基于跳频技术的低压电力线通信方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用低压电力线作为载体进行数据传输有着广阔的应用前景和经济价值。针对低压电力线上的强噪声、大衰减等不利于数据安全可靠传输的因素,本文提出将跳频技术与电力线载波通信系统相结合的一种新方法,增强了系统的抗干扰能力。
     首先,本文介绍了课题的背景和意义,对当前的电力线载波通信和跳频技术的研究现状分别进行了论述,提出了一种基于跳频技术的电力线载波通信方法。
     其次,在实际测试的基础上,分析了低压电力线信道的信道特性,建立了低压电力线信道模型,并仿真了10kHz~1MHz的低压电力线信道特性。再次,研究了跳频通信系统的工作原理及其关键技术,根据低压电力线信道特性,设计了一个电力线跳频通信系统,并建立了这个系统的仿真模型。利用低压电力线进行跳频通信,需要对传统的跳频技术做相应的改变。本文在系统设计中,一方面,采用直接式相关器解跳,降低了接收端的采样速率,也简化了滤波器设计工作;另一方面,将FSK调制与频率合成器结合在一起,由数据本身直接实现频率调制,大大地简化了系统的软硬件设计。
     理论分析和仿真试验表明:基于跳频技术的电力线载波通信系统对于电力线上严重的噪声干扰有着良好的躲避能力,系统不会因为某几个频点被干扰而崩溃。文中还指出了进一步提高系统性能的方法。
     最后,在硬件实现上,本文提出了一种基于DSP和FPGA的系统方案,并进行了功能设计。
Using the existing low voltage power line to transmit data has broad application perspective and economic benefits. Point to the heavy noise, strong attenuation, which threat the safety of date transmitting on the low voltage power line, this paper present conjunct the power line communication system with frequency hopping technology, to raise the system’s anti-interface ability.
     Firstly, the background and purpose of this subject is introduced, and the present state of PLC and FH system is discussed in this paper. A PLC system based on FH technology is presented here.
     Secondly, on the basis of practicable measurement, low voltage power line channel character is analyzed, power line channel model is established, and the low voltage power line channel character between 10 kHz and 1 MHz is simulated.
     Thirdly, the principle of FH system and its key technology is studied. According to the character of power line, a PLC-FH system and its model is designed. Frequency hopping communication on the low power line channel need some changes on FH itself. Using direct correlator instead of heterodyne detection, the sample rate is reduced and the filter design is simplify in this paper. Combing the FSK modulation and the frequency synthesizer, letting frequency modulate directly done by the data, the software and hardware designing is simplified.
     By means of theoretical derivation and simulation, a conclusion is arrived: the PLC-FH system has good anti-interface ability, the system wouldn’t corrupt with some frequency point been polluted.
     At last, this paper present a system realize solution based on DSP and FPGA, some function is also been designed.
引文
1 刘晓胜, 戚佳金, 牟英峰, 徐殿国. 网络化实时路灯精确监控系统的总体设计. 电气传动. 2004, (6): 3~6
    2 D.Kaleshi, M.H.Barton, Ensuing inter operability in a home networking system. IEEE Trans. on CE. 1999, (5): 30~35
    3 J C Moon, Real-time event kernel architecture for home-network gateway set-top-box. IEEE Trans. on CE. 1999, 45(3): 488~495
    4 H. Kubota, K. Suzuki, I. Kawakimi. High frequency band dispersed-tone power line communication modem for networked appliances. IEEE Transactions on CE. 2006, 52(1): 44~50
    5 欧清海. 国外高速电力线通信技术发展分析. 通信世界. 2005, (21): 34~35
    6 R. M. Vines, H J. Trussel, J. B. O'Neal Jr. Noise on residential power distribution circuits. IEEE Trans. on EMC. 1984, (11): 161~168
    7 Morgan H, Chan L, Robert W. Amplitude, width and interracial distributing for noise impulses on intrabuilding power line communication networks. IEEE Trans. on EMC. 1999, 62(8) :62~69
    8 吴斌, 赵学增. Home Plug——电力线上网的业务联盟. 电子技术应用. 2002, (6): 8~9
    9 刘晓胜,胡永军,张胜友. 低压配电网电力线载波通信与新技术. 电气应用. 2006, (2): 5~7
    10 赵云峰, 汪晓岩, 徐立中. 低压电力线噪声分析与建模. 电力系统通信. 2003, (1): 31~35
    11 耿煊, 李永辉. 低压电力线通信的信道特性分析及模型研究. 电力系统通信. 2004, (4):19~23
    12 T. Waldeck, K. Dostert. Comparison of modulation schemes with frequency agility for application in power line communication systems. IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings. Sept. 1996, (2):B821 ~825
    13 F J Canete, Diez L. Broadband modeling of indoor power-line channels. IEEE Transactions on consumer Electronics. Jan. 2002, 48(1): 175~183
    14 Radford D. Spread-Spectrum Data Leap through AC Power Wiring. IEEESpectrum, Nov. 1996, 33(11): 48~53
    15 张士文, 殳国华, 韩正之. 低压电力线通信技术综述. 华北电力技术. 2001, (1): 27~31
    16 谢飞, 熊立翔. 低压电力网载波通信信号衰减特性的研究. 电子技术应用. 1998, 24(1): 36~37
    17 T. Banwell, S.Galli. A novel approach to the modeling of the indoor power line channel part I: circuit analysis and companion model. IEEE Trans. on Power Delivery. April 2005, 20(2): 655~663
    18 樊建学, 盛新富. 低压电力线载波通信技术的研究. 电测与仪表. 2005, (2): 36~38
    19 高锋, 董亚波. 低压电力线载波通信中信号传输特性分析. 电力系统自动化. 2000, (4): 36~41
    20 H. T. Nicholas, H. Samueli, B. kim, The optimization of direct digital frequency synthesizer performance in the presence of finite length effects, IEEE Proc.420d AFCS. 1988: 357~363
    21 M. Zimrnermann, K. Dostert. A Multipath Model for the power line Channel. IEEE Trans. on Commun. 2002, 50(4): 553~559
    22 梅文华, 王淑波, 邱永红. 跳频通信. 国防出版社, 2005: 15~22
    23 Cheng Xiang Wang, M.Patzold. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2002, (1): 478~483
    24 Cheng Xiang Wang, M.Patzold, Qi Yao. Stochastic modeling and simulation of frequency hopping wideband fading channels. The 57th IEEE Semiannual on Vehicular Technology Conference. April 2003, 15(2): 803~807
    25 G. K. Kaleh, Performance Comparison of Frequency Diversity and Frequency Hopping Spread Spectrum Systems. IEEE Trans. on Commun. August 1997: 45(8): 910~912
    26 Jun Jie Chen, Guu Chang Yang, Chia Ming Yang. A new construction of frequency-hopping codes. IEEE Communications Letters. 2002, 6(5): 181~183
    27 W.C. Kwong, Guu Chang Yang. Frequency-hopping codes for multimedia services in mobile telecommunications. IEEE Transactions on Vehicular Technology. Nov.1999, 48(6):1906~1915
    28 梅文华, 陈先福. 具有最佳汉明相关性能的跳频序列族. 国防科技大学学报. 1988, 10(4): 13~19
    29 de Sousa, F.R., B Huyart. A reconfigurable high-frequency phase-locked loop. IEEE Trans. on Instrumentation and Measurement. Aug. 2004, 53(4): 1035~039
    30 马年磊, 沈保锁. 基于 DDS 的快速跳频频率合成器的设计. 电子技术应用. 2003, (7): 42~45
    31 Kenneth, A. Essenwanger. Sine Output DDSs A Survey of the State of the Art. IEEE International Frequency Control Symposium. 1998, (5):370-378
    32 刘继承, 邵定蓉, 李暑坚. DS/FH 混合扩频接收机解扩及同步技术的 FPGA实现. 电子技术应用. 2003, (1): 6~9
    33 魏安全. 扩频码的同步捕捉与跟踪技术. 军事通信技术. 1998, (1): 37~42
    34 B.Levitt, M.Simon, A.Polydoros. Partial-band detection of frequency-hopped signals.IEEE Global Telecommunications Conference in Houston. GLOBECOM. 1993, 29(11): 70~76
    35 L. E. Franks. Carrier and bit synchronization in data communication ---a tutorial review, IEEE Trans. on Comm. Aug. 1980, 28(8): 1107~1120
    36 H. Kubota, K. Suzuki, I.. Kawakimi. High frequency band dispersed-tone power line communication modem for networked appliances. IEEE Trans. on CE. 2006, 52(1): 44~50
    37 P. J. Pacini and B. Kosko, Adaptive Fuzzy Frequency Hopper. IEEE Trans. Commun. June 1995, 43(6):2111~2117
    38 苏跃琳, 甘良才. 慢跳频系统捕获方案选择及性能分析.系统工程与电子技术. 1998, (5): 1~3
    39 郭黎利. 跳频通信中一种缩短同步捕获时间的方法—位移等待式自同步方案. 哈尔滨般拍工怪学院学报. 1994, (12): 70~77
    40 梅文华. 基于 m 序列构造最佳跳频序列族. 通信学报. 1991, (12): 70~73
    41 梅文华, 杨先义. 基于 GF(Pk)上 m 序列的最佳跳频序列族. 通信学报. 1996,(2):12-16
    42 付丽君, 曲宙强. 电力通信的噪音仿真系统. 计算机仿真. 2004, (7): 64~67
    43 约翰 G 普罗克斯, 马苏德 萨勒赫. 现代通信系统——使用 MATLAB. 刘树棠. 西安交通大学出版社, 2001: 379~389
    44 GL.Stuber, Diversity and coding for FH/MFSK system with fading and jamming. IEEE Trans. on Commun. Dec 1987, 37(8): 39~45
    45 华馄, 朱世华, 王霞. 基于 TMS320VC5410 的快跳频通信系统研究. 西部通信. 2003, (4): 30~33
    46 滕强院, 李红, 伍晓洁. 用 89C52 单片机实现 FSK 调制解调. 电子技术. 2001, (1): 30~33 47 M. Giorgio, Vitetta. Linearly time-selective optimal incoherent detection of FSK signals transmitted Raleigh fading channels. IEEE Trans. on Commun. Nov. 1997: 45(11): 1417~1425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700