湖南岳阳滩地抑螺防病林生态系统水热、CO_2通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以湖南岳阳滩地抑螺防病林生态系统为研究对象,从土壤-植被-大气系统的角度出发,在典型调查的基础上,运用涡度相关(Eddy covariance,EC)法、树干液流(Sapflow)法对生态系统水热,CO2通量变化及其与外部环境因子的响应关系进行研究,旨在了解滩地抑螺防病林林生态系统本身及环境因子关系的动态变化过程,计量其水热,CO2通量值;对抑螺防病林生态系统合理经营管理,充分发挥其综合生态效应有重要价值。主要得到以下结论:
     (1)湖南岳阳抑螺防病林生态系统,同一能量平衡组分在不同的季节具有相似的日均变化过程规律,基本上呈较规则的单峰型,但在不同的季节收入量差异明显。从全年尺度看,净辐射通量共计2630.50MJ/m2,潜热年通量约为2035.40MJ/m2,大约消耗77%的净辐射能,而显热年通量水平为439.71MJ/m2,占净辐射能16.71%,土壤热通量为-4.06MJ/m2,表现为土壤释放热量,植物体储能等部分大约占净辐射能的6.29%。30min的全年能量收支平衡闭合度约为79%,约有21%的能量不知去向,依然存在不闭合现象。
     (2)土壤水分具有显著的时空尺度变化特征,结合样地基本情况,在空间垂直方向将土壤划分为水分易变层(0~20 cm)、土壤水分利用层(20~100 cm)和土壤水分相对稳定层(100 cm以下)3个层次。在时间方向上可将测定时期样地抑螺防病林地的土壤水分按其特点和时间顺序划分为:土壤聚水期、退水期和稳水期3个时期。土壤含水量主要受3个典型因素(Vi,Ui)(i=1,2,3)影响,逐步回归分析结果显示不同深度的土壤水分受环境因子的影响有差异,总体来看土壤水分主要受到空气温度、水汽压亏缺、土壤温度、降雨和太阳辐射的影响。随着土壤深度的增大回归方程相关系数平方越来越小,说明外部环境因子对深层次土壤水分的影响越来越弱。
     (3)分别从单株尺度和林分尺度对植被蒸腾进行了评估测算。其中在单株尺度上,不同的生长时期,不同的天气条件下,不同的方向和高度,树干液流速率各有差异。晴天杨树液流速率日变化呈现规律的单峰曲线,表现为白天高,夜间低的昼夜节律变化趋势;阴天杨树液流速率日变化呈现无规律性,而且值较低。林分蒸腾量在季节上的变化过程与降雨分布时间紧密相关,日蒸腾量在生长季上呈多峰型分布,峰值多在前期有降雨的情况下出现。
     (4)抑螺防病林生态系统2009年各个季节的水汽通量大多都为正值,森林向大气释放水分,且夏季水汽通量值最大,春、秋季次之,冬季最小,全年蒸散量为928.175mm,占全年降水量的53.70%。生长季日蒸散量变化过程显示,日蒸散量在生长季呈多峰型分布,整个生长季蒸散总量达805.17mm,占全年蒸散量的86.75%。不同天气条件下,环境因子对水汽通量的影响是不同的,晴天条件下环境因子与水汽通量的相关度普遍高于阴天天气。逐步回归分析结果显示晴天影响水汽通量的主要是净辐射、水蒸汽压亏缺、风速、5cm土壤温度,而多云天气影响水汽通量的主要是净辐射、风速、5cm土壤温度。
     (5)CO2通量的季节变化特征就是夏季活跃,春、秋季次之,冬季最弱,不同季节差异明显。白天CO2通量的变化呈单峰型曲线,日出后,随着太阳辐射的增强,CO2通量由正转负,森林转变为CO2的吸收碳汇,最大值基本出现在正午时分,随着太阳辐射的减弱,在日落前,再次达到碳收支平衡,森林生态系统转变为CO2碳源。夜间,由于没有了植物的光合作用,为持续的呼吸释放过程。不同天气条件下(晴天和阴天)CO2通量的日变化有明显区别,晴天CO2通量值要明显高于多云天气,而且日变化更有规律。生长季NEE日总值为负值,表现为碳汇;非生长季NEE日总值基本为正值,表现为弱的碳源。2009年全年观测的NEE、Re和GEE分别为-890.12 gC/(m2·a), 807.82 gC/(m2·a)和-1697.95 gC/(m2·a)。
     (6)抑螺防病林生态系统水分利用效率受多种环境因子的影响。春、夏、秋、冬四个季节,以春季水分利用效率平均值最高,夏季和秋季白天水分利用效率相差不大,冬季最小。
Eddy-Covariance (EC) and sap flow method are employed in this study to investigate the energy balance, water budget and CO2 flux from the aspect of soil-vegetation-atmospheric system. The study site is located in Junshan district of Yueyang city, Hunan province. The primary goal is to find out the changes of the ecosystem and environmental factors, calculate the value of water vapor flux, the heat flux and CO2 flux. These will provide the basic to scientific and reasonable management and give full play to the ecological effect of the snail control and schistosomiasis prevention forests ecosystem. Main results and conclusions are the following:
     The daily variation regularity of energy balance components in different seasons shows signal peak curve but the ratio of energy partitioning in different components are not same in different time scale. The annual net radiation was 2630.50 MJ/m2 in 2009. The latent heat flux was 77% of the net radiation. The sensible heat flux was 16.71% of the net radiation. The soil heat flux and others only took about 6.29% of net radiation. The soil heat flux is negative, which means soil releases heat. The energy closure level was high in 30min scale, but there still had 21% energy missed.
     Soil moisture has the feature of spatial and temporal scale, and the difference of soil water content in different soil layers is significant. According to the basic situation of the plot, it can be divided into three levels in vertical direction. It also can be divided into three stages in time scale:water collection stage, water-falling stage and water steady stage. Soil water content is influenced by three typical factors (Vi, Ui) (i=1,2,3). Stepwise regression analysis shows: there are differences in influencing factors of soil moisture in different depth. Generally speaking, soil moisture is mainly influenced by air temperature, vapor pressure deficit, soil temperature, rainfall precipitation and radiation. The square of coefficient in regression equation is becoming smaller and smaller with soil depth increasing. It is suggested that the influence of environmental factors on soil moisture in deep soil layer is getting smaller.
     Vegetation transpiration is estimated in the plant scale and the stand scale. In the plant scale, there are differences of sap flow velocity in different growth stages, different weather conditions, different directions and different height. In sunny days, diurnal variation of the sap flow velocity of Populus has regular single-peak curve, which is high in the daytime, but was low at night. In wet days, daily variations of Poplar sap flow velocity are irregular and the value is low. It was close correlation between rate quarterly variation and precipitation timely distribution. The changing process of transpiration closely related to the time distribution of rainfall. The daily transpiration in seasonal scale shows multi-peak distribution.
     Water vapor flux in this ecosystem was positive in almost all seasons in 2009, which showed the ecosystem was water sink. Water vapor flux in summer was higher than in spring and autumn, and the water vapor flux in winter is the lowest. The evapotranspiration was 928.175mm, which was 86.75% of evapotranspiration in 2009. The influence of environmental factors on Water vapor flux was different on sunny days and cloudy days. Stepwise regression analysis shows:the water vapor flux in sunny days was affected by net radiation, vapor pressure deficit, wind speed and soil temperature in 5cm, while in cloudy day is net radiation, wind speed and soil temperature in 5 cm.
     There were obvious differences of the feature of CO2 Flux in seasonal scale:CO2 Flux in summer was higher than in spring and autumn, while it was the lowest in winter. The changes of CO2 in the day time showed signal peak curve. After the sunrise, the value of CO2 flux changed from positive to negative, which means the forest is a carbon sink, while the forest turned into a carbon source before the sunset. Without the photosynthesis at night, the forest releases CO2 through respiration. There were differences in diurnal variation of CO2 flux on sunny day and on cloudy day. The value in sunny day was higher than in the cloudy day, and it was more regular. The value in day time was negative during the growing season, and the forest absorbs CO2, while it was positive during non-growing season, and the forest releases CO2. The value of NEE, Re and GEE in 2009 were-890.12 gC/(m2·a),807.82 gC/(m2·a)和-1697.95 gC/(m2·a) respectively.
     Water use efficiency of the snail control and schistosomiasis prevention forests ecosystem was affected by many ecological factors. Its average value in the spring was higher than in the summer and autumn, while it the was lowest in the winter.
引文
陈步峰,周光益,曾庆波等.热带山地次生雨林生态系统的水文学过程及养分动态.林业科学研究,1994,7(5):526~528
    陈建耀,刘昌明,吴凯.利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散[J].应用生态学报,1999,10(1):45~48
    陈军锋.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474~480
    陈灵芝,黄建辉,严昌荣. 中国森林生态系统养分循环.气象出版社,1997,13~18
    崔启武,边履刚,史继德等.林冠对降水的截留作用.林业科学,1980,16(2):141~146
    邓大清.滩地造林与钉螺分布关系的研究.湖南林业科技,1996,23(4):31~36
    邓世宗,韦炳贰.不同森林类型林冠对大气降雨量再分配研究.林业科学,1990,6(6):271~276
    董世仁,郭景唐,满荣洲等.华北油松人工林的透流、干流和林冠截留.北京林业大学学报,1987,9(1):58~61
    董云社,章申,齐玉春,等. 内蒙古典型草地CO2, N2O, CH4通量的同时观测及其日变化.科学通报,2000,45(3):318~322
    方精云等.全球生态学:气候变化与生态响应.高等教育出版社,2000,6~15
    方精云等.现代生态学的热点问题研究.中国科学技术出版社,1996,12~18
    冯光扬.明月江的森林水文效应研究.山地研究,1995,13(1):22~26
    高成德,余新晓.水源涵养林研究综述.北京林业大学学报,2000,22(5):78~82
    高甲荣.秦岭林区锐齿栎林水文效应的研究.北京林业大学学报,1998,20(6):31~35
    高甲荣等.国外森林水文研究进展述评.水土保持学报,2001,15(5):60~64,75
    高健,彭镇华.滩地杨树光合生理生态的研究.林业科学研究,2000,13(2),147~152
    郭景唐.华北油松人工林树枝特征函数对干流影响的研究.见周晓峰主编,中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:268~273
    洪长福.不同杉木混交林类型幼龄林水源涵养功能研究.福建林学院学报,1997,17(2):184~188
    侯庆春,韩蕊莲.黄土高原植被建设中的有关问题[J].水土保持通报,2000,20(2):53~56
    黄礼隆,陈祖铭,任守贤. 森林水文研究方法.四川林业科技,1994 a,15(1):14~46
    黄礼隆.川西亚高山暗针叶森林涵养水源性能的初步研究[M].见周晓峰主编.中国森林生态系统定 位研究.哈尔滨:东北林业大学出版社,1994 b:400~412
    江泽慧.兴林灭螺论文选集.北京:中国林业出版社,1995
    康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及应用[M].北京:水利电力出版社,1994,77~80
    李斌,张金屯.黄土高原地区植被与气候的关系[J].生态学报,2003,23(1):82~89
    李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1~5
    李凌浩,王其兵.武夷山甜槠林水文学效益的研究.植物生态学报,1997,21(5):393~402
    李士生,姜志林.苏南丘陵主要森林类型保持水土效益的研究.长江流域资源与环境,1994,3(1):55~59
    李树人等.豫西伏牛山区日本落叶松水文效应研究.林业科学,1999,35(专刊):48~53
    李文华,何永涛等.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398~406
    李正泉,于贵瑞,温学发等.中国通量观测网络(ChinaFLUX)能量平衡闭状况的评价.中国科学(D辑),2004,34(增刊Ⅱ):46-56
    梁一民.从植物群落学原理谈黄土高原植被建造的几个问题[J].西北植物学报,1999,19(5):26~31
    刘昌明.土壤—植物—大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):366~373
    刘奉觉.树木蒸腾耗水量的测算方法. 林业科技通讯,1991,1:27~29
    刘强,刘嘉麒等,温室气体浓度变化及其源与汇研究进展,地球科学进展,2000,15(4),453~460
    刘世荣,常建国,孙鹏森.森林水文学:全球变化背景下的森林与水的关系.植物生态学报,2007,31(5):753~756
    刘世荣,温远光等.中国森林生态系统水文生态功能规律,北京:中国林业出版社,1996
    刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27~30
    刘向东,吴钦孝,苏宁虎.六盘山林区森林树冠截留、枯枝落叶层和土壤水文性质的研究.林业科学,1989,25(3):220~227
    刘向东,吴钦孝,赵鸿雁.黄土高原油松人工林枯枝落叶层水文生态功能研究.水土保持学报,1991b,5(4):87~91
    刘向东,吴钦孝,赵鸿雁.黄土丘陵区人工油松林和山杨林林冠截留作用的研究.水土保持通报,1991c, 11(2):4~7,42
    刘向东,吴钦孝,赵鸿燕.黄土丘陵油松人工林和山杨林水文作用效应研究.中国科学院西北水土保持研究所集刊,1991a(14):9~20
    刘允芬,宋霞,孙晓敏等.千烟洲人工针叶林CO2通量季节变化及其环境因子的影响.中国科学:D辑,2004,34(增刊Ⅱ):109~117
    马长明,管伟,叶兵等.利用热扩散式边材液流探针(TDP)对山杨树干液流的研究[J].河北农业大学学报,2005,28(1):39~43
    马长明.官厅库区小叶杨和刺槐的耗水特性研究[D]. 保定:河北农业大学,2004
    马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报,2001,23(4):1~5
    马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):1~7
    闵庆文,袁嘉祖.森林对于降水的可能影响:几种分析方法所得结果的比较[J].自然资源学报,2001,16(5):467~473
    聂道平,徐德应.全球碳循环与森林关系的研究—问题与进展.世界林业研究,1997,10(5):33~40
    牛云,张宏斌,刘贤德等.祁连山主要植被下土壤水的时空变化特征[J].山地学报,2002,20(6):723~726
    潘建平,韩士杰等.风对山杨叶片蒸腾的影响.东北林业大学学报,1996,24(1):27~32
    潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.
    潘维铸等.森林水文学研究中的生态系统观念.见:全国森林水文学术讨论会文集.北京:测绘出版社,1989a:25~31
    彭镇华,江泽慧.长江中下游低丘滩地综合治理与开发研究.中国林业出版社,1996
    彭镇华,江泽慧.中国新林种抑螺防病林研究.中国林业出版社,1995
    彭镇华.长江中下游滩地杨树栽培与利用.中国林业出版社,2002
    彭镇华,孙启祥,康忠铭.有螺滩地林农复合生态系统的建立及其效果分析.安徽农业大学学报,1994,增刊:1~7
    齐玉春,罗辑,董云社等.贡嘎山山地暗针叶林带森林土壤温室气体N2O和CH4排放研究.中国科学,D辑,2003,32(11):934~941
    桑卫国马克平.暖温带落叶阔叶林碳循环的初步估算.植物生态学报,2002,26(5):543~548
    沈国舫,王礼先.中国可持续发展水资源战略研究报告集第7卷:中国生态环境建设与水资源保护利用.北京:中国水利水电出版社,2001
    石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481~487
    宋日升,张变香,李晨光.关第林区森林水文效益分析.陕西林业,2000(2):25~27
    孙惠南.近20年来关于森林作用研究的进展[J].自然资源学报,2001,16(5):407~412
    孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387~1391
    孙鹏森,马李一,马履一等.油松刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报,2001,23(2):1~6
    孙鹏森,马履一,王小平等. 油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1~6
    孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究.北京林业大学博士学位论文,2000
    孙启祥,彭镇华.长江滩地杨树人工林生物量的研究.林业科技通讯,1997,4~6
    王华田,马履一.利用热扩散式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6):661~667
    王华田,邢黎峰,马履一等.栓皮栎水源林林木耗水尺度扩展方法研究[J].林业科学,2004,40(6):170~175
    王华田.北京市水源保护林区主要树种耗水性研究.博士学位论文,北京:北京林业大学,2002
    王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,6:14~23
    王礼先.植被生态建设与生态用水—以西北地区为例[J].水土保持研究,2000,7(3):5~7
    王孟本,李洪建,柴宝峰等.树种蒸腾作用、光合作用和蒸腾效率的比较研究.植物生态学报,1999,23(5):401~410
    王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究[J].水土保持通报,1990,10(6):85~90
    王沙生,高荣孚,吴贯明.植物生理学. 中国林业出版社,1990
    王沙生,王世绩,裴保华编.杨树栽培生理研究[M].北京:北京农业大学出版社,1991
    王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状.地球科学进展,2002,17(4):528~534
    王淑元,林升寿.中国森林生态系统定位研究进展.见周晓峰主编:中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:1~30
    王树森,朱治林,孙晓敏.拉萨地区农田能量物质交换特征[J].中国科学D辑,1996,26(4):359~364
    王妍,张旭东,彭镇华等.森林生态系统碳通量研究进展.世界林业研究,2006,19(3):12~17
    王妍.长江中下游滩地抑螺防病林生态系统碳水通量及碳贮量研究[D].北京:中国林业科学研究院,2006
    王彦辉,刘永敏.毛竹人工林水文作用的研究[M].见周晓峰主编:中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:354~363
    王彦辉.刺槐对降雨的截持作用.生态学报,1986,7(1):43~49
    王彦辉.陇东黄土地区刺槐林水土保持效益的定量研究.北京林业大学学报,1986,8(1):35~52
    王彦辉,于澎涛.林冠截留降雨模型转化和参数规律的初步研究.北京林业大学学报,1998,20(6):25~30
    王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社,1994:32~36
    王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000a,15(3):1~7
    王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000b,15(4):1~5
    温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性.地球科学进展,2004,4(19):658-663
    文仕知,潘维涛.杉木人工林生态系统的水文生态效益:小集水区综合试验初报.中南林学院学报,1989,A09期:11~22
    吴家兵,关德新,张弥等.长白山阔叶红松林碳收支特征.北京林业大学学报,2007,29(1):1~6
    熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学杂志,2005,24(4):417~421
    杨光.试论植被恢复生态学的理论基础及其在黄土高原植被重建中的指导作用[J].水土保持研究,2000,7(2):133~135
    杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、树冠截留和树干茎流.林业科学研究,1992,5(2):158~162
    杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5):433~438
    杨晓光,沈彦俊,于沪宁.夏玉米群体水分利用效率影响因素分析[J].西北植物学报,1999,19(6):148~153
    杨玉盛,陈光水,谢锦升.论森林水源涵养功能.福建水土保持,1999,11(3):3~7,29
    余新晓. 土壤动力水文学及其应用[M].北京:中国林业出版社,1995
    曾庆波,李意德,陈步峰等.热带森林生态系统研究与管理.北京:中国林业出版社,1996,137~166
    曾庆波.海南岛尖峰岭热带林生态系统的水分循环研究.见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994 b:413~429
    曾小平,赵平,彭少麟.鹤山人工马占相思林水分生态研究[J].植物生态学报,2000(24):69~73
    张春宏.森林的水文效应.见:中国地理学会第三次全国水文学术会议论文集.1986:169~172
    张金池等.苏北海堤防护林冠层截留降水特性研究[J].南京林业大学学报,1992,20(1):20~21
    张守仁,高荣孚,王连军.杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应[J].植物生态学报,2004,28(2):143~149
    张旭东,彭镇华.长江干流季节性水淹滩地杨树生长规律研究.生物数学学报,1999,14(3),322~326
    张旭东,彭镇华,周金星.抑螺防病林生态系统抑螺机理的研究进展.世界林业研究,2006,19(3):38~43
    张旭东,吴刚,彭镇华.滩地林业生态工程与钉螺孳生关系的研究.应用生态学报,1998,9(5):468~470
    张旭东,杨晓春,彭镇华.钉螺分布与滩地环境因子的关系.生态学报,1999,23(2):265~269
    张学龙,王金叶,金博文.祁连山林区土壤水分条件的分析与评价.西北林学院学报,2001,16(增):17~21
    中野秀章.森林水文学.北京:中国林业出版社,1983
    周光益.国热带森林水文生态功能.生态学杂志,1997,16(5):47~50
    周广胜等.陆地生态系统类型转变与碳循环.植物生态学报,2002,26(2):250~254
    周金星,彭镇华.森林生态工程的建设对水资源的影响.世界林业研究,2002,15(2),54~60
    周晓峰,李庆夏,金永岩.帽儿山、凉山森林水分循环的研究[J].见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:213~222
    周晓峰,正确评价森林水文效应[J].自然资源学报,2001,16(5):420~426
    周玉荣,于振良.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518~522
    朱金兆,魏天兴,张学培.基于水分平衡的黄土区小流域防护林体系高效空间配置[J].北京林业大学学报,2002,24(5):5~13
    朱治林,孙晓敏等.作物群体CO2通量和水分利用效率的快速测定[J].应用生态学报,2004,15(9):1684~1686
    Anthoni, P.M., B.E. Law, and M.H. Unsworth,Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem [J].Agricultural and Forest Meteorology,1999.95(3):151-168
    Aston,M.J.,D.W.Lawlor. The relationship between transpi-ration, root water uptake, and leaf water potential.J.Exp.Bot.1979,30:169-181
    Aubinet, M., B. Heinesch, and B. Longdoz, Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability [J]. Global Change Biology, 2002,8(11):1053-1071
    Aubinet, M., et al., Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes [J]. Agricultural and Forest Meteorology,2001,108(4):293-315
    Baldocchi D D. A. comparative study of mass and energy exchange over a closed(wheat) and an open(corn) canopy:Ⅱ. Canopy CO2 exchange and water use efficiency [J]. Agricultural and Forest Meteorology, 1994,67:291-322
    Baldocchi D D., Wilson K.. Modeling CO2 and water vapor exchange of temperate broadleaved forest across hourly to decadal time scales. Ecological modeling,2001,142:155-184
    Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rate of ecosystem:past, present and future. Global Change Biology,2003,9:479-492
    Baldocchi, D D. Assessing ecosystem carbon balance:problems and prospects of the eddy covariance technique. Global Change Biology,2003,9:478-492
    Barrett,D.J., Hatton, T.J., Ash J.E., and Ball. M.C., Transpira-tion by trees from contrasting forest types. Aust.J.Bot,1996,44:249-263
    Berbigier P., Bonnefond J., Mellmn M., et al. CO2 and water vapor fluxes for 2 years above Euro flux forest site. Agricultural and Forest Meteorology,2001,108:183-197
    Black T A, den Hartog G, Neumann H H, et al., Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology,1996,2:219-229
    Brown A H F. and Iles M A. Water chemical Profiles under four tree species at Gisbum, N W England. The journal of the institute of Chartered Foresters,1991,64(2):169-187
    Canadell J.G., Mooney H., Baldocchi D.. Carbon Metabolism of the Terrestrial biosphere:A mulitechnique approach for improved understanding. Ecosystems,2000,3:115-130
    Chen W J, Black T A, Yang P C, et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology,1999,5:41-53
    Cienciala,E.,A.Lindroth. Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest.1. Transpiration and sap flow. Trees,1995,9:289-294
    Clark D,A, Brown S, Kicklighter D W, et al., Measuring net Primary Production in forests:concepts and field measurements. Ecological Applications,2001,11:356-370
    Cochard,H.,N.Br6da,A.Granier. Whole tree hydraulic conductance and water loss regulation in Quercus during drought:evidence for stomatal control of embolism?Ann.Sci.For,1996,53:197-206
    Cohen Y, Fuchs M, Green G C. Improve of the heat pulse method for determining sap flow in trees [J]. Plant, Cell and Environment,1981(4):391-397
    Constatin J., lnelan M.G., Raschendorfer M.. The energy budget of a spruce forest:Field measurements and comparison with the forest. Journal of Hydrology,1998,213:22-35
    Dunin et al.. Evaluation of the ventilated chamber technique for measuring evaporation from a forest.Hydro. Proc,1986,1:47-62
    Dye et al. A comparison of heat pulse method and deuterium tracing method for measuring transpiration from Eucalyptus grandis trees. J. Exp. Bot,1992,43:337-343
    Edwards W. R. N.. Precision weighing lysimeter for trees, using a simplified tared-balance design. Tree physiol,1986,1:127-141
    Falge E., Baldocchi D., Olson R., et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol,2001,107:71-77
    Falge E., Baldocchi D.D., Olson R., et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol,2001,107:43-69
    Farquhar, G. D. Feedforward responses of stomata to humidity. Aust. J. Plant. Physiol,1978,5:787-800
    Foken, T, Wichura, B. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology,1996,78:83-105
    Francno,C.M.,and Magalhaes,A.C., Techniques for the measurement of transpiration of individual plants.Arid Zone Res,1965,25:211-224
    Fritschen et al.A 28-meters Douglas-fir in a weighing lysimeter. For. Sci.,1973,19:256-261
    Gash J H C, Wight IR and Lloyd C R. Comparative estimates of interception loss from three Coniferous forests in Great Britain. J.Hydrol,1980,48:89-105
    Geider RJ, Evan H, Paul GD, et al. Primary productivity of planet earth:biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology,2001,7(8):849-882
    Goudriaan J Mieroweather Simulation Model. Applied to a Forest InS. Halldin(ed) Comparison of Forest Water and energy Exehange Models. Copenhagen,1977,47-57
    Goulden M L, Daube B C, Fan S M, et al. Physiological responses of a black spruce forest to weather. Journal of Geophysical Research,1997,10(28):987-996
    Goulden, M L., Duabe, B C., Fna, S M., et al. Physiological responses of a black spruce forest to weather. J. Geophys. Res.,1997,102(D24):28987-28996
    Grainer A, Hucr, Barigali S T. Transpiration of natural rain forest and it s dependence on climatic factors [J]. Agricultural and Forest Meteorology,1996 (78):19-29
    Grainer A. Evaluation of transpiration in a Douglas fir stand by means of sap flow Measurement[J]. Tree Physiology,1987 (3):309-320
    Greco S., Baldocchi D.. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology,1996,2:183-198
    Greenwood et al.. Evaporation from vegetation in landscape developing secondnary salinity using the ventilated-chamber technique I comparative transpiration from juvenile Eucalyptus above saline ground-water seeps J.Hydrol,1979,42:369-382
    Griffis T J, Black TA, Morgenstern K, et al. Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology,2003,117:53-71
    Han shifeng, Li Yushan, Zhang Xiaozhong, et al. Water distract developing characteristic of the Loess Plateau Coll[J]. Bull Soil Water Cons,1989,10:161-167
    Hatton. T. J., S. J. Moore and P.H. Reece. Estimating stand transpiration in a Eucalyptus populnea woos land with the heat pulse method:Measurement errors and sampling strategies.Tree Physiol,1995,15: 219-227
    Hinckley,T.M.J.R.Brooks,et al., Water flux in a hybrid poplar stand.Tree Physiol,1994,14:1005-1018
    Holdridge L R. Life zone ecology. Tropical Science Center, Costa Rica.1996.
    Hollinger D Y, Kelliher F M, Schulze E D, et al. Forest-atmosphere carbon dioxide exchange in eastern 参考文献Siberia. Agricultural and Forest Meteorology,1998,90:276-290
    Hunt J E, et al. Evaporation and carbon dioxide exchange between the almosphere and tussock grassland during a summer drought [J].Agricultural and Forest Meteorology,2002,111:65-82
    Irvine, J., Perks, M.P., et al., the response of pinus sylverstris to drought:stomatal control of transpiration and hydraulic conductance. Tree Physiol.,1998,18:393-402
    Kaufmann,M.R., Automatic determination of conductance,transpiration and environ-mental conditons in forest trees.For.Sci.1981,27:817-827
    Knight et al. Transpiration from 100-year-old lodgepole pine forests estimated with whole-tree potometers. Ecology,1981,62:717-726
    Kramer P J., Boyer J.S., Water relation of plants and soils. Academic Press, Inc.1995
    Kuppers, M. Carbon relations and competition between woody species in a Central European hedgerow. II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway. Oecologia,1984, 64:344-354
    Lagergren,F.,Lindroth,A., Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculture and For.Meteor,2002,112:67-85
    Landsberg,J.J.,T.W.Blanchard,B.Warrit. Studies on the movement of water through apple trees.J.Exp.Bot. 1976,27:579-596
    Law B E, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation [J]. Agricultural and Forest Meteorology,2002,113:97-120
    Lee X, Fuentes J D, Staebler R M, et al. Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada, Journal of Geophysical Research,1999,104: 15975-15984
    Lee, X., On micrometeorological observations of surface-air exchange over tall vegetation [J]. Agricultural and Forest Meteorology,1998,91(1-2):39-49
    Leyton I et al. Rainfall interception in forest and moorland. In:Int. Symp. Forest Hydrology. Pergamon Press. Oxford,1965,163-178
    Liang N, Inoue G, Fujinuma Y. A multichannel automated chamber system for continuous measurement of forest soil efflux. Tree Physiology,2003a,23:825-832
    Lindroth,A.,E.Cienciala. Measuring water use efficiency of eucalypt trees with chambers and micrometeorological techniques--comment.J. Hydrol,1995,169:281-283
    Loustau, D., P. Berbigier, P. et al. Transpira-tion of a 64-year-old maritime pine stand in Portugal.1.Seasonal course of water flux through maritime pine. Oecologia,1996,107:33-42
    Mahrt L. Flux sampling errors for aircraft and towers. Journal of atmospheric and Oceanic Technology, 1998,15:416-429
    Massman, W, Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy. Agricultural and Forest Meteorology,2002,113:121-44
    Meinzer,F.C.,D.A.Grantz. Stomatal and hydraulic conduc-tance in growing sugarcane:stomatal adjustment to water transport capacity.Plant Cell Environ,1990,13:383-388
    Meinzer,F.C.,G.Goldstein,P.Jackson,N.M.Holbrook,M.V.Gutier-rez and J.Cavelier. Environmental and physiological regulation of transpiration in tropical forest gap species:the influence of boundary layer and hydraulic properties.Oecologia,1995,101:514-522
    Miyama T, Kominami Y, Tamai K, et al. Automated foliage chamber method for long-term measurement of CO2 flux in the uppermost canopy. TellusB,2003,55:322-330
    Moren A S, Lindroth A. CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology, 2000,101:1-14
    Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981-1991. Nature,1997a,386:698-702
    Myneni R B, Running S W, Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geosci and Remote Sensing,1997b,35:1380-1393
    Nie, D, Kanemasu, E T., Fritschen, L J., et al. An intercomparison of surface energy flux measurement systems used during FIEF1987. J.Geophys. Res.,1992,97(D17):18715-18724
    Pirce D., Black T.. Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of a juvenile Douglas-fir stand. Agric For Met,1990,50:139-150
    Powell D B B. Thorpe M R,1977,Dynamic aspects of plant-water relations in environmental effects on crop physiology, London, Academic Press,1977:259-279
    Randerson J T, Thompson M V, Conway T J, et al. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochemistry Cycles,1997,11: 535-560
    Reich,P.B.,T.M.Hinckley. Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species. Funct. Ecol,1989,3:719-726
    Richard M P, Jonathan S P, Waddingtonc J M, et al. Surface moisture and energy exchange from a restored peatland, Que'bec, Canada[J]. Journal of Hydrology,2004(295):198-210
    Robert J., Forest transpiration:A convservative hydrological process?. Joun. of Hydrol,1983,66:133-141
    Roberts, J. The use of tree-cutting techniques in the study of the water relations of pinus sylvestris.L.J.Exp.Bot,1977,28:751-767
    Running S., Baldocchi D., Turner D.. A Global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment,1999,70: 108-127
    Rutter,A.J., studies on the water relations of pinus sylverstris in plantation conditions. Part Ⅴ.Responses to variation in soil water conditions. J. Appl. Ecol.,1967,4:73-81
    Rutter.A.J. Studies in the water relations of Pinus sylvestris in plantation, evaporation of intercepted water, and evaporation from the soil surface. J. Ecol,1966,3:393-405
    Salter P J,Goode J E. Crop responses to water at different stage of growth. Research review No.2 Farnham Royal. England:Commonwealth Agricultural Bureaux.1967
    Scanlon T M, Albertson J D. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa [J].Global Change Biology,2004,10:329-341
    Schiller,G.,Y.Cohen. Water regime of a pine forest under a Mediterranean climate.Agric.For.Meteorol,1995, 74:181-193
    Schulze E D, Valentini R, Sanz M J. The long way from Kyoto to Marrakesh implications of the Kyoto Protocol negotiations for global ecology. Global Change Biology,2002,8(6):505-518
    Schulze,E.D.,J.eermak,R.Matyssek,M.Penka,R.Zimmermann,F.Vasicek,W.Gries and J. Kueera. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees--a comparison of xylem flow,porometer and cuvette measurements.Oecologia,1985,66:475-483
    Schulze,E.D. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol,1986,37:247-274
    Smith et al., Measurement of sap flow in stems.J.Exp.Bot,1996,47:1833-1844
    Smith T M and Cramaer W P. The global terrestrial carbon cycle. Water, Air, and soil Pollution,1993,70: 19-37
    Smith, D. M. And S.J. Allen, Measurement of sapflow in plant stems. J. Exp.Bot,1996,47:1833-1844
    Sperry,J.S.,W.T.Pockman. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis.Plant Cell Environ,1993,16:279-287
    Swanson R H. Seasonal course of transpiration of lodge pole pine and Engelmann spruce. In:W E Sopper and H. W. Lull (Editors), International Symposium on Forest Hydrology[D]. Pergamon. London, 1967, pp.419-434
    Swanson R H, Whitfield W A. Numerical analysis of heat pulse velocity theory[J]. Journal of Experimental Botany,1981(32):221-239
    Swanson, R.H transpired by trees is indicated by heat pulse velocity. Agri. Meteorol,1994,72:113-132
    Swanson, R.H., Significant historical developments in thermal methods for measuring sap flow in trees.Agric.For.Meteorol.,1994,72:113-132
    Twine, T E., Kustas, W P., Norman, J M., Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol.,2000.103:279-300
    Urban L L, ZHAO P. Granier's Thermal Dissipation Probe (TDP) Method for Measuring Sap Flow in Trees: Theory and Practice[J]. Acta Botanica Sinica,2004,46(6):631-646
    Vertessy, R.A., T.J. Hatton. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiology,1997,17:747-756
    Viville D et al. Interception in a mountainous declining Spruce stand in the Strengbach Catchment (Vosges, France). Journal of Hydrology:(Amsterdam); ISSN 00221694; Coden JHYDA7; NLD;DA,1993, 144(1-4):273-282
    Wang A.Z, Pei T. F.. Research progress on surveying and calculation of forest evapo transpiration and its prospects. Chinese Journal of Applied Ecology,2001,12(6):933-937
    Wang Guoliang, Liu Guobin, Chang Xin, et al.The water hydrology effect in the forest building of the hills of the Loess Plateau[J].Natural Resources Journal,2002,17(3):340-341
    Wang Y S, Wang Y H. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Advances in Atmospheric Sciences,2003,20(5):842-844
    Waring et al. Estimating water flux through stems of Scot pine with tritated water and phosphous.J.Exp.Bot, 1979,30:459-471
    Wilson, KB, Baldoeehi, DD., Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern United States. J. Geophys. Res.,2001,106(D24):34167-34178
    Wilson, K B., Goldstein, A E., Falge, M., et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology,2002,113:223-243
    Wullschleger S D, Meinzer F C, Vertessy A A. Review of whole-plant water use studies in trees [J]. Tree Physiology,1998,18(89):499-512
    Zimmermann M H., Brown C.L.,1974.Trees,structure and function(Ⅱ). Springger, Berlin, Heidelberg, New York,1974
    Zinke P J. Forest interception studies in the United States. In Sopper, W E, and Lull, H. W. (Eds.). Forest Hydrology. Pergamon Press, Oxford, England,1967:137-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700