松辽盆地徐家围子断陷深层火山岩岩性、岩相的测井识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对松辽盆地徐家围子断陷深层火山岩,以地质-测井综合研究为指导思想,就火山岩岩性测井识别和岩相变化规律进行了深入研究,并用于预测火山岩岩相的井间分布。火山岩岩性研究方面,采用灰色关联分析方法进行岩性识别,首先利用极值方差聚类分层方法对研究区测井资料进行分层处理,结合岩心资料对火山岩岩性的定名,建立测井相-火山岩岩性统计模式,然后利用灰色关联分析方法识别研究区火山岩岩性。火山岩岩相规律则利用马尔科夫链分析方法进行研究,首先利用该方法对井内岩相垂向上的变化规律进行总结和分析,在此基础上尝试推算二维的岩相展布规律。这些方法的应用将火山岩研究在一定程度上又向前推进了一步。利用这些方法已对松辽盆地徐家围子断陷多口井进行了处理,取得了较好的实际应用效果,对于提高火山岩岩性测井识别和岩相研究的精度具有重要意义。
Currently, the biggest problem that the world must to face is a serious shortage of backup reserves, it’s urgently need to use a new geological theory toguide the search for new exploration areas. Volcanic is the main hydrocarbon reservoir rocks in China, Xujiaweizi fault depression as the larger deep depression in the northern of Songliao Basin, with the deep understanding of geological law to the natural gas and with the growing capabilities of investigation techniques, the exploration of the gas reservoir of lithology in Mesozoic volcanic got a breakthrough.
     Logging is an important means to the oil and gas exploration and development, it is the integrative reflection of the lithology, facies, porosity and permeability and hydrocarbon saturation of reservoir. For the volcanic reservoir, studying the relation of logs curve and lithology and facies can play a direct role instructions in the oil and gas exploration and development.
     Therefore, this article statistics and summaries the well logging characters for the deep volcanic in Xujiaweizi fault depression. On this basis, establishing the volcanic rocks-logging data statistical model and using gray relational analysis to identify the single well lithology for the study area. At the same time, using Markov chain analysis to summary the phase change rules of the deep volcanics in Xujiaweizi depression, Songliao Basin, and making prediction of single well facies and simulation of two-dimensional facies on the base.
     1. Response characteristics of volcanic rocks in logging
     GR and resistivity curves have high-value overall, acoustic mostly low-value (high speed). With the transition of basic volcanic to acidic volcanic, radioactivity increased gradually; neutron porosity value decreased gradually, and up and down with the porosity and the fluid content in fracture; density vares from large into small; the acoustic value of compact basalt is the lowest and the acidity rhyolite slightly higher; PE value gradually decreased. In similar rocks, with the transition of lava to pyroclastic rock, radioactivity increased; density will be reduced, and the density of the development of crack was significantly decreased and dramatic changed serrated; acoustic usually decreased, when stomatal or cracks developed, the acoustic value will increase and resistivity generally decreased.
     2. Cross plot characters of deep stratum volcanic rocks in Xujiaweizi fault depression
     The volcanic rocks have the close contitunent but different structure can be considered one kind of lithology. In the study, the kinds of volcanic lithology can be identified by logging are: basaltic lithology, andesitic lithology, trachyandesitic lithology, dacitic lithology, and ryolitic lithology. Statistic analyse is done for core from twenty wells, and considered the depth point that has wafer analyse and was modifid by whole rock analyse as one swatch point. Read corresponding logs data and calculate complex parameters M and N. At all the base mentioned above, after making cross plot, discovered the cross plot of GR-TH and GR-PE are better.
     The cross plot of GR-TH is good at distinguish these rocks, which are basaltic lithology, andesitic lithology, trachyandesitic lithology, dacitic lithology, and ryolitic lithology. The plate correctness can reach at 92.62%。The cross plot of GR-PE is also good, the plate correctness can reach at 84.43%。
     3. Log character of deep volcanic facies in Xujieweizi fault depression Songliao Basin
     Volcanic facies of Xujieweizi fault depression can be devided into five facies and fifteen subfacies, their log character is as follows:
     Volcanic vent facies: log character of volcanic vent facies generally are big value of GR and middle resistivity, except value of GR log of basalt with volcanic vent subfacies is small and resistivity of tuff with volcanic vent subfacies is low. Character of curves’modality mostly is serrated form of high amplitude and peak, especially, difference between deep investigation laterolog and shallow investigation laterolog of andesite with subvolcanic subfacies is large, so heterogeneity is obvious.
     Explosive facies: Value of GR log of rhyolite with explosive facies is big, value of GR log of andesite with explosive facies is middle, but most of tuff is rhyolite and its value of GR log is big but on the low side. Character of curves’modality is high amplitude and serrated form. Generally, log character of explosive facies is low-middle resistivity, and curves’modality of explosive is serrated form of low-middle amplitude.
     Effusive facies: GR log of rhyolite with effusive facies has big value and serrated form of high amplitude, GR log of andesite with effusive facies has mid value and serrated form of middle amplitude, and GR log of basalt with effusive facies has low value and serrated form of low amplitude. Resisitivity log of volcanic rocks with effusive facies has low value (for middle subfacies)and low-middle value (for upper and down subfacies), and curves’modality of volcanic rocks with effusive facies is serrated form of high amplitude, but for down subfacies with some or none breccia the amplitude is micro serrated form.
     Extrusive facies: Value of GR log of volcanic lava with effusive facies is big, and the curves’modality is serrated form of middle-high amplitude. Dual laterolog of volcanic lava with effusive facies is low-middle resistivity (for middle-inner subfacies) and middle resistivity (for outer subfacies), the curves’modality is serrated form of middle-micro amplitude. Especially, the value of GR of rhyolite is bigger than the value of GR of pearlite. GR log of tuff lava with outer subfacies is serrated form of middle amplitude. Resistivity log of tuff lava with outer subfacies is middle resistivity and the curves’modality is serrated form of low amplitude.
     volcanogenitic sedimentary facies: Value of GR log of volcanic sedimentary rocks usually is middle-low, and Value of resistivity log of volcanic-sedimentary rocks is usually middle-low. Difference between different subfacies is obivious. The GR curves and resistivity curves of retransported volcanic sediments obviously are imageing. The curves` amplitude of tuff sandstone with epiclastic-bearing sedimentary subfacies is low.
     4.Application extremum variance cluster method in layering data record
     The changes of Logging curve was mainly due to changes in the physical properties of rocks, The different physical properties of rocks corresponding to different logging response. We need to divide log profile into many small layers which according to the changes of logging curve in shape and amplitude characteristics, so that each layer within the same physical characteristics and facies types.
     The essential of variance analysis is to find out the largest variance among layers and the smallest variance in layers as a point of layering point. Through the Q extremum for crude layering data record, the Rm ax for subdivisable layering data record and merge layers processing, we can use extremum variance cluster analysis method to completed auto-layering data record.
     Using this method successfully completed subdivisable layering data record for logging data of XuShen5, XuShen4, XuShen602 and so on. It is the base of volcanic lithological identification.
     5. Using grey relational analysis method to identify volcanic lithology
     Through standardize the logging data, calculate grey multiple weighted coefficient Pi(j) and calculate grey correlation of standard model ( reference array Xi) Cgi, so as to achieve logging lithological identification.
     Identification of volcanic lithology of Yingcheng formation in Xujiaweizi fault depression in Songliao Basin, which need to access to lithology profile information of the key well from geological logging and coring data, pick up the characters of logging response in homologous section of formation profile. Then the relationship statistical model between the volcanic lithology of study area and logging data can be established.
     Using this method to identify the volcanic rocks, compared to based on coring data for geological naming of volcanic lithology in this area. The correct identification rate could achieve above 70%.
     6. Study phase transition of volcanic by using Markov chain method
     Markov method is one analysis method to forecast one variable’s intending estate and moving direction by using the one variable’s current estate and moving direction. The method is fit for time list and space list. The Markov process that time and state are discrete is called Markov chain.
     Facies change on strata section is only related to facies change of former stratum, and is not related to the more former stratum. It is resulted that strata section has typical Markov chain character.
     With Markov chain analysis of volcanic facies in deep stratum of Xujiaweizi fault depression, simplified facies model of volcanic facies change in study zone can be gotten, and on the base, facies can be predicted by using absolute forecast method and superpose forecast method, judge accuracy of facies is 80% in well field of xushen 1 well.
引文
1) 李汉林,赵拥军. 岩性识别的多元统计方法[J]. 地质论评,1998,44(1):106~112
    2) 冯翠菊,王敬岩,冯庆付. 利用测井资料识别火成岩岩性的方法[J]. 大庆石油学院学报,2004,28(4):9~11
    3) 范宜仁,黄隆基,代诗华. 交会图技术在火山岩岩性与裂缝识别中的应用[J]. 测井技术,1999,23(1):53~56
    4) 魏斌,陈建文.徐家围子断陷火山岩岩性的测井识别技术[J]. 特种油气藏,2003,10(1):73~75.
    5) 黄布宙,潘保芝. 松辽盆地北部深层火成岩测井响应特征及岩性划分[J]. 石油物探,2001,40(3):43~44
    6) 刘为付,孙立新,刘双龙等.模糊数学识别火山岩岩性[J]. 特种油气藏,2002,9(1):14~17
    7) 周波,李舟波,潘保芝. 火山岩岩性识别方法研究[J]. 吉林大学学报(地球科学版),2005,35(3):394~397
    8) 郑建东,刘传平,李红娟. X 气田深层火山岩岩性测井识别及应用[J].国外测井技术,2006,21(2):11~16
    9) 邱春光,王璞珺,门广田,刘万洙.松辽盆地徐家围子断陷火山岩岩相和亚相的测井识别[J]. 吉林大学学报(地球科学版),2003,33(专辑Ⅴ):123-127
    10) 郭振华,王璞珺,印长海,黄玉龙. 松辽盆地北部火山岩岩相与测井相关系研究[J]. 吉林大学学报(地球科学版),2006,36(2):207~214
    11) Hawlander H M. Diagenesis and resevoir potential of volcanogenic sandstones-Cretaceous of the Surat Basin, Australia[J]. Sedimentary Geology,1990,66(3/4):181~195
    12) Mark E M,John G M. Volcaniclastic deposits: implications for hydrocarbon exploration. In: Richard V, Fisher, Smith G A, eds. Sedimentation in volcanic settings[J]. Society for Sedimentary Geology,Special Publication 1991,45:20~27
    13) Secmann U, Schere M. Volcaniclastics as potential hydrocarbon reservoirs[J].Clay Minerals, 1984, 19(9):457-470.
    14) Yuli Mitsuhata, Koichi Matsuo, Matato Minegishi. Magnetotelluric survey for exploration of a volcanicrock reservoir in the Yurihara oil and gas field,Japan[J]. Geophysical Prospecing,1999,47(2):195-218
    15) 陈岩. 克拉玛依油田一区石炭系火山玄武岩油藏剖析[J].新疆石油地质,1988,9(29): 17~31
    16) 高知云,章谦澄.黄骅盆地新生代火山岩与油气[M].大港油田勘探丛书. 北京:石油工业出版社,1999
    17) 刘泽容,信全麟,王永杰等. 山东惠民凹陷西部第三纪火山岩油藏形成条件与分布规律[J]. 地质学报,1988,62(3):210~222
    18) 杨新明. 闵桥油田火山岩油藏储层特征研究[J]. 江苏油气,1993,4(3):24~31.
    19) 杜贤樾,肖焕钦.渤海湾盆地火成岩油气藏勘探研究进展[J].复式油气藏,1998,23(4):1~4
    20) 赵澄林,孟卫工,金春爽等. 辽河盆地火山岩与油气[M]. 石油工业出版社,1999:15~22
    21) 王惠民等. 准噶尔盆地火山岩与构造热事件研究[J]. 新疆石油地质,1999,20:580~584
    22) 罗静兰,曲志浩,孙卫等. 风化店火山岩成因,储集孔隙类型及其火山岩相与油气的关系[J]. 石油学报,1996,17(1):32~39
    23) 郎东升. 大庆油区火成岩储层识别综合研究[J]. 隐蔽油气藏形成机理与勘探实践,2004: 329~334
    24) 何琰,伍友佳,吴念胜. 火山岩油气藏研究[J]. 大庆石油地质与开发. 1998,18(4):6~14.
    25) 陈建文. 一门新兴的边缘科学-火山岩储层地质学[J]. 海洋地质动态,2002, 18(4):19~22
    26) WANG P et al. Relationship Between Volcanic Facies and Volcanic Reservoirs in Songliao Basin[J]. Oil Gas Geol, 2003,24(1):18~23
    27) 王拥军. 深层火山岩气藏储层表征技术研究[D]. 中国地质大学(北京),2006:1~7
    28) 杨峰平. 松辽盆地徐家围子断陷火山岩及天然气成藏研究[D]. 中国地质大学(北京),2005:1~5
    29) 邱家骧. 火山岩相及其主要特征[J]. 地质科技情报,1984,2:46-52
    30) 陶奎元,杨祝良,王力波,杨献忠.苏北闵桥玄武岩储油的地质模型[J].地球科学—中国地质大学学报,1998,23(3):272~276
    31) 谢家莹,陶奎元,黄光昭. 中国东南大陆中生代火山岩带的火山岩相类型[J]. 火山地质与矿产,1994,15(4):44~51
    32) 赵澄林,陈丽华,涂强等. 中国天然气储层[M]. 北京:石油工业出版社,1999:191~207
    33) 赵澄林,刘孟慧,胡爱梅等. 特殊油气储层[M]. 北京:石油工业出版社,1997:1~45,96~101
    34) 陈全茂,李忠飞. 辽河盆地东部凹陷构造及其含油气性分析[J].北京:地质出版社,1998.1~156
    35) 陈建文,王德发,张晓东.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘,2000,7(4):371-379
    36) 卞德志,邱子刚. 模糊数学识别火成岩岩性的方法及地质效果. 测井资料的地质应用,北京:石油工业出版社,1991,P57~67
    37) 匡立春. 克拉玛依油田 5-8 区二叠系佳木河组火成岩岩性识别. 石油与天然气地质,1990, 11(2):193~201
    38) 刘呈冰等. 全面评价低孔裂缝-孔洞型碳酸盐岩及火成岩储层. 测井技术,1999,23(6):57~65
    39) 景永奇等. 利用裂缝指示曲线判别花岗岩潜山纵向裂缝发育带. 测井技术,1999,23(1): 38~42
    40) Eberle D. Interpretation of multi-method geophysical borehole logging data from KTB Oberpfalz VB using multivariate statistical analyses. Scientific Drilling, 1992, 3(1~3):16~26
    41) Zimmermann G, Burkhard H. Estimation of porosity in crystalline rock by a multivariate statistical approach. Scientific Drilling, 1992, 3(1~3): 27~35
    42) Draxler J K. Estimation of the mineral content of crystalline rocks in the KTB-Oberpfalz VB. Scientific Drilling, 1992, 3(1~3):115~125
    43) Liu W. Comprehensive Evaluation of Volcanic Reservoir by Fuzzy Mathematics. Petrol Geol Recovery Efficiency, 2003, 10(2):9~10
    44) 邓聚龙. 灰色系统基本方法[M]. 武汉:华中理工大学出版社,1987,1~42
    45) 宋子齐,谭成仟. 灰色理论油气储层评价[M]. 北京:石油工业出版社,1995,1~44
    46) 赵旭东. 灰色理论与方法[M]. 北京:石油工业出版社,1992
    47) 易德生、郭萍. 灰色理论与方法一提要.题解.程序.应用[M]. 北京:石油工业出版社,1992
    48) 傅立.灰色系统理论及其应用[M].北京:科学技术出版社,1992
    49) 毛宁波,信荃麟. 灰色聚类分析方法在储层含油性预测中的应用[J]. 江汉石油学院学报,1996,18(2):52~54
    50) 郭少斌,董清水,刘忠群. 灰色聚类自动识别岩性及微相[J]. 沉积学报,1996,14(2):124~130
    51) 胡远来,李志云.灰色油气预测系统[J],石油地球物理勘探,1996,31(6):835~843,905
    52) 刘光萍. 灰色模糊综合评判在地质中的应用[C]. 中国数学地质,1998(9):45~51
    53) 冯晓杰,陆明德. 灰色聚类法在圈闭评价中的应用[J]. 中国海上油气,2000,14(1):47~50
    54) 陈强,谢硕. 测井曲线灰关联度计算[J]. 测井技术,2000,24(6):445~447
    55) 赵云胜,龙昱,赵钦球,罗中杰. 灰色系统理论在地学中的应用研究[M]. 武汉:华中理工大学出版社,1997
    56) 刘明哲,姜若维,胡远来.一种基于二次灰关联分析的数列预测法[J]. 物探化探计算技术,1997,19(4):357~360
    57) 侯俊胜,黄智辉,汪嘉联. 测井多参数模糊综合评判和灰色综合评判的对比分析[J]. 测井技术,2000,24(1):32~35
    58) 赵军.模糊灰关联分析法在测井识别油气水层中的应用[J].测井技术,2000,24(5):337~339
    59) 卢颖忠,黄智辉,管志宁. 应用模糊统计和灰色识别评价水淹层[J]. 现代地质,1999,13(3):345~349
    60) 桂峰,黄智辉,马正,杨华. 利用灰关联聚类法划分并预测流动单元[J]. 现代地质,1999,13(3):339~344
    61) 刘瑞兰,欧成华,夏宏泉,刘红歧. 基于灰色关联法的测井岩相自动识别[J].国外测井技术,2005,20(6):33~37
    62) 刘思峰,郭天榜. 灰色系统理论及其应用[M]. 开封:河南大学出版社出版,1991
    63) Alberto Malinvemo. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem [J]. Geophysical Journal International,2002,151(3):675~688
    64) 赵贤淑. 马尔科夫预测技术的应用[J].西安矿业学院学报,1995,15(4):363~366
    65) Paul Jordan, Peter Talkner. A seasonal Markov chain model for the weather in the central Alps[J]. Tellus A,2000,52(4):455~466
    66) Yarus J M,Chambers R L. 随机建模和地质统计学:原理、方法和实例研究[M]. 穆龙新,陈亮译,北京:石油工业出版社,2000:52~61
    67) Scharzacherr. W. The Semi-Markov process as a general Sedimentation model, Math models of sedimentary. 1972
    68) Miall A. D. Markov chain analysis applied to an acient alluvial plain succession, Sedimentology, 1973, 20: 153~165
    69) Powers D. W. , Easterling R. G. Improved methodology for using Embedded Markov Chains to describe cyclical sediments, J. Sedi Petro, 1982, 52(3): 1113~1129
    70) Selly R. C. Studies of sequence in sediment using a simple mathematical device, Geol. Soc. , London Qurt Jour. , 1970, 125: 110~130
    71) Elfeki A, Dekking M. A Markov chain model for subsurface characterization: Theory and applications [J]. Mathematical Geology, 2001,33(5):568~589
    72) Carle S F, Fogg G E. Modeling spatial variability with one and multi-dimensional continuous Markov chains[J]. Mathematical Geology, 1997,29(7):891~917
    73) Norberg T, Rosen L, Baran A, etal. On modeling discrete geological structures as Markov random fields [J]. Mathematical Geology,2002,34(1):63~77
    74) 朱筱敏,信荃麟. 马尔柯夫链法在建立沉积相模式中的应用[J].沉积学报,1987,5(4):96~105
    75) 施仁杰. 马尔科夫链基础及其应用[M]. 西安:西安电子科技大学出版社,1992
    76) 景毅,王世称等. 马尔柯夫过程在地质学中的应用[M]. 北京:地质出版社,1985
    77) 刘振峰,郝天珧,方辉. 用 Markov 链模型随机模拟储层岩相空间展布[J].石油学报,2005,26(5):57~60
    78) 何开华. 马尔可夫链分析在新疆拜成亚格列组沉积相研究中的应用. 成都地质学院学报,1988,15(3):93~103
    79) 邵树勋. 民和盆地窑街地区上侏罗统沉积相的马尔可夫链数学模拟. 沉积学报,1997,15(增刊):127~130
    80) 李仁平,匡有为. 长江三角洲南通地区第四纪地层马尔柯夫链综合分析. 地球科学-中国地质大学学报,1989,14(2):213~219
    81) 刘振峰,郝天珧,杨长春. 基于 Markov 链模型的储层岩相随机模拟[J]. 地球物理学进展,2003,18(4):666~669.
    82) 李汉林,赵永军. 石油数学地质[M]. 东营:石油大学出版社,1998,247~260
    83) 郭光裕. 马尔科夫概型分析及其在地质研究中的应用[J].地质与勘探, 1992,28(8):29~34
    84) 王继贤,刘业新. 马尔柯夫链在测井相分析中的应用[J].地球物理测井,1989,13(5):30~37
    85) 燕长海.二维马尔科夫分析在地球化学数据空间变化性研究中的应用[J].物化探计算技术,1987,9(2):105~112
    86) 吕洪波,夏邦栋. 浙西上奥陶统复理石韵律的马尔可夫链模拟. 石油与天然气地质,1987,8(2):219~229
    87) 李国惠,李彦芳.松辽盆地英台地区北部沉积旋回模式的马尔柯夫链模拟[J]. 大庆石油地质与开发,1991,10(3):13~20
    88) 李亚美等. 基础地质[M]. 北京:地质出版社,1994
    89) 邱家骧,陶奎元,赵俊磊等,火山岩[M]. 北京:地质出版社,1996
    90) 李石,王彤. 火山岩[M]. 北京:地质出版社,1981,16~40
    91) Doventon. J , 李舟波等译. 地下地质分析的计算机方法和原理[M]. 北京:地质出版社,1990
    92) Kolotukhina S E. The volcanogenous facies of the lower Carboniferous in central Kazakhstan [J]. Trudy, 1940, 42(12):17~20.
    93) 科普切弗-德沃尔尼科夫 B C,雅科夫列娃 E,彼特罗娃 M A. 火山岩及研究方法[M]. 周济群,黄光昭译校. 北京:地质出版社,1978,10~82.
    94) Lajoie J. Facies models 15: Volcaniclastic rocks[J]. Geoscience Canada, 1979, 6(3):129~139.
    95) Fisher R V, Schmincke H U. Pyroclastic rocks [M]. Heidelberg: Springer, 1984. 59~265.
    96) Cas R A F, Wright J V. Volcanic successions modern and ancient[M]. London: Allen&Unwin, 1987. 59~333.
    97) 陶奎元. 火山岩相构造学[M]. 南京:江苏科学技术出版社,1994,12~31.
    98) 金伯禄,张希友. 长白山火山地质研究[M]. 长春:东北朝鲜民族教育出版社,1994. 40~49.
    99) 谢家莹,陶奎元. 中国东南大陆中生代火山地质及火山-侵入杂岩[M]. 北京:地质出版社,1996. 40~71.
    100) 谢家莹,蓝善先,张德宝等. 运用火山地质学理论研究竹田头火山机构[J]. 火山地质与矿产,2000,2 (2):87~95.
    101) 刘祥,向天元. 中国东北地区新生代火山和火山碎屑堆积物资源与灾害[M]. 长春:吉林大学出版社, 1997. 1~8.
    102) 刘文灿,孙善平,李家振. 大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征[J]. 现代地质,1997, 11(6):237~243.
    103) 王璞珺,陈树民,刘万洙,等.松辽盆地火山岩相与火山岩储层的关系[J].石油与天然气地质,2003,24(1):18-27
    104) 雍世和,张超谟. 测井数据处理与综合解释[M]. 东营:石油大学出版社,1996:459~467
    105) 潘保芝,薛林福等. 裂缝性火成岩储层测井评价方法与应用[M]. 北京:石油工业出版社,2003
    106) 夏宏泉,陈福煊,黄继祥. 电相分析的自动分层取值方法研究[J]. 西南石油学院学报,1996,18(2):8~14
    107) 张明玉. 极值方差聚类法在测井分层取值中的应用-以莫北油田莫 005 井区为例[J]. 新疆石油地质,2002,23(5):429~431
    108) 程玉群,李秀荣,刘铁桩. 测井曲线自动分层技术及在杏北地区小层划分中的应用[J]. 断块油气田,2000,7(2):23~25
    109) 鲍晓欢. 测井曲线的最优分割法自动分层评价[J]. 海洋石油,2005,25(1):81~84
    110) 景平,陆国纯,张晓宁. 测井曲线综合分层的非参数拟合优度法[J]. 湘潭矿业学院学报,1994,9(1):1~7
    111) 林海燕,戴云,肖慈珣. 一种基于沃希变换的测井自动分层方法[J]. 成都理工学院学报,1999,26(1):52~57
    112) 杨景强. 沉积相测井分析灰色理论方法研究[D]. 大庆石油学院硕士学位论文,1999
    113) 王璞珺,迟元林,刘万洙等. 松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003,33(4):449~456
    114) 宋子齐、谭成仟、吴少波等. 灰色理论与神经网络技术分析软件在油田勘探开发中的应用[J]. 测井技术,2000,24(6): 423~427
    115) 宋子齐. 测井多参数的地质应用[M]. 西安:西北工业大学出版社,1993
    116) 宋子齐、谭成仟等. 测井多参数及其灰色理论处理方法在埕岛油田的应用[J]. 石油物探,1994,33(4):93~105
    117) 宋子齐、谭成仟、曲政. 利用灰色理论精细评价油气储层的方法[J]. 石油学报,1996,17(1):25~31
    118) 宋子齐、谭成仟.灰色系统理论精细评价油气储层的分析准则、处理方法及其应用[J]. 系统工程理论与实践,1997,17(3):74~82
    119) 宋子齐、谭成仟等. 灰色系统理论在高含水期水淹层解释中的应用[J]. 测井技术,1998,22(5):341~348
    120) 宋子齐、谭成仟、吴少波等. 灰色理论与神经网络技术分析软件在油田勘探开发中的应用[J]. 测井技术,2000,24(6):423~427
    121) 谭成仟、宋子齐、吴少波. 灰色关联分析在辽河小洼油田储层油气产能评价中的应用[J]. 测井技术,2001,25(2):119~122
    122) 陆万雨. 测井储层评价新技术应用研究[D]. 中国地质大学(北京)博士学位论文,2002,27~29
    123) 唐华风. 松辽盆地早白垩世营城组火山机构岩相、储层定量模型和地质-地震综合描述[D]. 吉林大学博士学位论文,2007
    124) 李军,郝天珧,刘建等. 基于不同邻域系统的马尔可夫链模型的储层岩相随机模拟[J]. 现代地质,2006,20(4):621~627
    125) 张宗国. 马尔可夫链预测方法及其应用研究[D].河海大学硕士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700