模压成型纤维增强环氧片状模塑料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧片状模塑料(ESMC)是在不饱和聚酯树脂片状模塑料(SMC)的基础上研究出来的一种新型模压料,可应用于高强度、高腐蚀、高绝缘部件的生产。而ESMC的增稠体系和固化体系是制约ESMC发展的关键因素。目前国内外的环氧树脂存在粘度太大不易浸润纤维、无法化学增稠、固化时间长等缺点,难以满足模压工艺要求。因此迫切需要对环氧片状模塑料的增稠体系、固化体系和流变体系进行深入的理论和实验研究,以制备适合模压工艺生产的环氧基片状型模压材料,拓展模压制品的使用领域。
     针对ESMC的树脂体系,本文采用“二步法”合成出了一种粘度较低、可化学增稠的低分子量环氧树脂,并使用Gaussian03量子化学软件,采用DFT方法,利用量子化学中的价键理论和分子轨道理论分析阐释其合成机理,揭示其微观反应本质,为环氧树脂的合成提供了理论依据。
     利用MgO和α—甲基丙烯酸混合物、二异氰酸酯预聚物可与含羟基环氧树脂发生化学反应的原理,采用控制反应温度和反应物含量的方法来增稠环氧树脂。并通过傅立叶红外光谱和差热式扫描分析方法对环氧树脂的增稠进行了表征,探讨了环氧树脂的化学增稠机理。结果表明,在MgO和α—甲基丙烯酸混合体系中,α—甲基丙烯酸中的端羧基先与氧化镁进行的一种酸碱成盐反应,这种酸碱成盐反应伴随着大量的放热,放出的热量在MgO这种催化剂的影响下又促进了α—甲基丙烯酸中的端羧基与环氧树脂发生酯化反应,进而达到增稠的目的;对于二异氰酸酯预聚物体系,在较低温度(≤50℃)的情况下,环氧树脂中的羟基与异氰酸酯基反应生成氨基甲酸酯结构;在温度超过90℃的情况下异氰酸酯基会发生自聚反应,生成含六元杂环的异氰脲酸酯;在更高的温度下(≥210℃)环氧基与异氰酸酯基反应生成含五元杂环的嗯唑烷酮。随着反应继续进行,分子链进一步扩展形成网状结构,体系的粘度不断的增加。
     针对ESMC固化体系,本文将环氧树脂液体型快速固化剂包囊在微小的(5-500u)胶囊中,制备出室温不固化、升温可快速固化的环氧树脂潜伏性微胶囊固化剂。分别通过测试ESMC体系等温DSC曲线和升温DSC曲线,建立了分步等温动力学理论模型和升温动力学理论模型。通过等温模型确立了环氧片状模塑料的固化工艺:凝胶温度(T_(gel)),固化温度(T_(cure)),后处理温度(T_(treat))。通过升温模型计算出了引发体系温度和转化率的关系,并得到了ESMC固化过程特征温度参数:峰始温度(T_o),峰值温度(T_p),峰终温度(T_f)。
     本文结合增稠体系和固化体系,确立了ESMC的片材生产工艺和模压工艺。ESMC片材制备工艺主要分为四个步骤:①树脂糊的制备与上糊;②粗纱的切割与沉降;③粗纱的浸渍与片材收卷;④片材熟化与存放。而ESMC的最佳模压工艺参数为:模压温度150℃、加压时机15s、模压时间15s、保压时间30min。
     而针对ESMC的流变特性,本文开展了片材流动性、纤维分布和纤维取向研究,其中的关键影响因素主要有纤维含量和长度、填料的含量和粒径、模压温度、保压时间、铺料面积和闭模速度等。同时以现有的Hele-shaw模型和滑移挤压流动模型为基准,建立了适合于环氧片状模塑料在热模具中的数学流动模型和传热模型。为ESMC的流动特性研究提供了理论依据。
     最后,本文对ESMC制品的结构与性能进行了分析研究。研究表明制品在各流动方向上的弯曲强度有很显著的差别。当纤维含量为30%,长度为24mm;填料含量为150份,粒径为500目;模压温度为150℃,加压时机为15s,合模时间为15s,保压时间30min为时,ESMC综合力学性能最佳。而且纤维含量和长度、填料种类、含量和粒径对ESMC的体积电阻、介电特性、耐电弧特性和漏电起痕特性也具有显著影响。
Epoxy sheet molding compound(ESMC) is a kind of new compressed material,which is developed from unsaturated polyester sheet molding compound(SMC).It can be used to produce high-strength,high-corrosion-resistance and high-insulation parts.Inefficient thickening system and high-temperature and slow curing velocity of epoxy resin are key factors to restrict the development of ESMC.The molding process of ESMC needs epoxy resin have low viscosity to immerse fiber and have special group to be chemically thickened and have short curing time.So,it is critical to study the thickening system,curing system and fluid rheology system of ESMC.The molded ESMC can widen the application area of compression molding parts.
     A kind of epoxy resin(EP-LM) with low-viscosity and low molecular weight was synthesized by means of "two-step synthesis process" in this article.And it could be chemically thickened.Gaussian03 software based on quantum chemistry theory was applied to analyze the synthesis mechanism of EP-LM by the method of DFT on the basis of valence bond theory and molecular orbital theory.The reaction nature of EP-LM on the microscopic level was carefully revealed,which provided an evidence for synthesizing epoxy resin.
     By controlling the reaction temperature and the weight content of reactors,epoxy resin could be thickened by MgO andα-methyl acrylic acid compound and diisocyanate prepolymers.The thickening mechanism was studied by fourier transform infrared spectroscopy and differential scanning calorimetry.In the system of MgO andα-methyl acrylic acid compound,MgO reacted with the terminated carboxyl ofα-methyl acrylic acid to yied a kind of salt and released a great amout of heat.Then the terminated carboxyl ofα-methyl acrylic acid reacted with epoxy resin to yield a kind of ester under the condition of existing heat and MgO catalyst.In the system of diisocyanate prepolymers,when the temperature was below 50℃,the hydroxyl group of EP-LM reacted with isocyanate groups to yield carbamate;when the temperature was beyond 90℃,diisocyanate prepolymers would self-polymerize;and when the temperature was beyond 210℃,the epoxy group of epoxy resin would react with isocyanate groups to yield oxazolidine- menthanone.As the reaction continued,the network structure formed and the viscosity of the system increased.
     In this study,a kind of microcapsule curing agent(5-500u) was prepared by spraying hot curing agent and PEG-6000 into 0℃methyl methacrylate solution.Epoxy resin with this kind of microcapsule curing agent would not be cured at room temperature and would be quickly cured at high temperature.The isothermal kinetic model and the temperature-rising kinetic model were established by testing DSC curves of the curing system,and then the curing process including gel temperature(T_(gel)),curing temperature(T_(cure)) and post-treating temperature(T_(treat)) was obtained.The relationship between the initial curing temperature and the conversion rate was calculated on the basis of temperature-rising kinetic model,and the special temperature spots including the initial curing temperature(T_0),the peak temperature (T_p) and the finishing temperature(T_f) of the whole curing process were predicted.
     On the base of thickening system and curing system,the process of manufacturing ESMC sheets and molding ESMC parts were determined.The process of producing ESMC sheets was divided into the following four steps:①preparing and spraying of resin paste;②cutting and dropping of glass fiber;③impregnating of chopped glass fiber and ESMC sheets rolling-up;④thickening and storing of ESMC sheets.And the optimum molding parameters were list as follows:molding temperature 150℃,dwell time 15s,clamping time 15s and pressure holding time 30min.
     The rheology property,fiber distribution and fiber orientation of ESMC in hot die were systematically researched.The critical factors affecting the theology properties of ESMC included the weight content and length of chopped fiber,the weight content and diameter of filler,molding temperature,pressure keeping time,the feeding area and the velocity of closing mold and so on.At the same time,on the basis of Hele-shaw flowing model and Slip-extrusion flowing model,a new mathematic flowing model for ESMC in hot die was established.It provided an evidence for studying the rheology properties of ESMC.
     At last,the structure and properties of ESMC were studied in this article.Results showed that the flexural strength of ESMC parts was different at different direction of fiber orientation.When the weight content of glass fiber was 30%,the length of chopped fiber was 24 mm,the weight content of filler was 150%,the diameter of filler was 500eyes,the molding temperature was 150℃,the dwell time was 15s,the clamping time was 15s and the pressure holding time was 30min,the mechanical properties of ESMC parts was optimum.And the weight content and length of chopped fiber,the weight content and diameter of filler had great effect on volume resistance,dielectric properties,voltaic arc property and leakage tracking resistance of ESMC.
引文
[1]梁国正,顾媛娟.模压成型技术.北京:化学工业出版社,1999.1-21
    [2]黄汉雄.塑料模压成型技术(一).橡塑技术与装备,2001,27(2):1-5
    [3]施松生.片状模塑料的性能(续).玻璃钢/复合材料,1991,(1):31-40
    [4]黄汉雄.塑料模压成型技术(二).橡塑技术与装备,2001,27(3):12-17
    [5]Lisa M.,Abrams M.S.Processing studies in sheet molding compound compression molding:[Dissertation of the Degree Doctor].Columbus:Philosophy in the Graduate School of the Ohio State University,2001
    [6]黄家康,岳红军,董永祺.复合材料成型技术.北京:化学工业出版社,1999.1-21
    [7]黄家康.聚酯模塑料生产与成型技术.北京:化学工业出版社,2002.8-13
    [8]黄汉雄.塑料模压成型技术(三).橡塑技术与装备,2001,27(5):8-13
    [9]Kurt Ira butler,Kingsville,Ohio.Low pressure sheet molding compounds.America,Invention,5998510,1999-07-18
    [10]刘胜平,张明艳,陈平.一种新型酚醛SMC的增稠机理和固化行为研究.复合材料学报,1997,(3):49-53
    [11]王继辉,薛理辉,沈大荣等.新型酚醛SMC增稠剂及增稠机理的研究.复合材料学报,1997,(4):26-32
    [12]王继辉,薛理辉,沈大荣等.新型酚醛SMC增稠技术及增稠机理的XPS分析.武汉工业大学学报,1997,(4):91-95
    [13]张林文,张德镛,杜志花.超级分散氧化锌对SMC/BMC树脂糊粘度的影响.玻璃钢/复合材料,2001,(2):29-32
    [14]林茂青,张玉军,刘胜平.SMC中不饱和聚酯树脂增稠及贮存性能的研究.玻璃钢/复合材料,2002,(3):14-16
    [15]赵大伟,刘义红,张玉军等.端异氰酸酯基PU增稠端羟基不饱和聚酯SMC的研究.玻璃钢/复合材料,2003,(2):20-22
    [16]Sano Fumiaki.Sheet Molding Compound for Low-pressure Molding.Japan,Invention,7179739,1995-03-17
    [17]张杨,梁淑敏,任秀霞等.潜伏性环氧树脂固化促进剂M-Cd的合成及其应用.化学与粘合,2002,(3):109-111
    [18]焦剑,蓝立文.双氰胺及其衍生物固化环氧树脂性能的研究.高分子材料科学与工程,2000,16(6):115-118
    [19]何尚锦,石可瑜,白洁等.咪唑封端聚氨酯予聚体改性环氧树脂E-51/双氰双胺固化体系性能研究.高分子学报,2001,(6):735-739
    [20]刘全文.咪唑类环氧树脂固化剂的合成及性能研究:[硕士学位论文].武汉:武汉理工大学材料与科学工程学院,2007
    [21]Tianle Zhou,Mingyuan Gu,Yanping Jin,et al.Studying on the curing kinetics of a DGEB-EMI-2,4-nano-sized carborundum system with two curing kinetic methods.Polymer,2005,46:6174-6181
    [22]S.K.Ool,W.D.Cook,G.P.Simon,et al.DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents.Polymer,2000,41:3639-3649
    [23]陈平,王德中.环氧树脂及其应用.北京:化学工业出版社,2004.73
    [24]Shiow Ching Lin,Ping Linkuo.Isocyanates blocked with 1-amino-alkyl imidazoles as epoxy curing agents.America,Invention,4797455,1989-01-10
    [25]Kaplan M L.lanthanide--imidazole complexes as iattent agentsfor epoxy resins.Journal of POlymer Seienes:POlymer Chemistry,1990,28 731-740
    [26]Guthner Tomas,Bendikt Hammer.Curing of epoxy resins with dicyandiamide and urones.Journal of Applied Polymer Science,1993,50:1453-1459
    [27]Pears P J,Ennis B C.Aging and performance of strutual film adhesives.Ⅳ.A modified epoxy with improved ambient temperature shelf Life Journal of Applied Polymer Science,1993,47:1401-1409
    [28]王庆,胡峻,胡国有.中温固化单组分环氧密封胶的研制.中国胶粘剂,1997,6(4):30-33
    [29]A V Kurnoskin.Structure of epoxy-chelate metal-containing matrices:theoreticical aspects.Journal ofvApplied Polymer Science,1993,48:639-658
    [30]陈平,张岩.硼胺络合物/环氧树脂体系的固化反应机理及其动力学.复合材料学报,1999,16(4):54-57
    [31]邢素丽,曾竟成,王遵等.新型潜伏性M-DDM微胶囊固化剂的制备及表征.高分子材料科学与工程,2006,22(4):196-199
    [32]邢素丽,王遵,曾竞成等.新型潜伏性环氧树脂体系固化动力学.国防科技大学学报,2006,28(2):31-34
    [33]张兴华,童速玲,丁新平.微胶囊促进剂在环氧树脂胶带固化中的应用中国胶粘剂,2001,11(4):15-17
    [34]童速玲,张兴华,丁新平.环氧树脂固化促进剂的微胶囊化及其应用.广东化工,2004,(6):41-43
    [35]Ryuji Sawaoka,Shinji Kouchi,Toshio Murak.Microencapsulated curing agents for thermosetting resin composition.European,Invention,672707,1995-09-20
    [36]Tomoshi Matsuo.Microencapsulated adhesive compositions for screws.Japan,Invention,053111140,1993-12-22
    [37]徐冬梅,张可达,陆新华等.端氨基树枝状大分子环氧树脂体系固化动力学的FTIR研究.高校化学工程学报,2006,20(3):385-389
    [38]张军营,谷晓昱,蔡晓霞.用FTIR定量研究环氧树脂固化反应动力学制样方法的确定.分析试验室,2005,24(9):34-36
    [39]许凯,陈鸣才,张秀菊等.原位FTIR光谱法研究联萘基环氧树脂体系的固化反应.高等学校化学学报,2005,26(12):2377-2380
    [40]李芳,张吉才,杜文才.用差热分析(DTA)法对环氧树脂固化条件的研究.光谱实验室,2001,18(3):369-372
    [41]赵卫娟,张佐光,孙志杰等.非等温法研究TGDDM/DDS体系固化反应动力学.高分子学报,2006,(4):564-568
    [42]毛如增,冀克俭,张银生等.DSC法测定环氧树脂固化反应温度和反应热.工程塑料应用,2002,30(11):36-39
    [43]I.Aliga,W.Jenningera,J.E.K.Schawe.Curing kinetics of phase separating thermosets studied by DSC,TMDSC and dielectric relaxation spectroscopy.Thermochimica Acta,1999,330:167-174
    [44]G.Kotsikos,J.H.Bland,A.G Gibson.Squeeze flow testing of glass mat thermoplastic material.Composites,1996,27(12):331-338
    [45]J.M.Castro,R.M.Grifith.Sheet molding compound compression molding flow.Polymer engineering and science,1989,29(10):79-85
    [46]晏石林,梅启林,沈大荣.片状模塑料模压流动仿真分析.复合材料学报,1997,(2):126-131
    [47]景强,魏无际,江国栋等.影响块状模塑料均匀流动的主要因素.塑料工业,2006,34(3):47-50
    [48]梁国政,顾媛娟.模压成型技术.北京:化学工业出版社,1999.166-174
    [49]郭建娟,晏石林.纤维取向分析的数学模型.武汉理工大学学报,2001,23(11):56-59
    [50]郭建娟.SMC模压流动中纤维取向的研究与模拟:[硕士学位论文].武汉:武汉理工大学材料与科学工程学院,2002
    [51]林兰芬,董金祥.纤维增强塑料的充模流动和纤维取向的耦合仿真模型.化工学报,1999,50(4):443-448
    [52]邱斌,陈锋.注射成型中的纤维取向.现代塑料加工应用,2005,17(2):50-52
    [53]张广平,戴干策.GMT流动成型纤维取向研究.高分子材料科学与工程,2003,19(1):140-143
    [54]于浩,黄志雄,秦岩.低压片状模塑料模压工艺参数研究.武汉理工大学学报,2006,28(3):7-9
    [55]李建,黄志雄,秦岩等.低压片状模塑料中结晶树脂的增稠机理探讨.高分子材料科学与工程,2006,22(5):185-188
    [56]黄志雄,于浩,秦岩等.低压片状模塑料增稠工艺研究.塑料工业,2005,33(10):31-33
    [57]黄志雄,李建,秦岩等.新型低压片状模塑料增稠方法的研究.武汉理工大学学报,2005,27(3):15-18
    [58]谢怀勤,王海龙,佟立芳.SMC模压工艺参数对固化收缩率影响的实验研究.哈尔滨建筑大学学报,2001,34(3):88-90
    [59]谢怀勤,李地红,吴新跃.优化SMC模压工艺控制制品收缩率和表面粗糙度.哈尔滨建筑大学学报,2002,35(6):47-49
    [60]宋修宫,孙巍,王继辉.SMC模压工艺参数对大型复杂汽车件表面针眼影响的研究.玻璃钢/复合材料,2006,(3):42-44
    [61]Ki-Taek Kim,Jin-Ho Jeong,Yong-Taek Im.Effect of molding parameters on compression molded sheet molding compounds parts.Journal of Materials Procesing Technology,1997,67:105-111
    [62]Krzysztof Strzelec.Studies on the properties of epoxy resins cured with polythiourethanes.International Journal of Adhesion & Adhesives,2007,27:92-101
    [63]王德中.环氧树脂生产与应用.北京:化学工业出版社,2001.56-74
    [64]陈仙海,张一烽,沈之荃.马来酸酐-环氧丙烷共聚物的合成及结构表征.高分子学报,1994,(2):70-75
    [65]林梦海.量子化学计算方法与应用.北京:科学出版社,2004.2-14
    [66]魏运洋,李健.化学反应机理导论.北京:科学出版社,2004.27-58
    [67]许越.化学反应动力学.北京:化学工业出版社,2005.37-69
    [68]方江华,黄士力.Nd(P507)3-Al(i-Bu)3催化马来酸酐与环氧丙烷开环交替共聚.分子催化,1994,8(1):70-75
    [69]方江华,胡富陶.Fe-Al-α,α'-联吡啶催化马来酸酐与环氧环已烷开环共聚.分子材料科学与工程,2002,18(5):66-68
    [70]方江华,章哲彦.Fe-Al-α,α'-联吡啶催化PA与PO、PA与ECH开环共聚.分子催化,2000,14(2):129-132
    [71]成兴明.环氧模塑料性能及其发展趋势.半导体技术,2004,29(1):40-45
    [72]陆式瑜,余科.环氧模塑料和聚醋模塑料在线圈封装中的应用.电器工业:材料专辑,2002,12:20-22
    [73]侯庆普,黄英,余文照.环氧模塑料的低应力化技术.中国塑料,1999,13(10):5-10
    [74]Jinhwan Kim,Seokyoon Yoo,Jin-Young Bae,et al.Thermal stabilities and mechanical properties of epoxy molding compounds(EMC) containing encapsulated red phosphorous.Polymer Degradation and Stability,2003,81(2):207-213
    [75]Ho-Young Lee,Young-Bae Park,Insu Jeon,et al.Analysis of failure of nanobelt-coated copper-based leadframe/epoxy-based molding compound systems after pull-out test.Materials Science and Engineering:A,2005,405(1-2):50-64
    [76]Narasimalu Srikanth,Lewis Chan,Charles J.Vath Ⅲ.Adhesion improvement of EMC-leadframe interface using brown oxide promoters.Thin solid films,2006,504:397-400
    [77]杨四海.SMC制备中树脂糊的粘度控制.玻璃钢/复合材料玻璃钢/复合材料,1997,(4):11-12
    [78]Bogner benr.Sheet molding compounds having improved viscosity.America,Invention,5159044,1992-07-14
    [79]岳成业.A级表面SMC的研究.玻璃钢/复合材料,1994,(4):33-38
    [80]P.Dumont,L.Orge' as,S.Le Corre,et al.Anisotropic viscous behavior of sheet molding compounds(SMC) during compression molding.International Journal of Plasticity,2003,19:625-646
    [81]许虹霞.环氧树脂固化剂的微胶囊化及其对环氧树脂固化行为的影响:[硕士学位论文].杭州:浙江大学材料与化工学院.2007
    [82]谷晓昱,张军营.用FT-IR研究双氰胺固化环氧树脂的反应机理.高分子材料科学与工程2006,22(5):182-184
    [83]李文峰,梁国正,陈淳等.酚醛型氰酸酯与双酚A型环氧共固化反应的FTIR研究.高分子学报,2006,(6):804-809
    [84]M.Sa' nchez-Soto,P.Page' s,T.Lacorte,et al.Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites Composites Science and Technology,2007,67:1974-1985
    [85]Abdollah Omrani,Leonardo C.Simon,Abbas A.Rostami,et al.Study on curing mechanism of DGEBA and nickel - imichzole system.Thermochimica Acta,2008,468:39-48
    [86]Alessia Catalani,Maria Grazia Bonicelli.Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine.Thermochimica Acta,2005,438:126-129
    [87]D.Olmos,A.J.Azuar J.Baselga,et al.Kinetic study of epoxy curing in the glass fiber-epoxy interface using dansyl fluorescence.Journal of Colloid and Interface Science,2003,267:117-126
    [88]T.Malty,B.C.Samanta,S.Dalai,et al.Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation.Materials Science and Engineering A,2007,464:38-46
    [89]Shao-ping Ren,Yan-xun Lan,Yi-quan Zhen,et al.Curing reaction characteristics and phase behaviors of biphenol type epoxy resins with phenol novolac resins.Thermochimica Acta,2006,440:60-67
    [90]Seong Ok Han,Lawrence T.Drzal.Curing characteristics of carboxyl functionalized glucose resin and epoxy resin European Polymer Journal,2003,39:1377-1384
    [91]YAO Liang,DENG Jing,QU Bao-jun,et al.Cure Kinetics of DGEBA with Hyperbranched Poly(3-hydroxyphenyl) Phosphate as Curing Agent Studied by Non-isothermal DSC.CHEM.RES.CHINESE U.,2006,22(1):118-122
    [92]L.Barral,J.Cano,J.Lo(?)pez,et al.Cure kinetics of amine-cured diglycidyl ether of bisphenol A epoxy blended with poly(ether imide) Thermochimica Acta,2000,344:127-136
    [93]何劲,陈连喜,刘全文等.间甲苯胺改性双氰胺固化环氧树脂的DSC研究.武汉理工大学学报,2006,28(6):28-30
    [94]王焱,王先胜,陈海生.等温DSC法研究树枝状大分子PAMAM与环氧树脂的固化反应动力学.高分子学报,2006,(5):727-731
    [95]吴世臻,康庄,吴晓青等.采用差示扫描量热法DSC对TDE_85/70酸酐体系固化动力学的研究.天津工业大学学报,2005,24(6):30-33
    [96]杨广,龙国荣.NY9200G树脂体系非等温DSC法固化动力学研究.洪都科技,2006,(3):37-41
    [97]Lidia Gonz' alez,Xavier Ramis,Josep Maria Salla,et al.Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl(4,8-dioxaspiro[2.5]octane-5,7-dione).Thermochimica Acta,2007,464:35-41
    [98]熊华富,郑红娟,陆山风等.DSC法研究双酚A型环氧树脂的UV固化过程.高分子材料科学与工程,2005,21(2):267-270
    [99]中华人民共和国国家技术监督局.GB 2576-2005.中华人民共和国国家标准.北京:中国标准出版社,2005-05-18
    [100]谭志恒.热固性塑料模压成型工艺参数的研究.绝缘材料,2001,(6):36-37
    [101]薛桂玲,高红梅.酚醛SMC模压工艺参数的确定.玻璃钢/复合材料,2001,(3):27-28
    [102]S.Y.Kim,Y.T.Im.Three-dimensional thermo-viscoplastic analysis of compression molding of sheet molding compounds with fiber volume fraction prediction Journal of Materials Processing Technology,1997,63:631-636
    [103]Soo-Young Kim,Yong-Taek Im.Three-dimensional finite-element analysis of the compression molding of sheet molding compound.Journal of Materials Processing Technology,1997,67:207-213
    [104]岳成业,韩冬梅.SMC流变学的研究.玻璃钢/复合材料,1995,(2):10-14
    [105]Duck-Ki Kim,Hyung-Yun Choi,Naksoo Kim.Experimental investigation and numerical simulation of SMC in compression molding.Journal of Materials Processing Technology,1995,49:333-344
    [106]Sang-Min Lee,Jae-Seung Cheon,Yong-Taek Im.Experimental and numerical study of the impact behavior of SMC plates.Composite Structures,1999,47:551-561
    [107]D.G Yang,K.M.B.Jansen,L.J.Ernst,et al.Effect of filler concentration of rubbery shear and bulk modulus of molding compounds.Microelectrortics Reliability,2007,47(2-3):233-239
    [108]沈苏华,林建忠.纤维悬浮槽道湍流中纤维取向分布和流变特性.浙江大学学报(工学版),2006,40(12):2093-2097
    [109]杜瑞奎,刘亚青,张彦飞.纤维取向的研究进展及应用.山西化工,2006,26(4):41-44
    [110]V.Massardier-Nageotte,A.Maazouz,G.Peix,et al.Methodologies for the characterisation of glass fibre orientation and distribution in large components moulded from sheet molding compounds(SMC).Polymer testing,2003,22:867-873
    [111]杨伟,黄锐,杨琪.热固性模压料在模具中的热传导.中国塑料,2001,15(7):30-33
    [112]谢怀勤,陈辉,方双全.聚合物基复合材料模压成型过程固化度与非稳态温度场的数值模拟.复合材料学报,2003,20(5):73-76
    [113]谢怀勤,刘文博,方双全.SMC模压过程非稳态温度场数值模拟.哈尔滨工业大学学 报,2003,35(2):249-252
    [114]梁国政,顾媛娟.模压成型技术.北京:化学工业出版社,1999.138
    [115]梁国政,顾媛娟.模压成型技术.北京:化学工业出版社,1999.138-141
    [116]周持兴,俞炜.聚合物加工理论.北京:科学出版社,2004.61-70
    [117]黄家康.聚酯模塑料生产与成型技术.北京:化学工业出版社,2002.326-334
    [118]F.R.Young.Prediction of Fibre Orientation in the Thickness Plane During Flow Molding of Short Fibre Composites.Polymer Composites,1995,16(4):487-495
    [119]Takaaki Matsuoka,Hideroh Taahashi.Prediction of Fibre Orientation in Injection Molded Parts of Short-Fibre-Reinforced Thermoplastics.Polymer Engineering and Science,1990,30(8):1776-1789
    [120]H.D.Frahan,M.J.Crochet.Numerical Prediction of Fibre Orientation in Injection Molding.Polymer Engineering and Science Febreary,1992,32(4):796-811
    [121]B.Mlekusch.Fibre Onentation in Short-fibre-reinforced Thermoplastics Ⅱ.Quantitative Measurements by Image Analysis.Composites Science and Technology,1999,59:547-560
    [122]J.Hine,R.A.Duckett.Measuring the Development of Fibre Orientation during the Melt Extrusion of Short Glass Fiber Reinforced polypropylene.Composites Part A 1997,28:949-958
    [123]M.Gupta,K.K.Wang.Fibre Orientation and Mechanical Properties of Short-fibre-reinforced Injection-Molded Composites:Simulated and Experimental Results.Polymer Composites,1993,14(5):667-682
    [124]B.Mlekusch,W.Geymayer.Fibre Orientation in short-fibre-reinforced thermoplastics I.Contrast enhancement for image analysis.Composites Science and Technology,1999,59:775-786
    [125]B.R.Whiteside,P.D.Coates.Glass Fiber Orientation within Injection Moulded Automotive Pedal Simulation and Experimental Studies.Plastics,Rubber and Composites,2000,29(1):993-1011
    [126]C.L.Tucker.Heat transfer and reaction issues in liquid composite molding.Polymer Composites,1996,17(1):397-406
    [127]梁国政,顾媛娟.模压成型技术.北京:化学工业出版社,1999.152-162
    [128]王德中.环氧树脂生产与应用.北京:化学工业出版社,2001.4
    [129]William Patrick Landsman.Flame retardant additives for polyethylene terephthalate:[For the degree of Master].Lowell:School of science in plastics engineering,university of massachussets lowell,2001
    [130]姜丽,魏延频.影响层压板浸水电阻测量因素的研究.绝缘材料通讯,1994,(2):35-38
    [131]胡海兵,李鸿岩,刘斌.纳米填料对聚合物介电性能的影响.绝缘材料,2006,39(5):36-39
    [132]黄兴溢,柯清泉,江平开等.颗粒填充聚合物高介电复合材料.高分子通报,2006,(12): 39-45
    [133]李鸿岩,郭磊,刘斌等.聚酰亚胺/纳米Al2O3复合薄膜的介电性能.中国电机工程学报,2006,26(20):166-170
    [134]韩艳春,傅仁利,何洪等.复合陶瓷颗粒/环氧模塑料的制备与性能.电子与封装,2007,7(1):4-8
    [135]马寒冰,唐超,唐安斌等.环氧树脂/DDS固化剂体系介电常数和介质损耗因数的研究.变压器,2007,44(1):41-42
    [136]马寒冰,唐安斌,马庆柯等.苯并嗯嗪/钛酸钡复合材料介电性能的研究.电子元件与材料,2006,25(9):55-56
    [137]王寿泰,朱建新,孙纪良.高分子材料低温击穿强度的研究.低温与超导,1983,3(3):21-25
    [138]李元庆,张以河,李艳等.聚酰亚胺纳米复合薄膜的低温电气强度研究.绝缘材料,2004,(5):19-22
    [139]李仰平,周庆,刘翔.复合聚四氟乙烯耐电弧烧蚀及其介电性能的试验研究.绝缘材料,2006,39(2):36-38
    [140]俞赞琪,俞翔霄.聚合物绝缘材料的漏电起痕性.绝缘材料,2005,(3):48-51
    [141]肖军.高分子绝缘材料电痕特性研究:[硕士学位论文].天津:天津大学电气与自动化工程学院,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700