固相合成β分子筛及其合成机理的理论计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β分子筛是一种具有独特的三维十二元环大孔结构的高硅沸石,拥有优异的催化性能和极为重要的工业应用价值,迫切需要大幅度地改善现有分子筛合成技术,降低合成成本。因此,本论文对廉价合成β分子筛技术进行了研究,并在此基础上展开对分子筛合成机理的研究,为沸石合成提供理论意义和实际指导。
     本论文首先采用广泛应用的动态水热合成法和气相法合成了β分子筛,进而,通过对蒸汽相法制备干胶过程的改进和采用廉价模板剂TEABr,获得了一种新的廉价体系合成方法-固相合成法。XRD、SEM及FT-IR表征结果表明固相法合成β分子筛晶形良好。与动态水热法、蒸汽法相比,固相合成法工艺简单,成本较低。
     考察了β分子筛固相合成过程中晶化温度、晶化时间、碱度和模板剂用量对产物结晶度的影响。结果表明:当选用SiO2作为硅源,NaAlO2作为铝源,TEABr作为模板剂时,较优工艺条件为:(SiO2/Al2O3=30), OH-/SiO2=0.40, TEABr/SiO2=0.15,添加晶种4%(与硅源总质量相比),晶化温度为130℃,晶化时间为4天,合成的β分子筛晶形良好,丝光杂晶峰强度较低。对固相合成的β分子筛进行中试放大生产,得到的晶化产物结晶度较高,杂峰较低。对β分子筛进行了酸性和孔结构表征,结果说明微量的丝光沸石对整体的β分子筛的酸性和孔结构影响不大。
     在固定床微反应器上考察了固相法合成的β分子筛对烯烃的异构化能力。实验结果表明,β分子筛具有较高的异构化产物收率和较好的丙烯收率,水热老化处理后仍保持了烯烃异构化能力。较低硅铝比的β分子筛具有较高异构化活性和较差的芳构化能力。将中试产品作为助剂添加到主催化剂中进行催化裂化反应(特别适用于重质烃油,通常为渣油),有较高的进料转化率、液收和丙烯产率。
     通过量子化学计算方法分别模拟β和丝光沸石的合成初期硅酸根和铝酸根单体之间的缩聚过程,采用B3LYP方法和6-31+G(d, p)基组,计算结果表明:模板剂TEA+在合成过程中起到降低反应活化位垒的作用,使二聚体的活化能降低了9 kJ/mol。在二聚体向p和丝光沸石的三聚体q2Al的转化过程中,β和丝光沸石的硅铝酸根缩聚都遵循一步成键机理,合成丝光沸石三聚体的活化能为70 kJ/mol,当存在TEA+时,活化能降低为67.2 kJ/mol,说明TEA+对丝光沸石的合成影响有限;而合成p分子筛的三聚体的活化能为102.3 kJ/mol,当存在TEA+时,活化能降低为53.1 kJ/mol,降幅明显,说明TEA+十分有利于β分子筛的合成。
     为了进一步考察在实验中得不到的β分子筛酸性的重要信息,在密度泛函的B3LYP/6-31G(d, p)水平上,研究了β分子筛中Al和Brφnsted酸的落位及其酸性强度。根据Al(OSiH3)4--TEA+的主.客体相互作用能、Al/Si和(Al,H)/Si替代能、去质化能、O-H伸缩振动频率和碱性探针分子NH3在β分子筛酸性位的吸附能的计算,结果表明:β分子筛中的骨架Al和Brφsted酸有利于落位在T5和T6位,不利于落位在T1和T3位。A15-O14-Si9位置的酸性最强,A17-O3-Si1的酸性最弱。
Zeoliteβis one of the aluminosilicate materials with three-dimensional system of interconnected 12-membered ring large-pored channels structure and high silica crystalline. Zeoliteβhad shown outstanding catalytic properties in some chemical and petrochemical processes.It is an important target to improve this zeolites synthesis technology for extensively decreasing the cost. So, the new cost-effectively synthetic method was studied, and in order to carry out the guidance and predict of the prepatation technique of new type zeolite, we have studied the synthesis mechanism of zeolite.
     In the present work, the thdrohermal synthesis synthetic method and DGC method are used to synthesisβzeolite firstly. By the betterment on the process of dry gel conversion of steam-assisted synthesis and introducing a cheap template TEABr, a new cost-effectively synthetic method is obtained. XRD,SEM and FT-IR indicate that the structure of zeoliteβby cost-effectively synthesis is good. Compared with steam-assisted synthesis and hydrothermal synthesis, solid-phase synthesis is promising and economical,which simplifies the synthetic process and reduce the costs.
     In this paper, the effect of crystallization temperature, crystallization time, alkalinity, the amount of template on the crystallinity of products is studied. The results indicate that when SiO2 is used as silicic source, NaAlO2 as aluminium source, TEABr as template, the best condition of technics is (SiO2/Al2O3=30):OH-/SiO2=0.40,TEABr/SiO2=0.15,4% crystal introduced (compared with the total mass of silicic source),130℃as crystallization temperature、4 days as crystallization time.On this condition, the structure of zeoliteβis good and the intensity of MOR is lower. Large scale repeats the result of small scale, and the crystallinity of products is higher and MOR is lower.The acidity and pore structrure of prepared samples were also characterized, respectively. The characterization results indicated that the acidity and the pore structure of the synthesized zeolite were pretty consistent with those of the standard zeoliteβ, though a trace of stray crystal of mordenite was observed.
     βzeolites with different Si/Al ratio were prepared and investigated in the fixed-bed microreactor. It is found that,βzeolite with Si/Al ratio of 30 exhibits higer catalytic activity for isomerization.After hydrothermal treateded at 800℃for,βzeolite maintain excellent stability and catalytic activity for n-hexene isomerization. The product of large scale as assistant catalyzer is introduced into main catalyzer for FCC reaction (especially heavy Oil, usually petroleum residue),which can obtain more propylene and improve the amount of translation of raw material and liquid.
     The mechanism of zeolite growth of the early stages of P and MOR zeolites are investigated by the quantum chemical calculation. The condensations of silicic acid with aluminate in alkaline environment are studied using the density-functional theory, at the 6-31+G (d, p) basis sets. The calculated results show that the activation energy of TEA+ is decreased by 9 kJ/mol.The mechanism of q2 Al species ofβand MOR zeolites are investigated. The calculated results show that theβand MOR formation of Si-O-Al linkage can proceed via a single-step process.The calculated activation energie of q2Al specie on MOR zeolite is 70 kJ/mol; and it is 67.2 kJ/mol with TEA+ in synthesis process.The calculated activation energie onβzeolite are 102.3 kJ/mol,and it is 53.1 kJ/mol with TEA+ in synthesis process.It is indicated that the synthesis ofβzeolite using TEA+ are easier.
     In order to understand the important information of P zeolite, Density functional theory (DFT) has been applied to study the distribution of the framework aluminum atoms at nine inequivalent T sites and the acidity of Brφnsted acid in P zeolite.The calculation was carried out at B3LYP/6-31G (d, p) level based on the 5T,8T and 22 T cluster model.According to the interaction energies between zeolite framework and TEA+, the calculated Al/Si substitution, the calculated (Al, H)/Si substitution, proton affinity, and the adsorbing energies of ammonia (NH3),it was proposed that the most favorable sites for Al substitution locate at are T5 and T6 sites,the acidity of A15-O14-Si9 is the highest in the preferable Brφnsted acid sites,and the A17-O3-Si1 site is the lowest.
引文
[1]Breck D W, Zeolite Molecular Sieves [M].New York:Willy,1974
    [2]Auerbach S M, Carrado K A, Dutta P K, Eds. Handbook of Zeolite Science and Technology [M].Dekker:New York,2003:356-358
    [3]Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J]. Chem. Rev.,1995,95(3):559-614
    [4]巩雁军,孙继红,董梅,等.分子筛制备化学进展[J].石油化工,2000,29(6):450-454
    [5]胡宏杰,赵恒勤,王立卓,等.沸石分子筛的制备及应用[J].矿产保护与利用,1998,(5):10-13
    [6]赵修松,王清遐,李宏愿.沸石合成进展[J].化工进展,1994,(3):32-35
    [7]朱建华.沸石化学的新进展[J].大学化学,1997,12(2):6-9
    [8]孙家寿.沸石研究的新进展[J].化学工业与工程技术,1998,19(1):23-28
    [9]陈沅.择形分子筛沸石催化作用的进展[J].石油与天然气化工,1999,28(3):167-173
    [10]Wadlinger R L, Kerr G T, Rosinski E J. Catalytic composition of a crystalline zeolite [P]. US,3308069,1967-07-26
    [11]Treacy M M J, Newsam J M. Stucture of zeolite B [J]. Zeolites,1988,14(5):249-251
    [12]Newsam J M, Treacy M M J, Koetsier W T. Structural Characterization of Zeolite B [J]. Zeolites,1988,13(3-4):375-380
    [13]J B Higgins, R B LaPierre, J L Schlenker, et al. The framework topology of zeolite B [J]. Zeolites,1988,8(6):446-452
    [14]马广伟,葛学贵,黄少云.中孔沸石分子筛合成研究进展[J].湖北化工,2002,(5):1-3
    [15]董晋湘,董平.蒸汽相法合成沸石的技术进展[J].石油化工,1995,24(3):221-224
    [16]Tomlinson S M, Jackson R A, Richard C, et al. A Computational Study of Zeolite B [J]. J Chem Soc Chem Commun,1990,289(2):813-816
    [17]孟宪平,王颖霞,林丙雄,等.p沸石堆垛层错结构的研究[J].物理化学学报,1996,12(8):727-734
    [18]Stevens A P, Boyett R E, Cox P A, et al. A quantitative shape analysis of organic templates employed in zeolite synthesis [J]. Zeolites,1996,17(5-6):508-512
    [19]Papai I, Goursot A, Pasquarello A, et al. First principles molecular dynamics calculation of the structure and acidity of a bulk zeolite [J].Chemical Physics Letters,1994, 226(3-4):245-250
    [20]邹本三,陈锡花,金泽明,等.β-沸石晶体结构特征的电镜研究[J].石油化工,1997,26(4):249-254
    [21]Maache M, Janin A, Joly J F, Benazzi E, Acidity of zeolites (3 dealuminated by acid leaching an FT i.r. Study using different probe cholecules (pyridine, carbon monoxide) [J].Zeolites,1993,13,419-426
    [22]Borade R B,Clearfield Characterization of Acid Sites in B and ZSM-20 Zeolites [J].J Phys Chem.,1992,96:6729-6737
    [24]Bourgeat-Lami E, Massiani P, Di Renzo F, Espian P, Fajula F, Study of the state of aluminium in zeolite β[J].Appl. Catal.,1991,72(1):139-152
    [25]Kiricsi I, Flego C, Pazzuconi G, Parker W O, Jr.Millini R, Perego C, Bellussi G, Progress toward understanding zeoliteβacidity:An Ir and2 7A1 NMR spectroscopic study [J].J. Phys. Chem.,1994,98(17):4627-4634
    [26]杨春,须沁华,β沸石中铝的状态及归属,物理化学学报[J].1998,14(2):169-172
    [27]Eapen M J, Reddy K S N, Shiralkar V P, Hydrothermal crystallization of zeolite β using tetraethylammonium bromide [J]. Zeolites,1994,14(4):295-302
    [28]Vaudry F, di Renzo F, Fajula F, Schulz P, Synthesis of aluminum-rich zeolite β [J]. Stud. Surf. Sci. Catal.,1994,84(1):163-170
    [29]Chien S H, Ho J C,Mon S S, Hydrothermal synthesis and characterization of the vanudium-containing zeolite β [J]. Zeolites,1997,18:182-187
    [30]Liu X S, Liu X X, Thomas J M, Liu J, The galliation of zeolite β [J].Zeolites,1992,12, 936-942
    [31]Bellussi G, Pazzuconi G, Perego C, et al. Liquid Phase alkylation of benzene with light olefins catalyzed by β-zeolites [J].Journal of catalysis,1995,157(1):227-234
    [32]Pu Shubin, Inui Tomoyuki. Synthesis of 2,6-dimethylnaphthalene by methylation of methylnaphthalene on various medium and large-pore zeolite catalysts[J].Applied Catalysis, A:General.1996,146(2):305-316
    [33]代少勇.β-沸石催化邻二甲苯-叔丁醇烷基化反应的研究[D].哈尔滨:哈尔滨工程大学,2003
    [34]李丽,潘惠芳,李文兵.β沸石在烃类裂化催化剂中的应用[J].催化学报,2002,23(1):65-68
    [35]张怀彬,袁忠勇,赵伟,等.B沸石和HZSM-5沸石上乙酸与正戊醇的催化酯化[J].南开大学学报(自然科学),1998,31(2):53-59
    [36]Wang Z B, Kamo A, Komatsu T, et al. Isomerization of n-heptane over Pt-loaded zeolite p catalysts [J].Applied Catalysis A:General,1997,159(1-2):119-132
    [37]Wang lkai, Tseng Chang Tsai, Sheng Tai Huang. Disproportionation of toluene and of trimethylbenzene and their transalkylation over zeolite B [J].Industrial Engineering Chemistry Research,1990,29(10):2005-2012
    [38]Das J, Bhat Y S, Halgeri A B,et al. Selective ethylation of ethylbenzene in the presence of other aromatics [J].Applied Catalysis A:General,1994,115(2):257-267
    [39]Ratnasamy P, Bhat R N, Pokhriyal S K, et al. Reactions of aromatic hydrocarbons over zeolite β [J].Journal of Catalysis,1989,119(1):65-70
    [40]Camblor M A, Perez-Pariente J. Crystallization of zeolite B: Effect of Na and K ions [J].Zeolites,1991,11(3):202-210
    [41]刘冠华,左丽华,舒兴田,等.β沸石合成方法(一)[P].中国专利,1108213.1995-09-13
    [42]刘冠华,舒兴田,何鸣元,等.p沸石合成方法(二)[P].中国专利,1108214.1995-09-13
    [43]刘冠华,何鸣元,舒兴田,等.p沸石合成方法[P].中国专利,1154341.1997-07-16
    [44]刘冠华,何鸣元,舒兴田,等.p沸石合成方法[P].中国专利,1154342.1997-07-16
    [45]黄双艳,李永红.微波技术在分子筛领域的应用进展[J].天津化工,2003,17(1):13-16
    [46]叶红齐,林京福,周永华.微波技术在分子筛研究中的应用[J].江苏化工,2002,30(6):21-24
    [47]周群,庞文琴,裘式纶,等.导向剂法合成B沸石[P].中国专利,1086792.1994-05-18
    [48]Xu W, Dong J, Li J, Li J, et al, A novel method for the preparation of zeolite ZSM-5 [J]. J.Chem. Soc.,Chem.Commun.,1990,28(3):755-756
    [49]任瑜,董维阳,龙英才.蒸汽相法合成沸石的研究进展[J].上海化工,2000,20:26-27
    [50]陈铁红,袁忠勇,王敬中,等.气固相法合成p沸石分子筛[J].石油学报(石油加工),1999,15(5):77-80
    [51]Matsukata M, Osaki T, Ogura M, Kikuchi E. Crystallization behavior of zeolite B during steam-assisted crystallization of dry gel [J].Microporous and Mesoporous Materials, 2002,56(1):1-10
    [52]Hari Prasad Rao P R, Leony Leon C A, Ueyama K, Matsukata M. Synthesis of BEA by dry gel conversion and its characterization [J].Microporous and Mesoporous Materials, 1998,21(4-6):305-313
    [53]DiRenzo F, Albizane A, Nicolle M. B stability of Zeolites in Tetraethyl-ammonium Media [J]. Stud Surf Sci Catal,1991,65(9):603-612
    [54]Ramanath N B, Rajiv K. Synthesis of zeolite B Using Silica gel as a Source of SiO2 [J]. J.Chem.Tech.Biotechnol,1990,48(8):453-466
    [55]Calvert R B, Chang C D, Valyocsik E W. Preparation of Zeolite B [P].EP,0164208. 1985-05-14
    [56]Rubin M K. Zeolite B [P].US patent,5164169.1992-07-14
    [57]Rubin M K. Synthesis of Zeolite B [P].US patent,5164170.1992-11-13
    [58]Eapen M J, Reddy K S N, Shiralkar V P. Hydrothermal crystallization of zeolite B using tetraethylammonium bromide [J].Zeolites,1994,14(4):295-302
    [59]Chu Y F. Process for B Zeolite Production[P].US patent,4847055.1989-08-16
    [60]Valyocsik E W,Wong S S, Calvert R B.Method for Producing Highly Siliceous Zeolites[P].US patent,4923690,1990-09-13
    [61]Absil R P L, Kowalski J A, Herbst J A. A Method of Synthesizing Zeolite B [P].EP, 523829.1993-07-11
    [62]Cannan T R, Hinchey R J. Synthesis of Zeolite B [P].US patent,5139759.1992-08-22
    [63]祁晓岚.B沸石合成化学研究[D].北京:石油化工科学研究院,1998
    [64]Rubin M K. Zeolite β[P], EP,159487.1985-12-06
    [65]Caullet P, Guth J L, Faust A C.Zeolite β and Their Manufacture [P]. US patent, 5171556.1995-12-08
    [66]Caullet P, Hazm J, Guth J L, et al. Synthesis of zeolite B from nonalkaline fluoride aqueous aluminosilicate gels [J].Zeolites,1992,12(3):240-250
    [67]Caullet P, Hazm J, Guth J L, et al. B Zeolite and Their Manufacture[P]. EP,41934. 1999-06-07
    [68]Ajot A, Joly J F, Caullet P. Formation of secondary pores in zeolite during dealumination:Influence of the crystallographic structure and of the Si/Al ratio [J].Stud Surf Sci Catal,1991,62(4-6):583-590
    [69]Rubin M K. Zeolite B[P]. EP,159846.1985-01-19
    [70]Calvert R B,Chang C D, Rubin M K. Zeolite B Prepared in Novel form-Using Dibenzel-Dimethyl-A Mmonium Ions as Directing Agents[P].US patent,4642226.
    1986-09-26
    [71]铃木阳子.β沸石的制造方法[P].日特开,7-247114,1995-07-12
    [72]殷行知,于勇军,王中南,等.p沸石的制备方法[P].中国专利,1150119.1997-05-21
    [73]余少兵,李永红,陈洪钫.合成p沸石的研究[J].天津大学学报,2002,35(2):91-94
    [74]祁晓岚,刘希尧,林炳雄.四乙基溴化铵-氟化物复合模板剂合成β沸石Ⅰ.合成热力学成相区[J].催化学报,2000,21(1):75-78
    [75]Den Ouden C J J, Thompson R W. Analysis of zeolite crystallization using the "crystallization curve" [J].Industrial Engineering Chemistry Research,1992.31(1): 369-373
    [76]Li-Jen Leu, Liang-Yuan Hou, Ben-Chang Kang, et al. Synthesis of zeolite β and catalytic isomerization of n-hexane over Pt/H-β catalysts[J].Applied Catalysis,1991, 69(1):49-63
    [77]李文兵,潘惠芳,黄文来,等.水热法合成p沸石结晶度的研究[J].现代化工,2002,22(8):30-32
    [78]谢在库,张成芳,陈庆龄,等.以固体硅胶为硅源的p沸石晶化过程的研究[J].石油学报,2000,16(3):33-37
    [79]许本静,钱岭,阎子峰.SAPO-11分子筛合成技术研究进展[J].天然气化工,2003,28(4):37-46
    [80]Pereze-Pariente J, Martens J A, Rosinski E J. Hydrothermal crystalliztion of zeolite B [J].Applied Catalysis,1987,31(7):35-64
    [81]Yang C, Wang J, Xu Q H. Aluminated zeolites β and their properties Ⅱ. Basicities of aluminated zeolites β:an FTIR study of chemisorbed pyrrole [J]. Microporous Materials,1997,11(5-6):261-268
    [82]王克冰,项寿鹤.p沸石的合成[J].内蒙古大学学报,2001,32(6):628-633
    [83]Yung F. Mobil Oil Corporation, Assignee. Process for ZSM-11 production [P].US patent,4487055.1987-12-24
    [84]Mostowicz R, Testa F, Crea F, et al. The effect of thermal treatment and of grinding on silicalite-1 synthesized in the presence of fluoride ions [J].Zeolites,1995,15(3): 259-263
    [85]Cheng M, Tan D L, Liu X M, et al, Effect of aluminum on the formation of zeolite MCM-22 and kenyaite [J].Microporous and Mesoporous Materials,2001,42(2-3): 307-316
    [86]Breck D W, Flanigen E M, In Molecular Sieves [M].Society of Chemical Industry: London,1968:47
    [87]Breck D W, Crystalline molecular sieves [J].J. Chem. Ed.1964,41(12):678-689
    [88]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报,1999,44(18):1905-1920
    [89]Gabelica Z, Derouane, E G, Blom N. Factors affecting the synthesis of pentasil zeolites [J],ACS Symp. Ser.,1984,248:219-251
    [90]Derouane E G, Determmerie S, Gabelica Z, Blom N. Synthesis and characterization of ZSM-5 type zeolites I. Physico-chemical properties of precursors and intermediates [J]. Appl. Catal.,1981,1(3-4):201-224
    [91]Iton L E, Trouw F, Rum T O, et al. Small-angle Neutron-Scattering Studies of the Template-mediated Crystallization of ZSM-5-type Zeolite [J].Langmuir,1992,8: 1045-1048
    [92]Lewis D W, Catlow C R A, Sankar G, et al. Structure of iron-substituted ZSM-5 [J].J. phys. chem.,1995,99:2377-2383
    [93]Lewis D W, Sankar G, Catlow C R A, et al. Computer simulation of Fe-ZSM-5-comparison to EXAFS studies [J].Nucl. Instrum.Meth. B,1995,97:44-53
    [94]Sauer J, Bussemer B.Ab initio modelling of chemical shifts for silicate solutions, silicates and zeolite catalytsts [J].Abstr. Pap. Am. Chem. Soc.,1998,216:154-COMP
    [95]Stave M S, Nicholas J B. Density functional studies of zeolites.2.Structure and acidity of [T]-ZSM-5 models (T=B,Al, Ga, and Fe) [J].J. phys. chem.,1995,99:15046-15061
    [96]Xavier R, Rutger A, Van S,et al. A periodic DFT study of isobutene chemisorption in proton-exchanged zeolites:Dependence of reactivity on the zeolite framework structure [J].J. Phys. Chem. B,2003,107:1309-1315
    [97]Rigby A M, Kramer G J, van Santen R A. Mechanisms of hydrocarbon conversion in zeolites:A quantum mechanical study [J].J. Catal.,1997,170:1-10
    [98]Chu C T, Chang C D.Isomorphous substitution in zeolite frameworks.1.acidity of surface hydroxyls in [B-],[Fe-],[Ga-],and [Al]-ZSM-5 [J].J. phys. chem.,1985,89: 1569-1571
    [99]Zheng A M, Chen L, Yang J, Zhang M J, Su Y C, Yue Y, Ye C H, Deng F. Combined DFT Theoretical Calculation and Solid-State NMR Studies of Al Substitution and Acid Sites in Zeolite MCM-22 [J].J. Phys. Chem. B,2005,109:24273-24279
    [100]Zhou, D H, Bao Y, Yang M M, He N, Yang G. DFT studies on the location and acid strength of Bronsted acid sites in MCM-22 zeolite [J].Journal of Molecular Catalysis A, 2006,244:11-19
    [101]Fujita H, Kanougi T, Atoguchi T, Distribution of Brφnsted acid sites on β zeolite H-BEA:A periodic density functional theory calculation [J].Applied Catalysis A,2006, 313:160-166
    [102]Pbpai I, Goursot A, Fajula F. Density Functional Calculations on Model Clusters of Zeolite-B [J].J. Phys. Chem.,1994,98:4654-4659
    [103]Kazansky V B.Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons [J].Catal. Today,1999,51:419-434
    [104]Zheng X, Blowers P. An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method [J].J. Mol. Catal. A:Chem.,2005,229: 77-85
    [105]Rigby A M, Frash M V. Ab initio calculations on the mechanisms of hydrocarbon conversion in zeolites:Skeletal isomerisation and olefin chemisorption [J].J. Mol. Catal. A:Chem.,1997,126:61-72
    [106]Zheng X, Blowers P. A computational study of methane catalytic reactions on zeolites [J].J. Mol. Catal. A:Chem.,2006,246:1-10
    [107]Brandle M, Sauer J. Acidity differences between inorganic solids induced by their framework structure. A combined Quantum Mechanics/Molecular Mechanics ab Initio study on zeolites [J].J. Am. Chem. Soc.,1998,120:1556-1570
    [108]Treesukol P, Lewis J P, Limtrakul J,et al. A full quantum embedded cluster study of proton siting in chabazite [J].Chem. Phys. Lett.,2001,350:128-134
    [109]Khaliullin R Z, Bell A T, Kazansky V B.An experimental and Density Functional Theory study of the interactions of CH4 with H-ZSM-5[J].J. Phys. Chem. A,2001,105: 10454-10461
    [110]Limtrakul J, Nanok T, Jungsuttiwong S, et al. Adsorption of unsaturated hydrocarbons on zeolites:the effects of the zeolite framework on adsorption properties of ethylene [J]. Chem. Phys. Lett.,2001,349:161-166
    [111]Froese R D J, Morokuma K. Accurate calculations of bond-breaking energies in C60 using the three-layered ONIOM method [J].Chem. Phys. Lett.,1999,305:419-424
    [112]Froese R D J, Morokuma K. IMOMO-G2MS approaches to accurate calculations of bond dissociation energies of large molecules [J]. J. Phys. Chem. A,1999,103: 4580-4586
    [113]Vreven T, Morokuma K. The accurate calculation and prediction of the bond dissociation energies in a series of hydrocarbons using the IMOMO (integrated molecular orbital plus molecular orbital) methods [J].J. Chem. Phys.,1999,111: 8799-8803
    [114]Vreven T, Morokuma K. Prediction of the dissociation energy of hexaphenylethane using the ONIOM (MO:MO:MO) method [J].J. Phys. Chem. A,2002,106:6167-6170
    [115]Thompson R W, Electronic structure of the molecules adsorbed on zeolites [A].In: Catlow C R A, Vetrivel R. Modelling and Reactivity in Zeolites [C],Academic Press, London,1992,217-230
    [116]Casci J L, Lowe B M. Use of pH-measurements to monitor zeolite crystallization [J]. Zeolites,1983,3(3):187-188
    [117]Lowe B M. An equilibrium model for the crystallization of high silica zeolites [J]. Zeolites,1983,3(4):300-305
    [118]Lowe B M. Studies in Surface Science and Catalysis [A].In:Grobet PJ, Mortier WJ, Vansant EF, Schulz-Ekloff, Innovation in Zoelite Materials Science[C].vol.37, Elsevier:Amsterdam,1988,1
    [119]Namba S, Inaka A, Yashima T. Effect of selective removal of aluminium from external surfaces of HZSM-5 zeolite on shape selectivity [J].Zeolites,1986,6(2):107-110
    [120]Auerbach S M, Ford M H, Monson P A. New insights into zeolite formation from molecular modeling [J].Current Opinion in Colloid & Interface Science,2005,10(5-6): 220-225
    [121]Parr R G, Yang W. Density-functional theory of atoms and molecules [M].New York: Oxford University Press,1989
    [122]Frenkel D, Smit B.Understanding molecular simulations [M].San Diego:Academic Press,1996
    [123]Chandler D, Introduction to modern statistical mechanism [M].New York:Oxford University Press,1987
    [124]Pereira J C G, Catlow C R A, Price G D,Ab initio studies of silica-based clusters. Part Ⅰ. energy and conformation of simple clusters [J].J. Phys. Chem. A,1999,103 (17): 3252-3267
    [125]Pereira J C G, Catlow C R A, Price G D. Ab initio studies of silica-based clusters. Part Ⅱ. Structures and energies of complex clusters [J]. J. Phys. Chem. A,1999,103 (17): 3268-3284
    [126]Pereira J C G, Catlow C R A, Price G D, Almeida R M. Atomistic modeling of silica based sol-gel process [J].J. Sol-Gel Sci Technol,1997,8:55-58
    [127]Catlow C R A, Coombes David S,Lewis D W, et al. Computer modeling of nucleation, growth and templating in hydrothermal synthesis [J].Chem Mater 1998,11:3249-3265
    [128]Lewis D W, Catlow C R A, Thomas J M. Application of computer modeling to the mechanisms of synthesis of microporous catalytic materials [J].Faraday Discuss,1997, 106:451-471
    [129]Rao N D, Gelb L D, Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics [J].J. Phys Chem B,2004,108:12418-12428
    [130]M G, Deem M W. Monte Carlo study of the nucleation process during zeolite synthesis [J]. J. Chem. Phys,2002,116(5):2125-2137
    [131]Ford M H, Auerbach S M, Monson P A. On the mechanical properities and phase behavior of silica:a simple model based on low coordination and strong association [J]. J Chem Phys.2004,121(17):8415-8422
    [132]Jorge M, Auerbach S M, Monson P A. Modeling spontaneous formation of precursor nanoparticles in clear-solution zeolite synthesis [J].J Am Chem Soc,2005,127: 14388-14400
    [133]Selli E, Forni L. Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine[J].Microporous and Mesoporous Materials,1999,31(1-2):129-140
    [134]周公度,段连运.结构化学基础[M].北京:北京大学出版社,1995,第二版
    [135]Born M, Oppenheimer J R. Zur Quantentheorie Der Molekeln [J].Ann. Physik.,1927, band 84:361-376
    [136]Born M, Huang K. Dynamical Theory of Crystal Lattices [M].Oxford Uniersity Preess, New York,1954
    [137]Hartree D R. The wave mechanism of an atom with a non-coulomb central field. Ⅰ. Theory and methods. II. Some results and discussion [J].Proc. Cambirdge Phil. Soc., 1928,24:89-132
    [138]Fock V. "Self-consistent field" with interchange for sodium [J].Z. Physik,1930,62: 795-805
    [139]Hartree D. Calcaulations of Atomic Structure [M]. Wiley,1957
    [140]Ira N.赖文.量子化学(宁世光,余敬曾,刘尚长译)[M].北京:人民教育出版社,1980
    [141]Roothaan C C J. New developments in molecular orbital theory [J].Rev. Mod. Phys., 1951,23:69-89
    [142](a) Heher W J, Radon L, Schleyer P V, et al.Ab initio Moleculaar Orbital Theory [M]. Jhon Wiley & Sons, Inc.,1986; (b) Mcquarrie D A. Quantum Chemistry University Science Books[M]:Mill Vally. CA.,1983
    [143]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982
    [144]徐光宪,黎乐民,王德民.量子化学基本原理和从头算方法(中册)[M].北京:科学出版社,1985
    [145]Parr R G, Yang W. Density-functional theory of atoms and molecules [M].Oxford University Press:Oxfird,1989
    [146]赵成大.固体量子化学—材料化学的理论基础[M].北京:高等教育出版社,2003,第二版
    [147]Labanowski J K, Andzelm, J.Density functional methods in chemistry [M]. Springer-Verlag:New York,1991
    [148]Hohenbergh P C, Kohn W. Inhomogeneous electron gas [J].Phys. Rev.,1964,136: B864-B871
    [149]Murphy D R. Sixth-order term of the gradient expansion of the kinetic-energy density functional [J].Phys. Rev. A,1981,24:1682-1688
    [150]Yang W. Gradient correction in Thomas-Fermi theory [J].Phys. Rev. A,1986,34: 4575-4585
    [151]Perdew J P, Wang Y. Theory of the cyclotron resonance spectrum of a polaron in two dimensions [J].Phys. Rev. B,1986,33:8800-8809
    [152]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids,and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671-6687
    [153]Becke A D.Density-functional exchange-energy approximation with correct asymptotic behavior [J].Phys. Rev. A,1988,38:3098-3100
    [154]Perdew J P. Generalized gradient approx for exchange and approximation correlation:a look backward and forward [J].Physica B,1991,172:1-2
    [155]Becke A D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction [J].J. Chem. Phys.,1992,96:2155-2160
    [156]Becke A D. Density-functional thermochemistry. IV. A new dynamical correction functional and implications for exact-exchange mixing [J].J. Chem. Phys.,1996,104: 1040-1046
    [157]Stern M J, Persky A, Klein F S. Force field and tunneling effects in the H-H-Cl reaction system. Determination from kinetic-isotope-effect measurements [J].J.Chem. Phys., 1973,58:5697-5706
    [158]Garrett B C, Truhlar D G.Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules [J].J. Phys. Chem., 1979,83:1052-1079
    [159]Garrett B C, Truhlar D G. Additions and corrections-generalized transition state theory[1].Quantum effects for collinear reactions of hydrogen molecules [J].J. Phys. Chem.,1983,87:4553-4553
    [160]Wynne-Jones W F K, Eyring H. The absolute rate of reactions in condensed phases [J]. J.Chem. Phys.,1935,3:492-502
    [161]赵学庄等编著,化学反应动力学原理(下册)[M].北京:高等教育出版社,1990
    [162]Fukui K, Tachibana A, Yamashita K. Toward chemodynamics [J].Int. J. Quantum. Chem.,1981,15:621-632
    [163]Ishida K, Morokuma K, Komornicki A. The intrinsic reaction coordinate. An ab initio calculation for HNC-HCN and H-+CH4→CH4+H-[J].J. Chem. Phys.,1977,66: 2153-2156
    [164]Eyring H, Lin S H, Lin S M. Basic Chemical Kinetics[M].John Wiley and Sons,1980
    [165]Truhlar D G, Garrett B C, Klippenstein S J. Current status of transition-state theory [J]. J. Phys. Chem.,1996,100:12771-12800
    [166]Dapprich S, Komaromi I, Byun K S,et al. A new ONIOM implementation in Gaussian98.Part Ⅰ. The calculation of energies, gradients, vibrational frequencies and electric field derivatives [J]. J. Mol. Struc.,1999,461-462:1-21
    [167]Vreven T, Morokuma K. On the application of the IMOMO (integrated molecular orbital plus molecular orbital) method [J].J. Comput. Chem.,2000,21:1419-1432
    [168]Kasuriya S, Namuangruk S, Treesukol P, et al. Adsorption of ethylene, benzene, and ethylbenzene over faujasite zeolites investigated by the ONIOM method [J].J. Catal., 2003,219:320-328
    [169]Bobuatong K, Limtrakul J.Effects of the zeolite framework on the adsorption of ethylene and benzene on alkali-exchanged zeolites:An ONIOM study [J].Appl. Catal. A,2003,253:49-64
    [170]张瑞勤,步宇翔,李述汤.一种选择从头算基函数的有效方法[J].中国科学(B辑),2000,30(5):419-427
    [171]Frisch M J, Trucks G W, Schlegel H B,et al. Gaussian 03,Revision B.04, Gaussian, Inc.,Pittsburgh PA,2003
    [172]J A Pople, M Head-Gordon, D J Fox, K Raghavachari, L A Curtiss, Gaussian-1 theory:A general procedure for prediction of molecular energies. J. Chem. Phys,1989,90: 5622-5629
    [173]徐如人,庞文琴,屠昆岗,等.沸石分子筛的结构与合成[M].长春:吉林大学出版社,1987
    [174]赵留周,周涵,施至诚.C6+正碳离子异构化的分子模拟[J].石油学报(石油加工),2002,18(4):90-94
    [175]高永灿.催化裂化过程中骨架异构化反应的研究Ⅰ.催化裂化工艺过程中骨架异构化反应的表征及其特点[J].石油学报(石油加工),2004,20(5):20-26
    [176]Trinh T T, Jansen A P J, van Santen R A. Mechanism of Oligomerization Reactions of Silica [J].J. Phys. Chem. B,2006,110 (46):23099-23106
    [177]Ermoshin V A, Smirnov K S,Bougeard D.Ab initio study of the initial steps of hydrothermal zeolite synthesis and of sol-gel processes [J].J. Mole. Struc. (Theochem), 1997,393(1-3):171-176
    [178]Flanigen E M, Patton R L, Wilson S T. Innovation zeolite material science [J].Stud. Surf. Sci.Catal.1988,37:13-15
    [179]Arharcet J P, Davis M E, Bromice J, Chem. Mater.1991,3(4):567-569
    [180]Shantz D F, Fild C, Koller H, Lobo R F. Guest-Host Interactions in As-Made Al-ZSM-12:Implications for the Synthesis of Zeolite Catalysts [J].J. Phys. Chem. B, 1999,103:10858-10865
    [181]Shantz D F, Schmedt J, Koller H, Lobo R F. Multiple-Quantum1H MAS NMR Studies of Defect Sites in As-Made All-Silica ZSM-12 Zeolite[J]. J. Am. Chem. Soc.2000, 122(28):6659-6663
    [182]Sastre G, Fornes V, Corma A. On the preferential location of Al and proton siting in zeolites:a computational and Infrared study [J].J. Phys. Chem. B,2002,106:701-708
    [183]Sabater M J, Sastre G. A computational study on the templating ability of the trispyrrolidinium cation in the synthesis of ZSM-18 zeolite [J].Chem. Mater.2001,13: 4520-4526
    [184]Bare S R, Kelly S D, Sinkler W, Low J J, Modica F S,Valecia S,Corma A, Nemeth L T. Uniform Catalytic Site in Sn-a-Zeolite Determined Using X-ray Absorption Fine Structure[J].J. Am. Chem. Soc.,2005,127:12924-12932

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700