用户名: 密码: 验证码:
无线自组织网络MAC层QoS技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动无线自组织网络(Mobile Wireless Ad Hoc Networks,MANET)是一种特殊的无线通信网络,是由多个带有无线收发装置的节点组成的一个多跳的自治系统,网络中的节点同时具有主机和路由器的功能。近十年来,无线自组织网络日益成为计算机网络和无线通信领域的研究热点,至今方兴未艾。由于不需要固定的基础设施并且具有极强的抗毁性能,无线自组织网络具有很高的军事应用价值。无线自组织网络的主要特征是无线信道共享、误码率高、多跳通信以及动态拓扑等,在这种情况下为多媒体通信提供服务质量(QoS)的支持具有很大的挑战性。媒体接入控制(MAC)协议位于MANET协议栈的下层,对网络的性能影响极大,在MAC层提供QoS支持是无线自组织网络的关键技术,本文围绕这一热点问题展开了深入研究。
     当前无线自组织网络最重要的MAC协议是IEEE802.11DCF,DCF是一种基于载波监听和冲突避免的随机接入协议。本文在分析802.11DCF协议的性能的基础上,深入分析了802.11无线自组织网络在MAC层实现服务区分和统计意义上QoS支持的能力。另一方面,考虑战术Ad Hoc网络的特殊情况,设计了一种基于多收发机的MAC协议。具体研究成果如下:
     (1)非饱和条件下IEEE 802.11 DCF协议性能分析
     在假设节点的发送缓冲区只能容纳一个数据分组的前提下,建立了一个二维马尔可夫链模型,准确分析了任意负荷条件下802.11DCF协议的性能包括吞吐量、平均分组时延、时延的方差等。结果表明,基本接入机制可获得与RTS/CTS机制几乎一样的最大吞吐量,并且时延性能大大优于饱和状态,从而初步表明802.11DCF具有支持统计意义服务质量的能力,也为全文的研究奠定基础。
     (2)非饱和条件下IEEE802.11e区分服务机制性能分析
     将针对非饱和条件下的马尔可夫链模型进行推广,分析结果表明,基于初始竞争窗口的IEEE 802.11eEDCA仅能在饱和条件下实现QoS(吞吐量、平均分组时延等)的相对区分,不能提供QoS的任何保证,而且当网络的总负荷低于最佳值时,基于初始竞争窗口的IEEE 802.11e基本上不能提供QoS的区分。
     (3)非饱和条件下的服务区分和QoS保证技术
     提出了直接基于业务负荷(即分组大小乘以到达率)的区分服务机制,设各个业务流具有不同的分组大小和到达率,分析结果表明,在控制总负荷的情况下,各个站点的吞吐量近似等于其负荷(即分组大小乘以到达率),而且平均分组时延比饱和状态小得多。
     (4)IEEE802.11MAC层排队性能分析
     上述创新点均假设站点的发送队列只能容纳一个数据分组,因此无法分析排队性能。新的分析模型由一个广义的马尔可夫链模型和M/G/1/K排队模型组成,能够准确地分析吞吐量、平均排队时延、MAC服务时间的均值及其标准差、分组阻塞概率等排队性能指标。
     (5)非饱和条件下802.11DCF协议的性能优化和准确统计意义上的QoS保证
     通过理论推导,得出最佳总负荷以及最优性能指标的解析表达式。当处于最佳总负荷点时,IEEE 802.11DCF可准确提供统计意义上的QoS保证,即吞吐量最大化、平均排队时延和分组阻塞概率趋近零、MAC服务时间的均值和标准差都大大低于饱和状态下的值,本文进一步推导得到了最大吞吐量的下界、MAC服务时间的均值和标准差的上界。
     (6)基于多收发机的MAC协议研究
     传统的Ad Hoc网络处于节能的考虑,每个节点只配备一个无线收发机,另一方面,IEEE802.11标准定义了多个频段而实际系统只使用其中一个。以车辆或舰艇为节点的战术Ad Hoc网络由于能量供应和节点尺寸上的优势,每个节点可配备多个无线收发机并充分利用802.11所定义的多个信道。本文设计了相应的MAC协议并分析其性能,该协议可大大提高多跳环境下的空分复用程度从而显著提高系统的吞吐量。
A mobile wireless ad hoc network (MANET) comprises of a cluster of mobile nodes without any fixed infrastructure of base station. Due to the transmission range constraint of transceivers, two mobile nodes may communicate with each other either directly, if they are close enough, or indirectly, by having other intermediate mobile nodes to forward their packets. MANET has become the one of the most significant hotspots in the fields of computer networks and wireless communications over the last two decades. Since MANET can be rapidly deployed, it has important merit for military applications such as armies in march, battle fields, fleets in oceans and other hostile scenarios. Because of the existing bit error rate in shared wireless channel and dynamic topology, it imposes big challenge on Quality-of-Service (QoS) supportting for multimedia communications over wireless ad hoc networks.
     The media access control (MAC) protocol, which lies at the low layer of the protocol stack for MANET, has significant influence on the performance of the network. The most important MAC protocol for MANET is IEEE 802.11 Distributed Coordination Function (DCF). DCF is a career sense multiple access with collision avoidance (CSMA/CA) protocol with binary exponential backoff. By modeling of IEEE 802.11 DCF, this dissertation focuses on providing service differentiation and statistical QoS gurantee in original IEEE 802.11 ad hoc networks. Furthermore, the tranditional single channel 802.11 MAC protocol is extended for the case that multiple transceivers and multiple channels available for a node in MANET. The main contributions in this thesis are organized as follows.
     (1)Performance analysis of IEEE 802.11 DCF in non-saturated traffic conditions
     On the assumption that each station can buffer just one date packet, a bi-dimensional Markov chain model is developed for modeling of 802.11 DCF in non-saturated conditions. The analytical model is quite simple but highly accurate. It’s shown that basic access mechanism can achieve almost the same maximum throughput as that of RTS/CTS mechanism in non-saturated conditions, at the same time, the average packet delay as well as its standard deviation is much lower than that in saturated conditions.
     (2)Performance analysis of IEEE 802.11e service differentiation mechniams in non-saturated conditions
     By extending the Markov chain model for 802.11 station in non-saturated conditions, this thesis further analyazes the QoS differentiation performance of IEEE 802.11e EDCA in non-saturated conditions. Unfortunately, IEEE 802.11e just can achieve relative service differentiation in saturated conditions. When the total load is less than the optimal point, 802.11e can hardly achieve significant serice differentiation.
     (3)On packet size and arrival rate diversity in IEEE 802.11 ad hoc networks
     Packet size and arrival rate diversity is very typical for practical traffics over 802.11 wireless links. The analytical model is useful for addressing the question of fairness between competing flows over IEEE 802.11 wireless links. When the total load is less than the optimal value, the throughput of each station is approximate to its load and the packet delay is much lower than that in saturated cases despite the packet size and arrival rate diversity. The results also indicate a MAC-independent scheme for 802.11 DCF to achieve not only throughput differentiation but also statistical QoS guarantee including throughput and packet delay.
     (4)Accurate queuing analysis of IEEE 802.11 MAC layer
     In this thesis, the author develops a unified analytical model for IEEE 802.11 DCF with arbitrary buffer size in unsaturated conditions. The model comprises of a generalized Markov chain model and an M/G/1/K queuing model which enabling the thorough and accurate queuing analysis of IEEE 802.11 MAC layer. The performance metrics of queuing system include throughput, average queuing delay, and packet blocking probability, the average MAC service delay as well as its standard deviation.
     (5)Performance optimization and statistical QoS provisioning for IEEE 802.11 DCF in non-saturated conditions
     It’s shown that for practical 802.11 wireless ad hoc networks (i.e., buffer size larger than one and number of stations comparatively large) under the optimal offered load, the total throughput is maximized, the packet blocking probability (due to limited buffer size) and the average queuing delay tends to zero, the average MAC service delay as well as its standard deviation, which is much lower than that in saturated conditions, has its upper bound, furthermore, the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Hence the original IEEE 802.11 DCF protocol can accurately providing statistical QoS guarantee under optimal load.
     (6)Multi-transceiver multiple access (MTMA) protocol for mobile wireless ad hoc networks
     In this thesis, the author proposes a multi-transceiver multiple access (MTMA) protocol for ad hoc networks in which each node has multiple sub-nodes equipped with independent wireless transceiver which can be tuned over all the available wireless frequency bands defined by IEEE 802.11 standard. Every sub-node dynamically reserves an idle traffic channel by RTS/CTS dialogue on the common channel that enable a node to perform parallel communications with other nodes. The MTMA protocol, which is suitable for vehicular based tactical ad hoc networks, greatly outperforms the single-transceiver RTS/CTS protocols with single channel or multi-channel.
引文
[1] C-K Toh. Ad-Hoc Mobile Wireless Networks: Protocols and Systems, Prentice Hall PTR, 1 Edition. 2002.
    [2] Andrews. Computer Networks. Third Edition, Prentice Hall,1996.
    [3] The Internet Engineering Task Force (IETF) Mobile Ad-Hoc Networks (MANET) Working Groups, www.ietf.org/html.charters/manet-charter.html
    [4] T. S. Rappaport, Wireless Communications, Principles and Practice, Prentice Hall, Upper Saddle River, NJ, 2nd edition, c. 2002.
    [5] T.S. Rappaport, A. Annamalai, R.M. Buehrer, et. al. Wireless communications: past events and a future perspective. IEEE Communications Magazine, May 2002, 40(5):148-161.
    [6] Scholtz R A. Multiple access with time-hopping impulse modulation. In: Proceedings of IEEE Military Communications Conference (milcom’93), 1993:447-450.
    [7] Jyoti Raju and J.J. Garcia-Luna-Aceves. A comparison of on-demond and table-driven routing for ad hoc wireless networks. in Proc. of IEEE International Conference on Communications, June 2000, Vol.3, pp.1702-1706.
    [8] C.E. Perkins and P. Nhagwat. Highly dynamic destination-sequenced distance vector routing (DSDV) for mobile computers. In: Proc. of ACM SIGCOMM’94, September, 1994, pp.234-244.
    [9] S. Murthy and J.J. Garcia-Luna-Aceves. A routing protocol for packet radio networks. In: Proc. of ACM First International Conference on Mobile Computing & Networking (MobiCom’95), November 1995, pp.86-95.
    [10] J.J. Garcia-Luna-Aceves and M. Spohn. Source tree adaptive routing in wireless networks. In: Proc. of IEEE ICNP’99, September 1999, pp.122-131.
    [11] J.J. Garcia-Luna-Aceves, M. Spohn and D. Beyer. Source tree adaptive routing (STAR) protocol. in IETF Internet Draft, October 1999.
    [12] David B. Johnson and David A. Maltz, Mobile Computing. Kluwer Academic Publishers, 1996.
    [13] C. Perkins and E. Royer. Ad-Hoc On-Demand Distance Vector Routing. In: proceedings of 2nd IEEE workshop on Mobile Computing Systems and Applications, February 1999, pp.90-100.
    [14] V. Park and M. Scott Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks. In: proceedings of IEEE INFOCOM’97, March, 1997, Vol.3, pp.1405-1413.
    [15] Y. B. Ko and N. H. Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks. ACM/Baltzer WINET J., 2000, 6(4): 307–21.
    [16] J. Padhye, V. Firou, D. F. Towsley, et al. Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans. on Networking, 2000, 8(2):133-145.
    [17] K. Chandran. A feedback based scheme for improving TCP performance in ad hoc wireless networks. In: proceedings of IEEE ICDCS, 1998. 472-479.
    [18] D. Kim, C-K Toh and Y. Choi. TCP BuS: improving TCP performance in wireless ad hoc networks. Journal of Communications & Networks. 2001, 3(2):12-21.
    [19] Z. Fu, P. Zerfos, H. Luo, et al. The impact of multihop channel TCP throughput and loss. In: proceedings of IEEE INFOCOM’2003, March, 2003, Vol.3: 1744-1753.
    [20] S. Pilosof, R. Ramjee. Understanding TCP fairness over wireless LAN. In: proceedings of IEEE INFOCOM’2003, March, 2003, Vol.2: 863-872.
    [21] R. Nelson and L. Kleinrock. Spatial TDMA: a collision-free multihop channel access protocol. IEEE Trans. Commun., Sept.1985, 33(9): 934-944.
    [22] A. Ephremides and T. V. Truong. Scheduling broadcasts in multihop radio networks. IEEE Trans. Commun., Apr. 1990, 38(4):456–460.
    [23] G. Wang and N. Ansari. Optimal broadcast scheduling in packet radio networks using mean field annealing. IEEE J. Select. Areas Commun., Feb. 1997, 15(2): 250–260.
    [24] I. Chlamtac and A. Farago. Making transmission schedules immune to topology changes in multi-hop packet radio networks. IEEE/ACM Trans. Networking, Feb. 1994, vol. 2, pp. 23–29.
    [25] J.-H. Ju and V. O. K. Li. An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Trans. Networking, June 1998, 24(6): 298–306,.
    [26] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, et al. Real-time communication and coordination in embedded sensor networks. In: Proceedings of IEEE, July 2003, vol. 91, pp. 1002–1022.
    [27] T. Shepard. A channel access scheme for large dense packet radio networks. In: Proc. ACM SIGCOMM, Aug. 1996, 26(4): 219-230.
    [28] L. Bao and J. J. Garcia-Luna-Aceves. A new approach to channel access scheduling for ad hoc networks. In: Proc. ACM MOBICOM 2001, July 2001.pp.210-220.
    [29] R. Rozovsky and P. R. Kumar. SEEDEX: A MAC protocol for ad hoc networks. In: Proc. ACM Mobihoc’01, Oct. 2001. pp.67-75.
    [30] F. Borgonovo, A. Capone, M. Cesana, et al. AD HOC MAC: A new MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services. WINET, Special Issue on Ad Hoc Networking, to be published.
    [31] R. Krishnan and J. P. G. Sterbenz. An evaluation of the TSMA protocol as a control channel mechanism in MMWN. Tech. Rep., BBN Tech. Memo 1279, 2000.
    [32] Konstantinos Oikonomou, and Ioannis Stavrakakis. Analysis of a Probabilistic Topology-Unaware TDMA MAC Policy for Ad Hoc Networks. IEEE J. Select. Areas Commun., Sep. 2004, 22(7): 1286-1300.
    [33] IEEE 802.11 Working Group. Wireless LAN Medium Access Control (MAC) andPhysical Layer (PHY) Specifications. 1999.
    [34] Bharghavanv, Demersa, Shenkers, et al. MACAW: a media access protocol for wireless LANs [C]. In: Proceedings of ACM SIGCOMM, 1994. pp.212-223.
    [35] G. Bianchi. IEEE 802.11—Saturation throughput analysis. IEEE Communications Letters, Dec. 1998, vol. 2, pp. 318–320.
    [36] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Select. Areas Commun., March 2000, vol. 18(3):535–547.
    [37] X.J.Dong, P.Varaiya. Saturation Throughput Analysis of IEEE 802.11 Wireless LANs for a Lossy Channel. IEEE Communications Letters, Feb. 2005, Vol. 9, No. 2, pp.100-102.
    [38] P. Chatzimisios, A.C. Boucouvalas and V. Vitsas. Influence of channel BER on IEEE 802.11 DCF. Electronics Letters, Nov. 2003, 39(23): 1687-1689
    [39] P. Chatzimisios, A. C. Boucouvalas and V.Vitsas. IEEE 802.11 Packet Delay– A Finite Retry Limit Analysis. In: Proc. IEEE GlobeCom 2003, Vol.2. pp.950-954.
    [40] P. Chatzimisios, A.C. Boucouvalas and V. Vitsas. Packet delay analysis of IEEE 802.11 MAC protocol. Electronics Letters, Sep. 2003, 39(18): 1358-1359.
    [41] Chuan Heng Foh. Comments on IEEE 802.11 Saturation Throughput Analysis with Freezing of Backoff Counters. IEEE Communications Letters, Feb. 2005, 9(2):130-132.
    [42] Farshad Eshghi, Ahmed K. Elhakeem, and Yousef R. Shayan. Performance Evaluation of Multihop Ad Hoc WLANs. IEEE Communications Magazine, March 2005, 43(3): 107-115.
    [43] Ting-Chao Hou, Ling-Fan Tsao, and Hsin-Chiao Liu. Analyzing the Throughput of IEEE 802.11 DCF Scheme with Hidden Nodes. In: Proc. IEEE VTC 2003, Vol.5,pp.2870-2874.
    [44] Ting-Chao Hou, Chien-Min Wu. Performance Evaluation of Wireless Multihop Ad Hoc Networks Using IEEE 802.11 DCF Protocol. IEICE Transaction onCommunications. Otc. 2003, Vol. E86B, No. 10: 3004-3012.
    [45] Eryk Dutkiewicz. Impact of transmit range on throughput performance in mobile ad hoc networks. In: Proc. IEEE ICC 2001. 2933-2937.
    [46] Jianhua He, Lin Zheng, Zongkai Yang, et al. Analytical Model for Service Differentiation Schemes for IEEE 802.11 Wireless LAN. IEICE Transactions on Communications. June 2004, Vol E87-B,No.6,pp1724-1729.
    [47] Farshid Alizadeh-Shabdiz and Suresh Subramaniam. A Finite Load Analytical Model for the IEEE 802.11 Distributed Coordination Function MAC. In: Proc.IEEE International Conference on Network Protocol, Nov 2003. 902-911.
    [48] Hongqiang Zhai, Younggoo Kwon and Yuguang Fang. Performance analysis of IEEE 802.11 MAC protocols in wireless LANs. Wirel. Commun. Mob. Comput. 2004; 4:917–931.
    [49] Zygmunt J. Haas and Jing Deng. Dual Busy Tone Multiple Access (DBTMA)—A Multiple Access Control Scheme for Ad Hoc Networks. IEEE Trans. on Comm., June 2002, Vol. 50, No. 6, pp975-985.
    [50] Tzamaloukas A, Garcia-Luna-Aceves J J. Channel-hopping multiple access. In: Proceedings of IEEE ICC’2000, New Orleans, Louisiana, 2000. 415-419
    [51] Tang Z, Garcia-Luna-Aceves J J. Hop-reservation multiple access (HRMA) for ad hoc networks. In: Proceedings of IEEE INFOCOM’99, New York, 1999. 194-201
    [52] R. Garcés, J. J. Garcia-Luna-Aceves. Collision avoidance and resolution multiple access for multichannel wireless networks. In: Proc. IEEE INFOCOM’2000, Tel Aviv, Mar. 2000, pp. 595-602.
    [53] Kai Liu, Jiandong Li, James Han. Adaptive acquisition collision avoidance multiple access for multi-hop ad hoc networks. In: Proc. IEEE GlobeCom’2001, pp2880-2884.
    [54] A. A. Bertossi and M. A. Bonuccelli. Code assignment for hidden terminal interference avoidance in multihop radio networks. IEEE/ACM Trans. Networking,Aug. 1995, vol. 3, no. 4, pp. 441–449.
    [55] L. Hu,“Distributed code assignment for CDMA packet radio networks,”IEEE/ACM Trans. on Networking, Dec. 1993,11(6):668–677.
    [56] L. L. Zhang, B. H. Soong, and W. D. Xiao. A new multi-channel mac protocol for ad hoc networks based on two-phase coding with power control (TPCPC). In: IEEE ICICS-PCM, Singapore, Dec. 2003, pp. 1091–1095.
    [57] Lili Zhang, Boon-Hee Soong and Wendong Xiao. Two-Phase Coding Multichannel MAC Protocol With MAI Mitigation for Mobile Ad Hoc Networks. IEEE Communications Letters, Sep, 2004, 8(9): 597-599.
    [58] Nakjung Choi, Yongho Seok , Yanghee Choi. Multi-Channel MAC Protocol for Mobile Ad Hoc Networks. In: Proc. IEEE VTC fall 2003, pp1379-1382.
    [59] Jiandong LI, Zygmunt J. Haas, et al. Performance Evaluation of Modified IEEE 802.11 MAC for Multi-Channel Multi-Hop Ad Hoc Network. In: Proceedings of the 17th International Conference on Advanced Information Networking and Applications (AINA’03), 2003. 312-317.
    [60] Jiandong Li, Zygmunt J. Haas, and Min Sheng. Capacity Evaluation of Multi-Channel Multi-Hop Ad Hoc Networks. ICPWC 2002, New Delhi, India, Dec 2002. 211-214
    [61] Shugong Xu and Tarek Saadawi. Does the IEEE 802.11 MAC Protocol Work Well in Multihop Wireless Ad Hoc Networks. IEEE Communications Magazine, June 2001, vol. 39, no. 6, pp. 130–137.
    [62] J. C. Liberti and T. S. Rappaport. Smart Antennas for Wireless Communications:IS-95 and Third Generation CDMA Applications. Prentice Hall, Upper Saddle River, NJ, 1999.
    [63] C. A. Balanis. Antenna Theory: Analysis and Design. Wiley, 1997.
    [64] A. Nasipuri, S. Ye. A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas. In: proceedings of IEEE Wireless Communications and NetworkingConference (WCNC), Sep 2000. 1214-1219.
    [65] Y.-B. Ko, V. Shankarkumar, and N. H. Vaidya. Medium Access Control Protocols Using Directional Antennas in Ad Hoc Networks. In: Proceedings of IEEE INFOCOM’2000, March 2000. 13-21.
    [66] Thanasis Korakis, Gentian Jakllari. A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks. In: Proceedings of ACM MobiHoc’03,June 2003. pp.98-107.
    [67] R. Ramanathan. On the Performance of Ad Hoc Networks with Beamforming Antennas. In: Proceedings of MOBIHOC, October 2001, pp. 95–105.
    [68] Su Yi,Yong Pei and S.Kalyanaraman. On the Capacity Improvement of Ad Hoc Wireless Networks Using Directional Antennas. In: Proceedings of ACM MobiHoc’03,June 2003. pp.108-116.
    [69] M. Cooper and M. Goldburg. Intelligent Antennas: Spatial Division Multiple Access. Annual Review of Communication, 1996, pp. 999–1002.
    [70] D.Lal, R. Toshniwal. A Novel MAC Layer Protocol for Space Division Multiple Access in Wireless Ad Hoc Networks. In: Proceedings of 11th IEEE Conference on Computer Communications and Networks 2002. 614-619.
    [71] D. Lal, R. Gupta, and D. P. Agrawal. Throughput Enhancement in Wireless Ad Hoc Networks with Spatial Channels- A MAC Layer Perspective. In: Proceedings of Seventh IEEE International Symposium on Computers and Communications, July 2002. 421-428.
    [72] Wei Liu, Wenjing Lou, Xiang Chen, et al. A Qos-Enabled Mac Architecture For Prioritized Service In IEEE 802. 11 WLANs. In: Proc. IEEE Globecom '03. 2003, 7: 3802 - 3807
    [73] I. Aad and C. Castelluccia. Differentiation Mechanisms For IEEE 802. 11. In: Proc. IEEE Infocom, 2001: 209-218
    [74] A. Veres, A. T. Campbell, M. Barry, et al. Supporting Differentiation In WirelessPacket Networks Using Distributed Control. IEEE JSAC. 2001, 19(10): 2081-2093
    [75] Zongkai Yang, Lin Zheng, Jianhua He, et al. Quality of Service Support For IEEE 802. 11 WLAN. Proceedings of SPIE. 2003: 5284-5290.
    [76] Liqiang Zhao, Changxin Fan. Enhancement of QoS differentiation over IEEE 802.11 WLAN. IEEE Communications Letters, Aug 2004, Vol.8,pp.494-496.
    [77] Ilenia Tinnirello, Giuseppe Bianchi, et al. Performance Evaluation of Differentiated Access Mechanisms Effectiveness in 802.11 Networks. In: Proc. IEEE GlobeCom, 2004. 3007-3011.
    [78] Abdelhamid Nafaa, Adlen Ksentini. SCW: Sliding Contention Window For Efficient Service Differentiation in IEEE 802.11 Networks. In: Proc. IEEE WCNC, March 2005. 1626-1631.
    [79] Draft Supplement to Part 11: Wireless Medium Access Control (MAC and Physical Layer Specification: Medium Access Control (MAC) Enhancements for Quality of Service (QoS), IEEE 802.11 WG Std. 802.11e, 2002.
    [80] Jeffrey W. Robinson, Tejinder S. Randhawa. Saturation Throughput Analysis of IEEE 802.11e Enhanced Distributed Coordination Function. IEEE J. Select. Areas Commun, June 2004, vol. 22, no.5,pp.917-928.
    [81] S.-M. Kim ,Y.-J. Cho. QoS enhancement scheme of EDCF in IEEE 802.11e wireless LANs. Electronics Letters,Aug 2004, 40(17): 1091-1092.
    [82] Zhen-ning Kong, Danny H. K. Tsang, et al. Performance Analysis of IEEE 802.11e Contention-Based Channel Access. IEEE J. Select. Areas Commun, Dec 2004, vol2, no.10, pp 2095-2106.
    [83] Y. Xiao. IEEE 802.11e: A QoS provisioning at the MAC layer. IEEE Wireless Commun., Jun. 2004, vol. 11, no. 3, pp. 72-79.
    [84] Y. Xiao. Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE 802.11e Wireless LANs. IEEE Trans. Wireless Commun., July 2005, vol. 4, no. 4 pp. 1506-1515.
    [85] Jie Hui, M. Devetsikiotis. A Unified Model for the Performance Analysis of IEEE 802.11e EDCA. IEEE Trans. on Comm., Sep 2005, Vol. 53, no. 9, pp1498-1510.
    [86] H. Zhai, Y. Kwon, and Y. Fang. Performance analysis of IEEE 802.11 MAC protocol in wireless LAN. Wireless Communications and Mobile Computing (WCMC), Dec. 2004, pp. 917-931.
    [87] H. Zhai, X. Chen, and Y. Fang. How well can IEEE 802.11 wireless LAN support quality of service? IEEE Trans. on Wireless Communications, Nov. 2005, Vol. 4, No. 6, pp.3084-3094.
    [88] O. Tickoo and B. Sikdar. Queuing analysis and delay mitigation in IEEE 802.11 random access MAC based wireless networks. In: Proceedings of IEEE INFOCOM, Hong Kong, China, March 2004, Vol.2: 1404-1413.
    [89] O. Tickoo and B. Sikdar. A queueing model for finite load IEEE 802.11 random access. In: Proc. IEEE ICC, June 2004, pp. 175-179.
    [90] G.-S. Ahn, A. T. Campbell, A. Veres, et al. Supporting service differentiation for real-time and best-effort traffic in stateless wireless ad hoc networks (SWAN). IEEE Trans. Mobile Computing, 2002, vol. 1, pp. 192-207.
    [91] Sakakibara, K., Chikada, S. and Yamakita, J. Analysis of unsaturation throughput of IEEE 802.11 DCF. In: Proceedings of IEEE International Conference on Personal Wireless Communications (ICPWC 2005), Jan. 2005, pp. 134-138.
    [92] M. Ergen and P. Varaiya. Throughput analysis and admission control in IEEE 802.11a. Mobile Networks and Applications(MONET), Oct. 2005, Vol. 10, pp705-716.
    [93] A.N. Zaki and M.T. El-Hadidi. Throughput analysis of IEEE 802.11 DCF under finite load traffic. In: Proc. First International Symposium on Control, Communications and Signal Processing, 2004, pp535-538.
    [94] G. Cantieni, Q. Ni, C. Barakat, and T. Turletti. Performance analysis under finite load and improvements for multirate 802.11b. Elsevier Computer Commun., June2005, vol. 28(6), pp. 1095-1109.
    [95] K. Duffy, D. Malone and D.J. Leith. Modeling the 802.11 distributed coordination function in non-saturated conditions. IEEE Commun. Lett., Aug. 2005, Vol. 9, No. 8, pp.715-717.
    [96] Changchun Xu and Zongkai Yang. Non-saturated throughput analysis of IEEE 802.11 ad hoc networks. IEICE Trans. on Information & Systems. May, 2006, Vol. E89-D No.5, pp.1676-1678
    [97]杨宗凯,许昌春,张尧学,等.基于分组到达率的IEEE 802.11无线局域网区分服务方法.电子学报, 2006,34(10):1864-1867。
    [98] Changchun Xu, Yaoxue Zhang and Zongkai Yang. Performance analysis of IEEE 802.11e EDCA in non-saturated conditions. Submitted to IEEE WCNC 2008.
    [99] Gunter B, Stefan G, Hermann dM and Kishor ST. Queueing networks and Markov chains. John Wiley & Sons, Inc: Online, 1998.
    [100]林闯.计算机网络与计算机系统的性能评价.清华大学出版社.北京,2001年4月第一版。
    [101] Changchun Xu, Zongkai Yang, Yaoxue Zhang, et al. Unified model for performance analysis of IEEE 802.11 MAC protocol in unsaturated conditions. submitted to IEEE/ACM Transactions on Networking.
    [102] Changchun Xu, Gan Liu, Wenqing Cheng, et al. Multi-transceiver multiple access (MTMA) for mobile wireless ad hoc networks. In: Proc. of IEEE International Conference on Communications, South Korea, May 2005. 2932-2946.
    [103] Changchun Xu, Yanyi Xu and Jingdong Gao, et al. Multi-transceiver based MAC protocol for IEEE 802.11 ad hoc networks. In: proc. of IEEE WCNM, Wuhan, China, Sep, 2005,pp804-807.
    [104] Changchun Xu, Kezhong Liu and Yong Yuan, et al. A novel multi-channel based framework for wireless IEEE 802.11 ad hoc networks. In: proc. of IEEE WCNM, Wuhan, China, Sep. 2005, pp812-815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700