用户名: 密码: 验证码:
白杨杂种三倍体新品种材性性状遗传变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白杨杂种三倍体综合杂合优势和倍性优势,具有生长迅速、纤维长度长、木质素含量低等特性,是我国北方地区优良的纸浆材新品种。为深化对白杨三倍体材性性状遗传变异的认识,促进新品种的推广及利用,本研究在鲁、豫、晋3省5地的白杨三倍体新品种区域化试验林及河北威县的栽植密度试验林的基础上,开展白杨三倍体材性性状遗传变异规律,木材材性株内纵向变异以及不同造林密度对材性变异的影响等方面的研究,取得了一定的进展。
     (1)明确了基因型、环境以及基因型×环境对白杨三倍体新品种材性性状的影响。白杨三倍体新品种木材基本密度、纤维性状和木质素含量都受基因型、环境以及基因型×环境的极显著影响。其中,木材基本密度和纤维性状的表型总变异主要来源于基因型效应,其次是环境效应。基因型、环境及基因型×环境效应对木质素含量表型总变异的贡献率相似。苯醇抽出物含量的表型变异中,环境效应的贡献率远高于基因型及基因型×环境效应效应。
     (2)对白杨三倍体新品种材性性状的遗传参数进行了估算。研究表明,白杨三倍体新品种木材材性大多数受中等到强度的遗传控制。木材基本密度和纤维性状的重复力介于0.62~0.95之间。木质素含量在除高唐地点外,品种间的差异都达到显著水平,重复力介于0.78-0.89之间。综纤维素和苯醇抽出物含量仅在高唐和郑州两地表现出品种间的显著差异,重复力介于0.71-0.93之间。进行新品种选择时,化学组分性状中应主要考虑木质素含量。此外,白杨三倍体新品种材性性状间存在不同程度的遗传相关。木材基本密度与纤维性状以及纤维性状之间存在显著的中等到强度的遗传正相关,木材主要化学组分与基本密度及纤维性状之间的遗传相关性,存在地点间的差异,在各地点间并未呈现出系统的变异规律。
     (3)在白杨三倍体新品种区域化试验林材性性状遗传参数估计的基础上,进行了材性性状综合选择的研究,为每个栽培地筛选出2个优良纸浆材品种。研究表明,高唐地点内的B305和B331、兖州地点内的B304和B331、襄汾地点内的B304和B306、太原地点内的B305和B333以及郑州地点内的B304和B306,是木材基本密度大,纤维性状表现良好,综纤维素含量高,木质素含量和苯醇抽出物含量较低的白杨三倍体优良纸浆材品种。
     (4)对白杨三倍体新品种材性性状地点组合间的B型遗传相关系数进行估算,研究表明,白杨三倍体新品种木材基本密度和纤维性状与主要化学组分相比,在各栽培地点之间的稳定性更高。木材基本密度和纤维性状在地点组合间呈显著的正的B型遗传相关,而木质素和苯醇抽出物含量在太原和其他地点之间的差异,主要来源于基因型×环境效应。
     (5)明确了树干高度对白杨三倍体新品种木材基本密度和纤维性状的影响。树干高度仅对纤维长度和粗度的影响达到显著水平,在纤维长度和粗度表型总变异中的贡献率分别为36.63%和3.77%。研究表明,在取样高度一致的情况下估算白杨三倍体材性性状的遗传效应,不会产生显著的系统误差。在白杨三倍体的生长过程中,木材基本密度和纤维性状受到地点间环境条件的显著影响
     (6)明确了栽植密度对白杨三倍体新品种木材材性的影响。随着栽植密度的降低,白杨三倍体木材基本密度呈先增加后降低的趋势,纤维长度呈逐渐增长的趋势,纤维宽度和粗度则表现出上下波动的趋势;而木材基本密度和纤维性状之间,以及各纤维性状之间的相关性呈不规则变化。栽植密度以及栽植密度×基因型对木材基本密度、纤维长度、宽度及粗度的影响均未达到显著水平,表明在2m×2m(2490株·hm-2)、2m×3m(1660株·hm-2)、2m×3.5m(1420株·hm-2)、2m×4m(1240株·hm-2)、3m×3m(1110株·hm-2)、2m×5m(990株·hm-2)及3m×4m(820株·hm-2)7个栽植密度条件下,可主要考虑白杨三倍体的生长性状,以提高单位面积的材积生长量。
Triploid hybrid varieties of white poplar are combined with both hybrid and polyploidy vigors. Compared to P. tomentosa, the triploid hybrid varieties have a high growth rate, longer fibers, and lower lignin content. It was widely planted in northern China to obtain a high fiber yield from crops. In order to a clear understanding of the genetic variations of wood properties, giving a prerequisite for breeding and utilizing in triploid hybrid varieties of white poplar, the genetic variations of wood properties, variability in wood properties along the stem as well as between different initial spacing were estimated based on five sites clonal trails and a spacing trail. Major results as follows,
     1. Significant genotypic, environment and genotypic x environment interaction were detected for basic wood density, fiber traits and lignin contant of triploid hybrid varieties of white poplar. The phenotypic variances of basic wood and fiber traits were mainly composed by genotypic effect, secondly by environment effect. The genotypic, environment and genotypic x environment interaction effects have similar contribution for lignin phenotypic variances. However, the contribution of environment effect was much higher than the other two effects in phenotypic variances of alcohol-benzene extractives.
     2. The genetic parameters of wood properties were estimated. The results suggested that the most wood properties of triploid hybrid varieties of white poplar were under the moderate to high genetic controlled. The repeatability of basic wood density and fiber traits ranged from0.62-0.95. Significant differences of triploid hybrid varieties were found on lignin, excluding in Gaotang site, and the repeatability ranged from0.78~0.89. However, the significant differences of triploid hybrid varieties were only detected in Gaotang and Zhengzhou sites, and the repeatability ranged from0.71~0.93. These indicated that the lignin should be the primary consideration in wood chemical composition traits under the clonal selecting program. In addition, moderate to strong and significant positive genotypic correlations between basic wood density and fiber traits were found in five trails, however it was no consistency variations for the genotypic correlations between wood chemical composition traits and the other wood properties among individual site.
     3. Clone selection for pulp wood was explored by principal component analysis method with all studied traits combine based on genetic parameters. The studies suggested that the varieties of B305and B331at Gaotang site, B304and B331at Yanzhou site, B304and B306at Xiangfen site, B305and B333at Taiyuan site, as well as B304and B306at Zhengzhou site were suitable for pulp industry, according to a higher basic wood density and holocellulose, favourable fiber traits, as well as a lower lignin and alcohol-benzene extractives.
     4. The type B genetic correlations between different sites were evaluated for wood properties of triploid hybrid varieties of white poplar. The researches indicated that the basic wood density and fiber traits were rather stable across environments than the wood chemical composition traits. Positive and significant type B genetic correlations were found on basic wood density and fiber traits between individual sites. However, the phenotype variations of lignin and alcohol-benzene extractives between Taiyuan site and the other sites were mainly came from the effect of genotypic x environment interaction.
     5. The effects of sampled heights on wood basic density and fiber traits were determined. Significant height position effect for fiber length and coarseness were detected, with it composed36.63%and3.77%for phenotype variations, respectively. The results based on analysis of variance indicated that it was effective to estimate the genetic parameters of wood properties with the same simple height. Moreover, the basic wood density and fiber traits were influenced by environment during the growth of triploid hybrid varieties of white poplar.
     6. The effects of planting spacing on wood density and fiber traits were determined. With the lowing planted spacing, the basic wood density was initially increased then decreased. However, the fiber length increased with lowing planting spacing, whereas the fiber width and coarseness appeared fluctuated trends. In addition, the correlations between these wood properties varied with the lowing planting spacing. The research suggested that there were no significant effects of planting spacing and genotypic x spacing on basic wood density and fiber traits. These indicated that it was more effectively to improved the growth traits rather than the wood properties of triploid hybrid varieties of white poplar under the planting spacing studied in this research.
引文
[1]成俊卿.木材学[M].北京:中国林业出版社,1985.
    [2]方文彬,徐永吉,罗建举.栽培措施对短周期工业材材性影响规律的研究[J].中南林学院学报.1997,17(4):14-23.
    [3]黄少伟,谢维辉.实用SAS编程与林业试验数据分析[M].广州:华南理工大学出版社,2001.
    [4]姜笑梅,张立非,张绮纹,陈一山,于中奎,谢荷峰.36个美洲黑杨无性系基本材性遗传变异的研究[J].林业科学研究,1994,7(3):253-257.
    [5]康向阳.林木多倍体育种研究进展[J].北京林业大学学报,2003,25(4):70-74.
    [6]康向阳.白杨三倍体新品种选育[J].北京林业大学学报,2004,26(3):40—-41.
    [7]李善文,姜岳忠,王桂岩,王卫东,乔玉玲.黑杨派无性系多性状遗传分析及综合评选研究[J].北京林业大学学报,2004,26(3):36-40.
    [8]刘盛全.不同栽植密度对意杨人工林木材性质的影响[J].安徽农业大学学报,2000,27(4):374-379.
    [9]刘盛全,江泽慧,鲍甫成.人工林杨树木材性质与生长培育关系的研究[J].林业科学,2001,37(2):90-97.
    [10]刘青华,周志春,张开明,兰永兆,吴吉富,聂国勤.造林密度对不同马尾松种源生长和木材基本密度的影响[J].林业科学,2010,46(9):58-64.
    [11]刘杏娥,王小青,江泽慧,任海青,费本华.初植密度对小黑杨人工林生长和材质的影响以及材质评价模型的建立[J].北京林业大学学报,2007,29(6):161-166
    [12]潘彪,徐永吉,李贻铨,梁坤南.施肥处理对尾叶桉无性系纸浆材生长和材性的影响[J].南京林业大学学报(自然科学版),2004,28(5):11-14.
    [13]任建中,刘长青,汪清锐,王克胜.杨树纸浆材优良无性系选择方法的研究[J].北京林业大学学报,2003,25(4):25-29.
    [14]施季森,王占军,陈金慧.木本植物全基因组测序研究进展[J]. HEREDITAS (Beijing),2012, 34(2):145-156.
    [15]孙丰波.毛白杨无性系木材品质性状遗传变异研究[D].北京林业大学,2007.
    [16]宋婉,张志毅,续九如.毛白杨无性系木材基本密度遗传变异研究[J].林业科学,2000,1(36):125-130.
    [17]万志兵,戴晓港,尹佟明.林木遗传育种基础研究热点述评[J].林业科学,2012,48(2):150-154.
    [18]王克胜,卞学瑜,李淑梅,韩一凡.杨树优良无性系多性状选择方法研究[J].林业科技通讯.1995(1):16-18.
    [19]王明庥,黄敏仁,阮锡根,吕士行,徐锡增,许农,邬荣领.黑杨派新无性系木材性状的遗传改良[J].南京林业大学,1989,13(3):9-15.
    [20]卫广杨.马尾松幼年间伐后木材性质的研究[J].安徽农学院学报,1980(1):65-71.
    [21]续九如.林木数量遗传学[M],北京:高等教育出版社,2006:96-97.
    [22]徐立安,陈天华,王章荣,傅顺华.马尾松种源子代材性变异与制浆造纸材优良种源选择[J].南京林业大学学报,1997,21(2):1-6.
    [23]徐有明,江泽慧,李丽霞,赵巧只,代敏,任海青.火炬松不同种源纸浆材材性的变异[J].林业科学.2008,44(8):82-89.
    [24]姚春丽,蒲俊文.白杨三倍体化学组分纤维形态及制浆性能的研究[J].北京林业大学学报,1998,20(5):18—21.
    [25]尹佟明.林木基因组及功能基因克隆研究概述[J].遗传,2010,32(007):677-684.
    [26]邢新婷,张志毅.白杨三倍体无性系木材密度遗传变异研究[J].北京林业大学学报,2000a,22(6):16-20.
    [27]邢新婷,张志毅,张文杰.白杨三倍体无性系木材热力学性质变异初探[J].北京林业大学学报,2000b,22(6):21-23.
    [28]朱之悌,林惠斌,康向阳.毛白杨异源三倍体B301等无性系选育的研究[J].林业科学,1995,31(6):499-505.
    [29]朱之悌.毛白杨遗传改良[M].北京:中国林业出版社,2006.
    [30]张立非,姜笑梅,苏晓华,张绮纹,于春娟,姜海燕.大青杨等天然群体幼苗基本材性变异研究[J].林业科学研究,1996,9(5):517-520.
    [31]张平冬,姚胜,康向阳,蒲俊文.白杨三倍体超短轮伐纸浆林产量及其纤维形态分析[J].林业科学,2011a,47(8):121-126.
    [32]张平冬,姚胜,康向阳,蒲俊文.白杨三倍体超短轮伐纸浆材基本密度及化学成分分析[J].林业科学,2011b,47(11):133-138.
    [33]Albaugh TJ, Allen HL, Dougherty PM, Johnsen KH. Long term growth responses of loblolly pine to optimal nutrient and water resources availability [J]. Forest Ecology and Management,2004, 192(1):3-19.
    [34]Akers MK, Kane M, Zhao D, Teskey RO, Daniels RF. Effects of planting density and cultural intensity on stand and crown attributes of mid-rotation loblolly pine plantations [J]. Forest Ecology and Management,2013,310:468-475.
    [35]Bailleres H, Davrieux F, Ham-Pichavant F. Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program [J]. Annals of forest science, 2002,59(5-6):479-490.
    [36]Bannister MH, Vine MH. An early progeny trial in Pinus radiate 4, wood density [J]. New Zealand Journal of Botany,1981,11:221-243.
    [37]Beaudoin M, Hernandez RE, Koubaa A, Poliquin J. Interclonal, intraclonal and within-tree variation in wood density of poplar hybrid clones [J]. Wood and Fiber Science,1992,24(2): 147-153.
    [38]Beets PN, Gilchrist K, Jeffreys MP. Wood density of radiate pine:Effect of nitrogen supply [J]. Forest Ecology and Management,2001,145(3):173-180.
    [39]Bell MA, Travis MP. Hybridization, transgressive segregation, genetic covariation and adaptive radiation [J]. Trends Ecol. Evol.,2005, (20):358-361.
    [40]Benomar L, DesRochers A, Larocque GR. The effects of spacing on growth, morphology and biomass production and allocation in two hybrid poplar clones growing in the boreal region of Canada [J]. Trees,2012, (26):939-949.
    [41]Benson ML, Myers BJ, Raison RJ. Dynamics of stem growth of Pinus radiata as affected by water and nitrogen supply [J]. Forest Ecology and Management,1992,52(1-4):117-137
    [42]Berges L, Nepveu G, Franc A. Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea L.) in Northern France [J]. Forest Ecology and Management,2008,255(3-4):567-579
    [43]Bergin DO, Kimberley MO, Low CB. Provenance variation in Podocarpus totara (D. Don):Growt h, tree form and wood density on a coastal site in the north of the natural range, New Zealand[J]. F orest Ecology and Management,2008,255(5):1367-1378.
    [44]Blankenhorn PR, Bowersox TW, Strauss CH, Kessler KR, Stover LR, DiCola ML. Chemical composition of second rotation of Populus hybrid NE-388 [J]. Wood and Fiber Science,1992, 24(3):280-286.
    [45]Boever LD, Vansteenkiste D, Acker JV, Stevens M. End-use related physical and mechanical properties of selected fast-growing poplar hybrids (Populus trichocarpa × P. deltoides) [J]. Annals of Forest Science,2007,64(6):621-630.
    [46]Bouffier L, Charlot C, Raffin A, Rozenberg P, Kremer A. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)? [J]. Annals of forest science,2008,65(1):106-117.
    [47]Briggs DG, and Smith WR. Effects of silvicultural practices on wood properties in conifers:a review. Chap.16. In Douglas-fir:Stand Management for the Future. Proceedings of a symposium held at the University of Washington,18-20 June 1985. Edited by C.D. Oliver, D.P. Hanley, and J.A. Johnson. College of Forest Resources, University of Washington, Seattle, Wash.
    [48]Cao TJ, Valsta L, Harkonen S, Saranpaac P, Makela A. Effects of thinning and fertilization on wood properties and economic returns for Norway spruce [J]. Forest Ecology and Management, 2008,256(6):1280-1289.
    [49]Chantre G, Rozenberg P, Baonza V, Macchioni N, Turcq AL, Rueff M, Conil MP, Heois B. Genetic selection within Douglas fir (Pseudotsuga menziesii) in Europe for papermaking uses [J]. Annals of forest science,2002,59(5-6):583-593.
    [50]Clarke CRE, Garbutt DCF, Pearce J. Growth and wood properties of provenances and trees of nine eucalypt species [J]. Appita Journal,1997,50(2):121-130.
    [51]Comai L. The advantages and disadvantages of being polyploidy [J]. Nat. Rev. Genet., 2005(6):836-846.
    [52]Corriveau A, Beaulieu J, Daoust G. Heritability and genetic correlations of wood characters of Upper Ottawa Valley white spruce populations grown in Quebec [J]. The Forestry Chronicle,1991, 67(6):698-705.
    [53]Cown DJ. Effects of thinning and fertilizer application on wood properties of Pinus radiate [J]. New Zealand Journal of Forestry Science,1981,11(2):79-91.
    [54]Cown DJ, Ball RD, Riddell MJC. Wood density and microfibril angle in 10 Pinus radiata clones: distribution and influence on product performance [J]. New Zealand Journal of Forest Science, 2004,34(3):293-315.
    [55]Cown, DJ, Young GD, Burdon RD. Variation in wood characteristics of 20-year-old half-sib families of Pinus radiata [J]. New Zealand Journal of Forest Scienc,1992,22:63-76.
    [56]Cown D, McConchie DL, Young GD. Radiata pine wood properties survey. New Zealand Ministry of Forestry, FRI Bulletin No.50,1991:50-51
    [57]DeBell DS, Singleton R, Harrington CA, Gartner BL. Wood density and fiber length in young Populus stems:relation to clone, age growth rate, and pruning [J]. Wood and Fiber Science,2002, 34(4):529-539.
    [58]DeBell JD, Gartner BL, DeBell DS. Fiber length in young hybrid Populus stems grown at extremely different rates [J]. Canadian Journal of Forest Research,1998,28(4):603-608.
    [59]Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf-Pannatier E, Landolt W, Schleppi P, Rigling A. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest [J]. Tree Physiol.2010(30):346-360.
    [60]Downes G, Worledge D, Schimleck L, Harwood C, French J, Beadle C. The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens [J]. New Zealand Journal of Forest Scienc,2006, (51):13-22.
    [61]Dinus, RJ, Payne P, Sewell MM, Chiang VL, Tuskan GA. Genetic modification of short rotation popular wood:properties for ethanol fuel and fiber productions [J]. Critical Reviews in Plant Sciences,2001,20(1):51-69.
    [62]Dutilleul P, Herman M, Avel la-Shaw T. Growth rate effects on correlation among ring width, wood density, and mean tracheid length in Norway spruce(Picea abies) [J]. Canadian Journal of Forest Research,1998,28(1):56-68.
    [63]Einspahr DW. Production and utilization of triploid hybrid aspen [J]. Iowa State J. Res.,1984, 58(4):401-409.
    [64]Evans R. A variance approach to the X-ray diffractometric estimation of microfibril angle in wood [J]. Appita Journal,1999,52(4):283-294
    [65]Falconer DS. Introduction to Quantitative Genetics [M], second ed. Longman, London and New York, 1981,p.340.
    [66]Falconer DS, Mackay TFC. Introduction to Quantitative Genetics [M], fourth ed. Pearson Education Limited, Harlow, England,1996, p.464.
    [67]Farmer J RE, Wilcox JR. Preliminary testing of eastern cottonwood clones [J]. Theoretical and Applied Genetics.1968,35(5):197-201.
    [68]Ferrari G. Clonal variation, genotype correlations and heritability of wood properties of Populus x euramericana [J]. Quaderni-di-Ricerca,1987,14:9-19.
    [69]Fukatsu E, Tsubomura M, Fujisawa Y, et al. Genetic improvement of wood density and radial growth in Larix kaempferi:results from a diallel mating test [J]. Annals of Forest Science,2013: 1-9.
    [70]Poke FS, Potts BM, Vaillancourt RE, Raymond CA. Genetic parameters for lignin, extractives and decay in Eucalyptus globulus [J]. Annals of forest science,2006,63(8):813-821.
    [71]Francisco Z, Philippe R, Ricardo B. Genetic variation of wood density components in a radiate pine progeny test located in the south of Chile [J]. Annals of forest science,2005,62:105-114.
    [72]Fries A and Ericsson T. Genetic parameters for earlywood and latewood densities and development with increasing age in Scots pine [J]. Annals of forest science,2009,66(4):404-412
    [73]Fries A. Genetic parameters, genetic gain and correlated responses in growth, fibre dimensions and wood density in a Scots pine breeding population [J]. Annals of Forest Science,2012,69:783-794.
    [74]Galitski T, Saldanha A J, Styles C A, Lander ES, Fink GR. Ploidy regulation of gene expression [J]. Science,1999,285:251-254.
    [75]Gapare WJ, Wu HX, Abarquez A. Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don [J]. Annals of Forest Science,2006,63(8):871-878
    [76]Gerendiain AZ, Peltola H, Pulkkinen P, Jaatinen R., Pappinen A. Differences in fibre properties in cloned Norway spruce (Picea abies) [J]. Canadian Journal of Forest Research,2008,38(5): 1071-1082.
    [77]Goldblatt P. Polyploidy in angiosperms [G]//Lewis WH. Polyploidy:Biological Relevance. New York:Plenum Press,1980, pp.219-239.
    [78]Gort-Oromi J, Mehtatalo L, Peltola H, Zubizarreta-Gerendiani A, Pulkkinea P, Venalainen A. Effects of spacing and genetic entry on radial growth and ring density development in Scots pine (Pinus sylvestris L.) [J]. Ann. For. Sci.2011,68,1233-1243.
    [79]Goyal GC, Fisher JJ, Krohn MJ, Packood RE, Olson JR. Variability in pulping and fiber characteristics of hybrid poplar trees due to their genetic makeup, environmental factors, and tree age [J]. Tappi journal,1999,82(5):141-147.
    [80]Grattapaglia D, Vaillancourt R, Shepherd M, Thumma B, Foley W, Kulheim C, Potts B, Myburg A. Progress in Myrtaceae genetics and genomics:Eucalyptus as the pivotal genus [J]. Tree Genet Genomes,2012,8:463-508.
    [81]Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, Le Bayon I, Jones GL, Muller U, Pereira H, Rodrigues JC, Rosner S, Rozenberg P, Wilhelmsson L, Wimmer R. Genetic parameters of growth and wood quality traits in Picea abies [J]. Scand J For Res,2004,19:14-29.
    [82]Harris JM. A survey of the wood density, tracheid length, and latewood characteristics of radiata pine grown in New Zealand [M]. New Zealand Forest Service Forest Research Institute. Technical paper No.4:34 pp.
    [83]Hein S, Weiskittel AR, Kohnle U. Effect of wide spacing on tree growth, branch and sapwood properties of young Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in south-western Germany [J]. European Journal of Forest Research,2008,127(6):481-493.
    [84]Hernandez RE, Koubaa A, Beaudoin M, Fortin Y. Selected mechanical properties of fast-growing poplar hybrid clones [J]. Wood and Fiber Science,1998,30(2):138-147.
    [85]Hodge GR, Purnell RC. Genetic parameter estimates for wood density, transition age, and radial growth in slash pine [J]. Canadian Journal of Forest Research,1993,23(9):1881-1891.
    [86]Johansson K. Influence of initial spacing and tree class on the basic density of Picea abies [J]. Scandinavian Journal of Forest Research,1993,8:18-27
    [87]Inagaki T, Schwanninger M, Kato R, Kurata Y, Thanapase W, Puthson P, Tsuchikawa S. Eucalyptus camaldulensis density and fiber length estimated by near-infrared spectroscopy [J]. Wood Science and Technology,2012,46(1-3):143-155
    [88]Isik F, Mora CR, Schimleck LR. Genetic variation in Pinus taeda wood properties predicted using non-destructive techniques [J]. Annals of Forest Science,2011,68(2):283-293
    [89]Ivkovich M. Genetic variation of wood properties in balsam poplar (Populus balsamifera L.) [J]. Silvae Genetica,1996,45(2-3):119-124.
    [90]Jansons A, Matisons R, Baumanis I, et al. Effect of climatic factors on height increment of Scots pine in experimental plantation in Kalsnava, Latvia [J]. Forest Ecology and Management,2013, 306:185-191.
    [91]Jaakkola T, Makinen H, Saranpa a P. Effects of thinning and fertilisation on tracheid dimensions and lignin content of Norway spruce [J]. Holzforschung,2007,61 (3):301-310.
    [92]Johansson K. Influence of initial spacing and tree class on the basic density of Picea abies [J]. Scandinavian Journal of Forest Research,1993,8:18-27
    [93]Johnson MTJ, Agrawal AA, Maron JL, Salminen JP. Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment [J]. J Evol Biol,2009,22:1295-1307
    [94]Jiang ZH, Wang XQ, Fei BH, Ren HQ, Liu X. Effect of stand and tree attributes on growth and wood quality characteristics from a spacing trial with Populus xiaohei [J]. Annals of Forest Science, 2007,64:807-814.
    [95]Johnsson H. Development of triploid and diploid Populus tremula during the juvenile period. Z. Forstgenet [J],1953,2 (4):732-277.
    [96]Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A. Ⅲ. Non-destructive estimation of Pinus taeda L. tracheid morphological characteristics for samples from a wide range of sites in Georgia [J]. Wood Science and Technology.2005,39(7):529-545.
    [97]Kang KY, Zhang SY, Mansfield SD, The effects of initial spacing on wood density, fiber and pulp properties in jack pine (Pinus banksiana Lamb.) [J]. Holzforschung,2004,58:455-463
    [98]Karlsson H. Fibre guide. Fibre analysis and process applications in the pulp and paper industry [M]. Lorentzen & Wettre, Sweden,2006,120 p.
    [99]Kien ND, Quang TH, Jansson G, Harwood C, Clapham D, Arnold SV. Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla [J]. Annals of Forest Science, 2009,66(7):711-718.
    [100]King JN, Cartwright C, Hatton J, Yanchuk AD. The potential of improving western hemlock pulp and paper quality. I. Genetic control and interrelationships of wood and fibre traits [J]. Canadian Journal of Forest Research,1998,28(6):863-870.
    [101]Kininmonth JA, Whitehouse LJ. Properties and uses of New Zealand radiata pine:volume one-wood properties. Ministry of Forestry, Forest Research Institute, Auckland,1991.
    [102]Klasnja B, Kopitovic S, Orlovic S. Variability of some wood properties of eastern cottonwood (Populus deltoides Bartr.) clones [J]. Wood Science and Technology,2003,37:331-337.
    [103]Koga S, Zhang SY. Inter-tree and intra-tree variations in ring width and wood density components in balsam fir (Abies balsamea) [J]. Wood Science and Technology,2004,38(2):149-162.
    [104]Koubaa A, Hernandez RE, Beaudoin M. Shrinkage of fast-growing hybrid poplar clones [J]. Forest Products Journal,1998,48(4):82-87.
    [105]Kibblewhite RP, Riddle MJC, Shelbourne CJA. Kraft fibre and pulp qualities of 29 trees of New Zealand grown Eucalyptus nitens [J]. Appita journal,1999,51 (2):114-121.
    [106]Kube PD, Raymond CA, Banham PW. Genetic parameters for diameter, basic density, cellulose content and fibre properties for Eucalyptus nitens [J]. Forest Genetics,2001,8(4):285-294.
    [107]Larocque GR, Marshall PL. Wood relative density development in red pine (Pinus resinosa Ait.) stands as affected by different initial spacings [J]. Forest Science,1995,41:709-728.
    [108]Lasserre JP, Mason EG, Watt MS, Moore JR. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D.Don corewood [J]. Forest Ecology and Management,2009,258(9):1924-1931.
    [109]Lenz P, Cloutier A, MacKay J, Beaulieu J. Genetic control of wood properties in Picea glaucaan analysis of trends with cambial age [J]. Can J For Res,2010,40:703-715.
    [110]Lewis WH. Polyploidy in species populations [G]//Lewis WH. Polyploidy:Biological Relevance. New York:Plenum Press,1980, pp.103-144.
    [111]Lin YZ, Yang HX, Ivkovic M, Gapare WJ, Matheson AC, Wu HX. Effect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth [J]. Forest Ecology and Management,2013,304:204-211.
    [112]Lo YH, Blanco JA, Seely B, Welham C, Kimmins JP. Relationships between climate and tree radial growth in interior British Columbia, Canada [J]. Forest Ecology and Management,2010,259(5): 932-942.
    [113]Lowery DP. Effects of thinning on the specific gravity of Western Larch crop trees. USDA For Serv Res Note,1967, INT-70.
    [114]Mansfield SD, Kibblewhite RP, Riddell MJC. Characterisation of the reinforcement potential of different softwood Kraft fibers in softwood/hardwood pulp mixtures [J]. Wood and Fiber Science, 2004,36 (3),344-358.
    [115]Mansfield SD, Weineisen H. Wood fiber quality and kraft pulping efficiencies of trembling aspen (Populus tremuloides Michx) clones [J]. Journal of Wood Chemistry and Technology,2007, 27(3-4):135-151
    [116]Matyas C, Peszlen I. Effect of age on selected wood quality traits on poplar clones [J]. Silavae Genetica,1997,46(2,3):64-72.
    [117]Masterson J. Stomatal size in fossil plants:evidence for polyploidy in majority of angiosperms. Science [J],1992,264:421-424.
    [118]Miranda I, Almeida MH, Pereira H. Provenance and site variation of wood density in Eucalyptus globulus Labill. at harvest age and its relation to a non-destructive early assessment [J]. Forest ecology and management.2001,149(1-3):235-240.
    [119]Miranda I, Pereira H. Variation of pulpwood quality with provenances and site in Eucalyptus globules [J]. Annals of forest science,2002,59(3):283-291.
    [120]Muntzing A. The chromosomes of a grant Populus tremula [J]. Hereditas,1936,21:383-393.
    [121]Nilsson-Ehle H. Note regarding the gigas form of Populus tremula found in nature [J]. Hereditas, 1936,21:372-382.
    [122]Olesen PO. The variation of the basic density level and tracheid width within the juvenile and mature wood of Norway spruce [J]. Forest Tree Improvement,1977,12:1-21.
    [123]Olesen PO. The effect of cyclophysis on tracheid width and basic density in Norway spruce [J]. Forest Tree Improvement,1982,15:1-80.
    [124]Olson JR, Jourdain CR, Rousseau RJ. Selection for cellulose content, specific gravity and volume in young Populus deltoids clones [J]. Canadian Journal of Forest Research,1985,15(2):393-396.
    [125]Ohsawa T, Ide Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains [J]. Global Ecol Biogeogr,2008,17:152-163.
    [126]O'Reilly-Wapstra JM, Freeman JS, Davies NW, Vaillancourt RE, Fitzgerald H, Potts BM. Quantitative trait loci for foliar terpenes in a global eucalypt species [J]. Tree Genet Genomes, 2011,7:485-498
    [127]Panshin AJ and Zeeuw CD. Textbook of wood technology. Structure, identification, properties, and uses of the commercial woods of the United States and Canada [M]. McGraw-Hill Book Co.:New York,1980,4th edition, pp.772.
    [128]Paun O, Fay MF, Soltis DE, et al. Genetic and epigenetic alterations after hybridization and genome doubling [J]. Taxon,2007,56(3):649.
    [129]Peltola H, Gort J, Pulkkinen P, Zubizarreta GA, Karppinen J, Ikonen V-P. Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites [J]. Silva Fennica,2009,43(3):339-354.
    [130]Peltola H, Kilpelainen A, Sauvala K, Raisanen T, Ikonen V-P (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine [J]. Silva Fennica 41:489-505.
    [131]Persson B, Persson A, Stahl EG, Karlmats U. Wood quality of Pinus sylevstris progenies at various spacing [J]. Forest ecology and management.1995,76:127-138.
    [132]Peszlen I. Variation in specific gravity and mechanical properties of poplar clones [J]. Drevarsky Vyskum,1998,43(2):1-17
    [133]Piedra TE, Zobel BJ. Geographic variation in wood properties of Pinus tecunumanii [J]. Wood and Fiber Science,1986,18(1):68-75.
    [134]Pliura A, Zhang SY, Bousquetc J, MacKay J. Age trend in genotypic variation of wood density and its intra-ring components in young poplar hybrid crosses [J]. Annals of Forest Science,2006,63(7): 673-685
    [135]Pliura A, Zhang SY, MacKay J, Bousquet J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials [J]. Forest Ecology and Management,2007,238(1-3): 92-106.
    [136]Polle A, Douglas C. The molecular physiology of poplars:paving the way for knowledge-based biomass production [J]. Plant Biol,2010,12(2):239-241.
    [137]Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones GL, Pereira H, Hannrup B, Cahalan C, Plomion C. Genetic control of pulp and timber properties in maritime pine(Pinus pinaster Ait.) [J]. Annals of Forest Science,2002,59(5-6):563-575.
    [138]Rautiainen R, Alen R. Variations in fiber length within a first-thinning Scots pine(Pinus sylvestris) stem [J].Cellulose,2009,16(2):349-355.
    [139]Raymond CA, Banham P, Macdonald AC. Within tree variation and genetic control of basic density, fiber length, and coarseness in Eucalyptus regnans in Tasmania [J]. Appita journal,1998,51(4): 299-305.
    [140]Raymond CA, Lindgren D. Genetic flexibility:a model for determining the range of suitable environments for a seed source [J]. Silvae Genet,1990,39:112-120.
    [141]Raymond CA, Muneri A. Effect of fertilizer on wood properties of Eucalyptus globules [J]. Canadian Journal of Forest Research,2000,30(1):136-144.
    [142]Raymond CA. Genetics of Eucalyptus wood properties [J]. Annals of Forest Science,2002,59(5-6): 525-531.
    [143]Raymond CA. Genotype by environment interactions for Pinus radiate in New South Wales, Australia [J]. Tree Genetics & Genomes,2011,7:819-833.
    [144]Reich PB, Oleksyn J. Climate warming will reduce growth and survival of Scots pine except in the far north [J]. Ecol. Lett.,2008,11,588-597.
    [145]Roth BE, Li X, Huber DA, Peter GF. Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA [J]. For. Ecol. Manage.2007,246,155-162.
    [146]Rozenberg P, Cahalan C. Spruce wood quality:genetic aspects (a review) [J]. Silvae Genetica, 1997,46(5):270-279.
    [147]Saranpaa P. Basic density, longitudinal shrinkage and tracheid length of juvenile wood of Picea abies (L.) Karst [J]. Scandinavian Journal of Forest Research,1994,9(1-4):68-74.
    [148]Sawa Y, Bergeron Y, Denneler B, Koubaa A, Tremblay F. Effect of inter-annual climate variations on radial growth of jack pine provenances in Petawawa, Ontario, Canada [J]. Canadian Journal of Forest Research,2008,38(3):619-630.
    [149]Sawa Y, Koubaa A, Tremblay F, Bergeron Y. Effects of radial growth, tree age, climate, and seed origin on wood density of diverse jack pine populations [J]. Tress-Struction and Function,2010, 21(1):53-65.
    [150]Schimleck LR and Evans R. Estimation of air-dry density of increment cores by near infra-red spectroscopy [J]. Appita journal,2003,56(4):312-317.
    [151]Seehausen O. Hybridization and adaptive radiation [J]. Trends Ecol. Evol.,2004, (19):198-207.
    [152]Sisi DE, Karimi AN, Pourtahmasi K, The effects of agroforestry practices on fiber attributes in Populus nigra var. betulifolia [J]. Tress-Struction and Function,2012,26:435-441.
    [153]Smith DM.1954. Maximum moisture method for determining the specific gravity of small wood samples. USDA, Forest Service, For Prod Lab Rep.2014.
    [154]Stebbins GL. Flowering plants:evolution above the species level [M]. Harvard:Harvard University Press,1974.
    [155]Sticklen MB. Plant genetic engineering for biofuel production:towards affordable cellulosic ethanol [J]. Nature Reviews Genetics,2008,9(6):433-443.
    [156]Suzuki DT, Griffiths AJF, Miller JH, Lewontin RC. An introduction to Genetic Analysis [M]. Third edition. W. H. Freeman and Co., New York.1986:612.
    [157]Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M. Within tree variability of lignin composition in Populus [J]. Wood Science and Technology,2008,42(8):649-661.
    [158]Sykes R, Li B, Hodge G, Goldfarb B, Kadla J, Chang HM. Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy [J]. Canadian Journal of Forest Research, 2005,35(10):2423-2431
    [159]Taylor FW, Burton JD. Growth Ring Characteristics, Specific Gravity, and Fiber Length of Rapidly Grown Loblolly Pine [J]. Wood and Fiber Science.1982,14:204-210.
    [160]Taylor FW, Wang EIC, Micko MM. Differences in the Wood of Lodgepole Pine in Alberta [J]. Wood and Fiber Science,1982b,14:296-309.
    [161]Telewski FW, AloniR, Sauter JJ. Physiology of secondary tissues of Populus. In:Stettler RF, Bradshaw HD, Heilan PE, Hinckley TM (eds). Biology of Populus and its implications for management and conservation [M]. NRC Research Press, Ottawa, Canada,1996,301-329.
    [162]Thabeet A, Vennetier M, Gadbin-Henry C, Dendelle N, Roux M, Caraglio Y, Vila B. Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region [J]. Trees-Struct. Funct.2009,3:843-853.
    [163]Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray) [J]. Science,2006,313(5793):1596-1604.
    [164]Ukrainetz NK, Kang KY, Aitken SN, Stoehr M, Mansfield SD. Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits [J]. Can J For Res,2008,38:1536-1546.
    [165]Vargas-Hernandez J, Adams WT. Genetic relationships between wood density components and cambial growth rhythm in young coastal Douglas-fir [J]. Canadian Journal of Forest Research, 1994,24(9):1871-1876.
    [166]Veal MA, Marrs GR, Jackson M. Control over the quality of loblolly pine chips [J]. Tappi journal, 1987,70(1):51-54.
    [167]Via B K, Stine M, Shupe Todd F, So CL, Groom L. Genetic improvement of fiber length and coarseness based on paper product performance and material variability-A review [J]. IAWA Journal,2004,25(4):401-414.
    [168]Watson P, Bradley M. Canadian pulp fibremorphology:superiority and considerations for end use potential [J]. For Chron,2009,85:401-408.
    [169]Watson P, Garner C, Robertson R, Reath S, Gee W, Hunt K. The effects of initial tree spacing on the fiber properties of plantation grown coastal western hemlock [J]. Canadian Journal of Forest Research,2003.33:2460-2468.
    [170]Weisgerber H, Rau HM, Gartner EJ, Baumeister G, Kohnert H, Karner L.25 years of forest tree breeding in Hessen [J]. Allg. Forestz,1980,26:665-712.
    [171]Wielinga B, Waterworth R, Brack C. Fertiliser and irrigation effects on wood density at various heights for Pinus radiate [J]. European Journal of Forest Research,2008,127:63-70.
    [172]Wilhelmsson L, Arlinger J, Spangberg K, Lundqvist S-O, Grahn T, Hedenberg O, Olsson L. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden [J]. Scand J Forest Res,2002,17:330-350.
    [173]Willams CG, Megraw RA. Juvenil-mature relationships for wood density in Pinus taeda [J]. Canadian Journal of Forest Research,1994,24:714-722.
    [174]Wu HX, Ivkovic M, Gapare WJ, Matheson AC, Baltunis BS, Powell MB, McRae TA. Breeding for wood quality and profit in radiata pine:a review of genetic parameters and implication for breeding and deployment [J]. NZ J. For. Sci.2008,38,56-87.
    [175]Wu HX, Ying CD. Geographic pattern of local optimality in natural populations of lodgepole pine [J]. Forest Ecology and Management,2004,197:177-198.
    [176]Xie CY, Johnstone WD, Ying CC. Spacing and provenance effects on the performance of shore pine (Pinus contorta var.contorta):20-year test results [J]. Canadian Journal of Forest Research, 195,25(4):567-576.
    [177]Yanchuk AD, Dancik BP, Micko MM. Variation and heritability of wood density and fiber length of trembling aspen in Alberta, Canada[J]. Silvae Genetica,1984,33(1):11-16.
    [178]Yang S, Lu L, Ni Y. Cloned poplar as a new fibre resource for the Chinese pulp and paper industry [J]. Pulp & Paper Canada,2006,107(2):34-37.
    [179]Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map[J]. Theor Appl Genet,2004, 109(3):451-463.
    [180]Yu Q, Pulkkinen P, Rautio M, Haapanen M, Alen R, Stener LG, Beuker E, Tigerstedt PMA. Genetic control of wood physiochemical properties, growth, and phenology in hybrid aspen clones [J]. Canadian Journal of Forest Research,2001,31 (8):1348-1356.
    [181]Zhang SY. Effect of growth rate in wood specific gravity and selected mechanical properties in individual species from distinct wood categories [J]. Wood Science and Technology,1995, 29(6):451-465
    [182]Zhang SY, Morgenstern EK. Genetic variation and inheritance of wood density in black spruce (Picea mariana) and its relationship with growth:implications for tree breeding [J]. Wood Science and Technology,1995,30(1):63-75.
    [183]Zobel BJ and van Buijtenen JP. Wood variation, its causes and control [M]. Springer-Verlag, Berlin, 1989
    [184]Zobel BJ. Silvicultural effect on wood properties [J]. IPEF International,1992 (2):31-38
    [185]Zobel BJ, Jett JB. Genetics of wood production [M]. Springer Verlag, Berlin,1995
    [186]Zobel BJ, Thorbjornsen E, Henson F. Geographic, site, and individual tree variation in wood properties of loblolly pine [J]. Silvae Genetica,1996,9(6):149-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700