架车辆及钢板弹簧悬架车辆的振动进行模拟,并根据实际情况,把三种悬架的具体模型转化为统一模型。在当前悬架设计理论的基础上,考虑弹性元件的波阻力及惯性力,对弹性元件进行重新设计,分析两种参数对车辆高频振动的影响。为车辆模拟方法的多样性及悬架设计考虑高频因素等车辆振动有关问题的解决提供参考。
     6、进行车辆振动的实验,分别测量车桥及车辆弹性元件上方地板的频域振动情况。验证波动理论应用在车辆振动研究的正确性,验证把车辆高频振动理解为冲击振动的正确性,
Vehicle vibration and noise are the two main factors that affecting the level of comfort when vehicle running. With the increasing of vehicle velocity, the impulse force of road unevenness also increases. The vibration energy in high frequency becomes the main energy source that excites vehicle body vibration and radiates noise. So the separate vibration research of suspension system must be developed with higher frequency. The characters of elastic components in vehicle are the main factors that affecting vehicle vibration, when researching the high frequency vibration of vehicle. We must analyze the transmission characters in high frequency of all separate vibration components, as it is the basis of vehicle vibration research. Impact wave theory is applied in this thesis to analyze the high frequency vibration and to discover some phenomena of the high frequency vibration of vehicle. It can promote the control ability technology of vehicle vibration. This thesis regards the vehicle vibration components as the concrete research object, which means orienting the theory research to the real product; it can improve the vehicle design level and competing ability in our country. Based on these viewpoints, the research work in this thesis is carried out as follows:1. Three elastic components wave equations are set up and a new method is put forward to find solution to the transmission character of helical spring. The elastic wave transmission velocity in the helical spring and the transmission characters of displacement, velocity, stress, strain and force of the spring transmission are researched. The solution of elastic single wave of helical spring and problems of wave interference are analyzed. The wave resistance equation of helical spring using straight spar model is developed. It can concludes that the transmission character of helical spring is equal to straight elastic pole, that the wave equation of steel spring is not suitable to high frequency vibration analysis, that it can describe moment inertia, but should pay attention to applying range, because the difference is very large between helical spring and twisting spring.2. The transmission character of helical spring is applied to discuss the solution to the l-Dof system impacted by short wave. The responses and the effect on the response when spring stiffness changed are analyzed and discussed.3. The classical vibration theory and impact wave theory are applied to simulate the helical spring suspension vehicle vibration and its response is analyzed. It puts forward the theoretical support of using the impact wave mechanics to analyze the vehicle vibration, develops the expression equation of the wave resistance of helical spring stress wave and sets up wave resistance force and deformed force vibration models of vehicle, it also sets up helical spring inertia force and deformed force vibration models of vehicle which based on the effect of the impact wave on the helical spring length and corresponding mass, sets up wave theory modeling of vehicle vibration of helical spring suspension by considering many factors, it also discusses the solutions to model and compares all the models in theory and solution. Simulation and test prove consistency of impact wave theory model and classical vibration theory model in low frequency
    domain and satisfying the shortcomings of the latter which can not express high frequency vibration. It concludes the application method of helical spring parameters and the simulation method of high frequency response of suspension in wave theory.4. The transmission character of helical spring is applied and 2-Dof vehicle model is setup that impacted by wave according to wave impact theory. The response that impacted by short wave of variational stiffness helical spring suspension is researched. Stimulate vehicle response that impacted by different frequencies under the condition of considering concrete structure of helical spring, discover the reason that high frequency vibration of variational stiffness and its affection analysis.5. Classic vibration theory and impact wave theory are applied to stimulate the vehicle vibration of torsion bar suspension vehicle and helical spring suspension vehicle, transfer the two suspension models to uniform model and transfer the wave resistance force and inertia force of two elastic components to comparable equivalent parameters, analysis the affection of the two parameters on vehicle high frequency vibration. It can provide reference to the variety of stimulation method, suspension design and control vehicle vibration.6. Experimentation research on vibration of vehicle is carried out. Vehicle bridge and elastic components floor vibration are measured, which verify the correctness of wave dynamics and that translating high frequency vibration into impact vibration, and the definition of duration, and the application range of wave equation.
引文
[1] M.米奇克.汽车动力学.机械工业出版社,1980
    [2] 张洪欣等.汽车行驶平顺性计算机预测.汽车工程.1986(1):21~31
    [3] 林逸等.江铃轻型货车行驶平顺性的改善.汽车工程.1995(1):12~18
    [4] 郑军.非线性汽车行驶平顺性模型的神经网络优化.汽车工程.2001,23(3):171~176
    [5] 谢卫国等.货车平顺性预测与优化.汽车工程.1991,13(3):150~160
    [6] 章一鸣,张锡清.汽车悬挂系统优化设计.汽车工程.1984(3):1~5
    [7] 马扎根.模态分析方法在发动机结构改进中的应用.汽车技术.1994(9):20~22
    [8] 许灵珍等.用模态试验分析汽车结构动特性 河北工学院学报,1999(3):97~102
    [9] Baum. J. M. eeal (1997) Riac Comfort improvemene using analyeical and opeimization methods SAE 770609
    [10] Gadala. M. E. S (1983) Analyeical and finiteel modeling of aneomotive System, master thesis, McMaster Univ, Hamile on one, Canadla.
    [11] 刘岩等.汽车高速振动仿真与试验研究.公路交通科技.2000(3):73~75
    [12] 顾仲权,马扣根,陈卫东著.振动主动控制.国防工业出版社,1997
    [13] 刘志刚.柴油机振动自适应有源隔离技术研究.哈尔滨工程大学博士论文.2000
    [14] 刘华.基于神经网络的振动智能控制理论方法及实验研究.天津大学博士论文.1995
    [15] 丁文镜,王和祥.主动减振技术述评.力学与实践.1984(6):23~27
    [16] 丁文镜.减振理论.北京:清华大学出版社,1988
    [17] 顾仲权,朱德懋.振动控制评述.噪声与振动控制.1988(1):5~13
    [18] Roger KL, Hodges GE, Felt L. Active flutter suppression—a flight test demonstration. In proc. AIAA/ASME/SAE 15th SSDMC. AIAA Paper 1974: 74~402
    [19] Bonder. J Eng. Mech. Div. ASCE 104 (5) 1968
    [20] E. E Berkman, E. K. Bender. Perspectives on Active Noise and Vibration Control.30 th Anniversary Issue, Sound and Vibration, 1997 (2): 80~94
    [21] Yueh-Jaw Lin, Yi-Qing Lu. Passivity-driven Fuzzy Logic Control of a Multidegree-of-freedom Reaction Compensating System. Int. J.Systems SCI., Vol.26, No.10, 1995: 2005~2014
    [22] J. R. Weigant, J. J. Helferty. DIstributed Fuzzy Control of a Flexible Structures. Smart Structures and Materials. In: SPIE Proceedings, 1994: 488~499
    [23] I. J. Zeinou, F. Khorrami. An Adaptive Control Scheme Based on Fuzzy Logic and its Application to Smart Structures. Smart Mater.Struc. 33: 266~276
    [24] 王存堂,唐建中等.柔性结构的模糊主动控制研究.振动工程学报.第11卷第3期,1998(9):26~5272
    [25] 屈文忠,邱阳,张陵,杨月诚.模糊自适应滤波的主动控制方法研究.振动工程学报.第13卷第1期,2000(3):112~116
    [26] 芮庆,胡宗武,孙小明.车辆振动模糊控制的仿真研究.噪声与振动控制.1997(6):2~5
    [27] 杨铁军等.柴油机双层隔振系统模糊主动控制研究.中国内燃机学会大功率柴油机分会学术年会.浙江桐庐,2000年10月
    [28] Scott. D. Snyder and Nobuv Tanaka.A Neural Network for Feedforward Controlled Smart Structures. J. of Int. Mat. Sys & Str., Vol.4, 1993 (7): 373~378
    [29] Jamshid Ghaboussi, Abdolreza Joghataie. Active Control of Structures Using Neural Networks. Journal of Engineering Mechanics.Vol.121, No.4, 1995 (4): 350~354
    [30] 朱美玲,赵淳生,汪凤泉.非线性振动系统神经网络自适应控制方法研究.振动工程学报.Vol.9,No.3,1996(9):260~265
    [31] 刘志刚,孙承顺,杨铁军,黄金娥.人工神经网络在柴油机振动有源控制中的应用研究.船舶工程.2000(2):33~36
    [32] 黄金娥,杨铁军.基于神经网络自适应PID方法的柴油机振动主动控制.中国内燃机学会大功率柴油机分会学术年会.浙江桐庐,2000年10月
    [33] W. Zuo. Multivariable Adaptive Control for a Space Station Using Genetic Algorithm. IEE Proc-Control Theory APP1. Vol. 142, No.2, 1995 (3): 1221~1225
    [34] Marac T. Simpson and Colin H. Hansen.Use of Genetic Algorithm to OPtimize Vibration Actuator Placement for Active Control of Harmonic Interior Noise in a Cylinder with Floor Structure. Noise Control Eng. J.44 (4). 1996 Jun~Aug
    [35] T. X. Mei, T.H.E. Foo and R. M. Goodall. Genetic Algorithms for OPtimising Active Controls in Railway Vehicles.1998 The institution of Electrical Engineers. Printed and Published by the IEEE, Savoy Place, London WC2R OBL, UK
    [36] M. A.HossainM.0.Tokhi. Evolutionary Adaptive Active Vibration Control. Proc. Instn. Mech. Engrs.Vol.211, Partl, 102696 lmechE, 1997
    [37] Alan R. D. Curtis. An Application of Genetic Algorithms to Active Vibration Control. J. of Intell Mater. Syst. and Struct., Vol.2—October: 47~2481
    [38] 何玉敖,郭婷.基于遗传算法的结构主动控制.振动工程学报.Vol.12,No.2,1999(6):182~187
    [39] 岛宗亮平等.(姚英译).油压促动器在机车车辆主动悬挂系统中的应用.国外内燃机车.1996(5):10~18
    [40] 刘新亮等.汽车主动悬架的自校正控制.汽车工程.1998(3):165~170
    [41] 戴焕云,张汉全.车辆主动悬挂的鲁棒稳定性及鲁棒性能研究.铁道学报.Vol.20,Suppl.1998,(4):50~55
    [42] 陈无畏等.汽车主动悬架的最优控制及计算机仿真.振动与冲击.Vol.15.1996(4):53~55
    [43] Kashani. A, et al. Robust Stability AnalysiS of LQG Controlled Active SusPension with Model Uncertainty Using u Method. Vehicle System Dynamics, 1992 (21)
    [44] Antonio Moran, et al.Analysis and Design of Active Suspenslons byH-Robust Control Theory.JSME, Series Ⅳ, 1992, 35 (3)
    [45] Masashi Yamashita, et al. Application ofH-Control to Active Suspension Systems. Automatic, 1994, 30 (11)
    [46] 马宝山等.自适应LMS算法住汽车悬架振动主动控制中的仿真研究.噪声与振动控制.2003(3):3~6
    [47] P. Michelberger, et al. Robust Design of Active Suspension System. Int. J. of Vehicle. Design, 1993, 14(2/3)
    [48] E. Ono, et al. NonlinearH-Control of Active Suspension. Vehicle System Dynamics Supplement, 1996, (25)
    [49] 顺亮等.车辆悬架行驶平顺性全状态反馈主动控制.兵工学报坦克装甲车与发动机分册.1998(2):17~22
    [50] Martin Piotte, et at. Automatic Control of Underground Vehicles at High Speed. CIM Bulletin, Vol.90, No, 1006
    [51] Eung—Seok Kim. Nonlinear in Direct Adaptive Control of a Quartel Car Active Suspension. Proceedings of the 1996 IEEE International Conference on Control Applications Dearborn, Ml.September, 1996: 15~18
    [52] Raman K. Mehra, et al. Active Suspension USing Preview Information and Model Predictive Control. Proceedings of the 1997 IEEE International Conference on Control Applications Hartford, CT. 1997 (10): 5~7
    [53] T. Yoshimura. An Active Vertical Suspension for Track Vehicle Systems. Journal of Sound and Vibration, Vol.1 06, No.2, 1986
    [54] J. K. Hedrick, Railway Vehicle Active Suspensions, Vehicle System Dynamics, 1981 (10): 267~283
    [55] 张汉全,戴焕云等.H_∞与μ鲁棒控制方法在车辆主动悬挂中的应用.铁道学报.第19卷第5期.1997(10):121~128
    [56] 黄兴惠,金达锋,赵六奇.基于频域加权性能指标和输出反馈的主动悬架控制策略研究.汽车工程.Vol.20,No.6,1998,321~326
    [57] 林野.振动主动控制理论及其在车辆工中上的应用.北京理工大学博士论文.1987年6月
    [58] 曾志华.车辆半主动悬挂系统的研究.北京理工大学硕士论文.1991年1月
    [59] 陈大跃,胡宗武,范祖尧.电磁力控制的主动减振实验.固体力学学报.Vol.12,No.4,1991(12):312~318
    [60] 李霆,姜节胜.车辆系统的自适应控制.振动工程学报.Vol.8,No.4,1995(12):369~379
    [61] 雷雨成.汽车振动半主动控制理论与工程实现的研究.哈尔滨工业大学博士论文.1995年4月
    [62] 徐涛.具有主动悬挂的高速客车动力学性能研究.两南交通大学学报.Vol.32,No.2,1997(4):193~197
    [63] 刘新亮等.主动汽车悬架的非线性控制.汽车工程.1997(3):175~179
    [64] 张开林,金鼎昌.车辆横向主动悬挂试验对比研究.铁道学报.Vol.20,No.5,1998(10):35~39
    [65] 黄兴惠等.线性最优控制主动悬架系统的鲁棒稳定性研究.汽车工程.Vol.20,1998(4):205~211
    [66] 喻凡,郭孔辉.车辆悬架的最优自适应与自校正控制.汽车工程.(Vol.20),1998(4):193~200
    [67] 顾仲权.飞机的主动颤振抑制.南京航空学院学报.1980(2):5~22
    [68] 王光远.高耸结构风振控制.石油建筑设计.1981(2)11~20
    [69] Hagedorn, P, Scbmidt J T. Active Vibration damping of flexible stuctures using the traveling Wave approach. Proc. Second Inter. Symp. on Spacecraft Flight Dyn. F. R. G.(oct. 1986); ESA sp—255(Dec. 1986)
    [70] Mohamed A R, Leipholz H H E. Active controlrol of tall buildings, ASCE, Journal of Structure Engineering, 1983; 109, ST3
    [71] Yang J N, Ciannopolous F. Active Control and stability of Cable-Stayed Bridge, ibid, 1979; 1053:EM4
    [72] Udwadia F E, Tabaia S, Pulse Control of structure and Mechanical System, ibid, 1981; 107:EM6
    [73] ViInay O. Active control of Mechiery Foudation, ASCE, J .Eng. Mech.. Div. 1984; 110:EM2
    [74] Balas M. Trends in Large SPace Structure Control Theory: Fondest Hopes, Wildest Dreams, IEEE Trans .Auto matic Control AG27, 1982: 522~535
    [75] 吴淇泰.结构的主动控制,力学进展,1987,17(4):502~508
    [76] Morgan D R. An adaptive modal—based active control system, J. Acoust. Soc.Am, 1991; 89(1): 248~256
    [77] An, Chen Lee. Collocated sensor/actuator positioning and feedback design in the control of flexible structure system, Tran. of ASME, 1994, 116: 146~154
    [78] Balas M J. Active control of flexible system, J. Optimization the ory and Application, 1979, 25 (3): 415~436
    [79] Meirovitch L, Baruh H, Oz H. A Comparison of Control Tech-niques for Large Flexible Systems, J. Guidance Control. Dyn. 1983, (6): 302~310
    [80] Baz A, Poh S. Modjfied Independent Modal Space Control Method for Active Control of flexible Systems,NASA Technical Report. Contract No.30429~d(feb, 1987)
    [81] Von Flotow A H. Travelling Wave Control for Large Spacecraft Structures, J. Guidance, Control Dyn. 9 1986; 462~468
    [82] Hagedorn P, On a New Concept of Active Vibration Damping of Elastic Structures, Proceedings of the and International symposium on Structural control, Waterloo, Canada, 1985; 261~277
    [83] Mace B R. Active Control of Flexible Vibrations, J. Sound Vib. 1987, 114: 253~270
    [84] 顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997
    [85] Meirovitch L, Bennighof J K. J. Sound and Vibration, 1986, 111 (1): 137~144
    [86] Bennighof J K, Meirovitch L. J. Gnid. Control and Dynamics, 1989 12 (4): 555~567
    [87] Meirovitch L. Dynamics and Control of Structures, New York, Wiley 1989
    [88] Creedon J F, Lindgren A G. Automatica, 1970 (6): 643~660
    [89] Coradett T. Proc. AIAA Guid. and Control Conference, 1977: 352~358
    [90] Balas M J. Active Control of Large Civil Engineering structures: A Naive Approach. in Structural control (Leipholf H H E ed) North Holland Publishing Co., Amsterdam 1980:107~125
    [91] Balas M J. Active Control of Large Civil Engineering structures: A Naive Approach. in Structural Control (Leipholr H H E ed) Kortb Holt and Publishing Co., Amsterdam 1980: 107~125
    [92] 王泉,王大钧.结构波动控制中的递减法.自然科学进展.1994,4(3):371~374
    [93] Scheuren J. Active Conirol of Bending Waves in Beams, Proceedings of Inter-Noise 85, 1985; 591~595
    [94] Von Flotow AH, Schafer B.Wave—Absorbing Controller for Flexible System, J.Guidance, Control, Dyn. 1986 (9): 673~680
    [95] Von. A H. et al, Experimental comparison cf wave absorbing and modal based low authority controllers for a flexible beam, AJAA Copnference on Duidance and Control, 1985
    [96] Meirovitch L, Bennighof J K. Modal Control of Travelling waves in Flexible Structures, J. Sound Vib. 1986, 111: 131~144
    [97] Redman-White w, Nelson PA, Curtis A R D. Experiments on the Active Control of Flexural Wave Power Flow, J. Sound. Vib.1987, 121: 187~191
    [98] Scheuren J. Non-reflection termination for bending waves in beams by active means, Inier-Noise, 1988
    [99] 蒋成勤,张若素.用行波控制技术对弦振动的主动隔振.同济大学学报.1991,19(4):489~494
    [100] Fuller CR, Gonidou L O. Active Vibration Control of Flexural Power Flow in Beams, J. Acoust. Soc.Am.Suppl. 1988, 184: S47
    [101] Fuller C R et al. Application of power and impedance measurement techniques to the study of active control of flexural energy flow in beams, Proceedings International Congress on Intensity echniques, Senlis, France, 1990: 27~29
    [102] Pan X, Hansen C H. Active control of vibratory power transmission along a semiinFinite plate, J. Sound and vibration, 1995, 184 (4): 585~610
    [103] ‘澳’.诺顿MP.工程噪声和振动分析基础.北京:航空工业出版社,1993
    [104] Elliott S J et al. Adaptive Control of Flexural Waves Propagating in a Beam, J. Sound. Vib. 1993, 163 (2): 253~310
    [105] Jie Pan, Hansen C H. Active Control of Total Vibratory Power Flow in a Beam.1: Physical System Analysis, J. Acoust.Soc.Am. 1991, 89 (1): 200~209
    [106] Pan X, Hansen C H. The eeffect of error sensor location and type on the active control of beam vibration, J. of sound and vibration. 1993, 165 (3): 497~510
    [107] Fuller C R. Active control of sound radiation from a vibration rectangular panel by sound sources and vibration inputs: an experimental comparison, J. Sound Vib. 1991, 145 (2): 15~215
    [108] Kuehnle A U. Control and simulation of longitudinal wave propagation with voigt damping, 1988 Ph.D. Dissertation, Dapart. of Mech. and Eng., MIT
    [109] 舒歌群.阶梯轴中扭转弹性波的传播机理及主动控制研究‘学位论文’.天津:天津大学,1997
    [110] Fuller C R et al, Simultaneous Active Control of Flexural and Extensional Power Flower in Beams, Proceedings of the International Congress on Recent Developments in Air and Structure Borne Sound and Vibration. Auburn. Univ, March 1990 (Technomic, Lancaster, 1990: 657~662
    [111] Jie Pan, Hansen C H Active Control of Total Vibratory Power Flow in a Beam.1: Physical System Analysis, J. Acoust.Soc.Am.1991, 89 (1): 200~209
    [112] Clark R L, Jr. Jie Pan, Colin H. Hansen. An Experimental study of The Active Control of Multiple~Wave Types in an Elastic Beam, J. Acoust.Soc .Am., 1992, 92 (2): 871~876
    [113] Wang Quan, Wang Dajun. A reduced order model about atructural wave control based on the concept of degree of controllability (to be published in IEEE Trans. on Automat. Contr., Sept. 1994
    [114] 王泉,王大钧.结构波动控制中的波动区域可控性和可控度.科学通报.1994,39(4):307~308
    [115] Wang Quan, Wang Dajun. Some research and new concepts about the controllability of structural wave contool. 19th Intercational Symposium on Space Technology and Science, Yokohama, Japan (May 15~24, 1994)
    [116] Zhi Yang, Wang Dajun. A note on wave contrcl in lumped parameter system. Inte: national Conference of Vibration Engineering, Beijing (Jone 1994)
    [117] Lin J G. Proc. Zud YPI/AIAA Symp. on Dyn. and Control of LFS (Meirovitch L ed) 1979: 1~18
    [118] 王泉,五大钧,智洋.波动控制的方法和展望.力学进展.1994,24(4):489~498
    [119] 舒歌群,郝志勇.结构振动控制中的弹性波主动控制技术.振动与冲击.2000,19(2)28~31
    [120] 方同,薛璞.振动理论及应用.西安:西北工业大学出版社,1998
    [121] 廖振鹏.工程波动理论导论.北京:科学出版社,2003
    [122] 张立军等.螺旋弹簧的驻波效应对悬架隔振特性的影响.振动与冲击.2002,21(2):45~47
    [123] 张军等.螺旋弹簧局部振动频率分析与控制.沈阳航空工业学院学报.1996,13(1):22~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700