用户名: 密码: 验证码:
高压直流输电系统换流器与线路保护动态特性分析与整定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压直流输电系统由于在输电距离、传输容量以及经济性上具有显著的优势,目前在跨区域电网间的互联与大容量远距离输电中获得广泛应用。换流器与直流输电线路是高压直流输电系统的核心元件,其故障特征和保护组成最具直流系统特征,与交流系统继电保护存在较明显的差异,对于整个直流输电系统的安全稳定运行具有重要的影响。本文以直流输电系统的换流器和直流输电线路这两个典型元件作为研究对象,针对直流保护普遍存在的动作行为不确定性、缺乏系统的整定计算方法及定量分析手段等问题开展研究。
     本文首先建立了面向直流保护的直流输电系统故障分析模型。针对换流器保护在换流器交流连接线故障时的动作行为存在不确定性的问题,研究了换流器保护各特征量的动态特性和动作判据,分析了交流连接线上故障位置、故障类型及系统运行方式对保护动作行为的影响,明确了换流器保护对交流连接线故障响应的规律,为换流器保护优化提供了依据。
     本文提出了基于保护特征量分析直流继电保护动作行为的方法。研究了直流线路保护特征量的动态特性,分析了故障条件(包括本极线路故障、对极线路故障、平波电抗器阀侧故障以及交流母线故障)、系统运行方式(包括单极大地方式、单极金属回线方式以及双极方式)和直流控制作用对直流线路故障暂态及保护特征量的影响规律,明确了直流线路各保护判据的动作边界、约束条件和功能定位,为直流线路保护优化与整定计算提供了依据。
     本文进一步提出了适用于直流线路各保护的统一整定计算方法,研究了保护装置采样率对直流线路保护整定影响的特殊问题,分析了直流线路各保护灵敏度系数影响因素与取值原则,有效解决了目前直流保护依据经验进行整定且缺乏有效的定量分析方法与手段的难题,将直流保护整定纳入到了电力系统继电保护整定的整体框架之中。
     基于以上理论,本文开发了直流线路保护整定计算程序,实现了直流线路保护的整定计算、定值校核、数据分析以及文档输出等功能。结合我国多个直流输电工程实际参数与保护配置进行了整定计算,验证了本文方法与程序的正确性与有效性。该整定计算程序已在实际直流输电工程中获得应用。
     本文工作得到国家高技术研究发展计划(“863”计划)(项目编号:2012AA050209)的资助,部分研究成果已经在电网运行部门的实际工作中得到应用,验证了本文工作的正确性和有效性,取得了良好的社会和经济效益。
HVDC is today being widely used to connect regional power grids and transmit bulkpower to distant locations since they have more advantages in the aspects of transmissionability and economic benefit compared to HVAC. Converter and dc line are the two corecomponents of HVDC systems. They characterize the HVDC system well in fault analysisand protection principle, and their performance determines the reliability and efficiency of thewhole HVDC system. Therefore, we focus on the two components in this paper. Of thespecial importance are: the uncertain behavior of HVDC protective relaying and the lack ofefficient method for setting determination and performance evaluation.
     This paper proposes a fault analysis model for the research of protective relaying. Thebehavior of the converter protective relay is uncertain when faults occur on the link betweenthe converter and transformer. To solve the problem, we analyze the relaying quantitycharacteristics and protection criterion function of the converter protective relaying, in whichthe effect of fault location, fault type and operation condition of HVDC system are fullyconsidered. The study results clarify the response of the protective relay to the faults on thelink between the converter and transformer, which in turn gives a basis for the optimization ofconverter protective relaying.
     This paper proposes a method for the behavior analysis of HVDC protective relayingbased on the relaying quantity studies. The method is used to study the behavior of dc lineprotective relays. The dynamic characteristics of the relaying quantities are firstly studiedconsidering the effect of fault condition, system operation condition, and control systembehavior. The fault condition contains faults on the concerned pole and on the other pole,faults on the converter side of the smoothing reactor, and faults on the commutation bus. Theoperation condition contains bipolar operation, monopolar metallic return operation, andmonopolar ground return operation. The study results clarify the boundary, constraintcondition, and function of the protection criterions, which in turn gives a basis for the settingdetermination and optimization of dc line protective relaying.
     This paper also proposes a unified method for the setting determination of various dc line protections. The principle of selecting protection thresholds is proposed and the protectionsensitivity is fully analyzed considering various factors. A special attention is given to theproblem that the sampling frequency will affect the threshold settings of dc line protections.By doing so, we effectively solve the problem of lacking efficient method for the settingdetermination and performance evaluation of dc line protections, and incorporate the probleminto the framework of conventional power system protection.
     Based on the proposed theories, this paper finally develops a setting determinationprogram for dc line protections. The program can be applied to threshold selection, thresholdevaluation and electrical quantity analysis, etc. The program has been used in several actualHVDC projects. The performance verifies the correctness and validation of the theoriesproposed in this paper.
     This work is supported by the National High Technology Research and DevelopmentProgram (“863” Program) of China (No.2012AA050209). Some of the research results havebeen applied to the operation of actual HVDC systems, obtaining great economic and socialbenefit.
引文
[1]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012(04):1-9
    [2]舒印彪.中国直流输电的现状及展望[J].高电压技术.2004(11):1-2
    [3]袁清云.我国特高压直流输电发展规划与研究成果[J].电力设备.2007(03):1-4
    [4]赵杰.高压直流输电的前沿技术[J].中国电力.2005(10):1-6
    [5]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,3(11):11-12.
    [6]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向[J].高电压技术.2010(12):3070-3077
    [7]何智江.发展中的中国高压直流输电事业[J].高压电器,2006,42(6):460-463.
    [8] Mazur G, CarryeR r, Ranade S T,et al. Converter Control and Protection of the NelsonRiver HVDC Bipole2Commissioning and First Year of Commercial Operation[J].IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(1):327-335.
    [9] Darwish H A, Taalab A I Rahman M A. Performance of HVDC Converter ProtectionDuring Internal Faults[C]. IEEE Power Engineering Society General Meeting,2006:7.
    [10]孙恒明,曹继丰.高压直流换流器差动保护抗干扰性能研究[J].南方电网技术,2008,2(5):28-31.
    [11]张颖,邰能灵,徐斌.高压直流输电系统阀短路保护动作特性分析[J].电力系统自动化,2011,35(8):97-102.
    [12]梅念,李银红,刘登峰,等.高压直流输电中阀短路保护的动作方程研究[J].中国电机工程学报,2009,29(1):40-47.
    [13]刘洋,李晓华,蔡泽祥.直流输电系统换流器接地故障定位[J].电力系统自动化,2010,34(8):86-91.
    [14]李晓华,刘洋,蔡泽祥.直流输电换流变压器阀侧交流单相接地故障[J].电工技术学报,2012,27(6):38-45.
    [15]郑涛,祁欢欢,范莹.基于阀短路保护的HVDC换流器区内故障定位新方法[J].电力系统自动化,2013,37(5):99-104.
    [16] Darwish H A, Rahman M A, Taalab A I, et al. Overcurrent Relay with NovelCharacteristics for HVDC Converter Protection[C]. Canadian Conference on Electricaland Computer Engineering,1995:664-667.
    [17] John J. Vithayathil. Bypass operation in bridge convertors for high-voltage d.c.transmission[J]. Proceedings of the Institution of Electrical Engineers,1965,112(2):359-365.
    [18]欧开健,朱韬析,郭琦,等.直流输电系统100Hz保护Ⅰ段误动问题仿真分析[J].南方电网技术,2008,2(5):36-38.
    [19]杨海峰.高压直流输电系统基频保护分析[J].高压电器,2010,46(10):20-22.
    [20]傅闯,饶宏,黎小林.交直流混合电网中直流50Hz和100Hz保护研究[J].电力系统自动化,2008,32(12):57-60.
    [21] Li Zhikeng, Chen Zhigang, Wang Gang, et al. Study on the Operation Area of the100Hz Protection in an HVDC System[C].2011Asia-Pacific Power and EnergyEngineering Conference (APPEEC),2011:1-4.
    [22]余江,周红阳,黄佳胤,等.影响直流100Hz保护的交流系统故障范围分析[J].电力系统自动化,2008,32(3):48-51.
    [23] Discussion on Logic behavior of HVDC convertors during normal and abnormalconditions and Direct digital protection of HVDC convertors[J]. Proceedings of theInstitution of Electrical Engineers,1968,115(11):1683-1684.
    [24] Madan S, Bollinger K E, S K Banerjee. Microprocessor Based HVDC ConverterProtection[C]. Canadian Conference on Electrical and Computer Engineering,1996:750-753.
    [25]杜欣慧,胡殿霞.高压直流输电中换流器保护电路的仿真分析[J].华侨大学学报(自然科学版),2013,34(2):134-138.
    [26]袁清云.直流输电换流站换流器保护的配置及原理[J].高电压技术,2004,30(11):13-14.
    [27] Reeve J. Direct digital protection of HVDC convertors[J]. Proceedings of the Institutionof Electrical Engineers,1967,114(12):1947-1954.
    [28] Arrillaga, Galanos G. Fault-development control in AC-DC convertors[J]. Proceedingsof the Institution of Electrical Engineers,1969,116(7):1201-1208.
    [29]叶猛,曹海艳,马国鹏.高压直流输电线路保护分析[J].南方电网技术,2008,2(6):43-46.
    [30]朱韬析,汲广.天广直流输电系统线路行波保护介绍[J].电力系统保护与控制,2008,36(21):86-89.
    [31]周翔胜,林睿.高压直流输电线路保护动作分析及校验方法[J].高电压技术,2006,32(9):33-37.
    [32] LI Ai-min,CAI Ze-xiang.Study on the dynamic performance characteristics of HVDCcontrol and protections for the HVDC line fault[C].Proceedings of IEEE Power&Energy Society2009General Meeting,2009:1-5.
    [33]朱韬析,欧开健.高压直流输电线路高阻接地故障与后备保护[J].电力建设,2010,31(4):21-24.
    [34] Pathirana V, Dirks E, McLaren P. G. Hardware and software implementation of atravelling wave based protection relay[J].2005IEEE POWER ENGINEERINGSOCIETY GENERAL MEETING, VOLS,1-3,2005:701-706.
    [35]张保会,孔飞,张嵩,等.高压直流输电线路单端暂态量保护装置的技术开发[J].中国电机工程学报,2013,33(4):179-185.
    [36]艾琳,陈为化.高压直流输电线路保护的探讨[J].继电器,2004,32(4):61-63.
    [37] Ramesh M, Laxmi A J. Fault Identification in HVDC Using Artificial Intelligence—Recent Trends and Perspective[C].2012International Conference on Power, Signals,Controls and Computation (EPSCICON),2012:1-6.
    [38]余江,周红阳,黄佳胤,等.交流系统故障导致直流线路保护动作的分析[J].南方电网技术,2009,3(3):20-23.
    [39]张保会,孔飞,张嵩,等.高压直流输电线路单端暂态量保护装置的技术开发[J].中国电机工程学报,2013,33(4):179-185.
    [40]束洪春,田鑫萃,董俊,等.±800kV云广直流输电线路保护的仿真及分析[J].中国电机工程学报,2011,31(31):179-188.
    [41]李爱民,蔡泽祥,任达勇,等.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化,2009,33(11):72-75.
    [42]孙舒捷.高压直流输电系统仿真及其输电线路行波保护方案[D].上海:上海交通大学,2009.
    [43]李学鹏.高压直流输电线路行波保护及其故障定位的研究[D].北京:华北电力大学,2006.
    [44]李爱民,蔡泽祥,李晓华,等.高压直流输电线路行波保护影响因素分析及改进[J].电力系统自动化,2010,34(10):76-80.
    [45]杨泽明,任达勇.基于EMTDC混合编程的高压直流线路保护仿真研究[J].南方电网技术,2009,3(增刊):80-83.
    [46]朱瑜,梁旭,闵勇.基于PSCAD/EMTDC的高压直流输电线路保护仿真研究[J].现代电力,2006,23(2):35-38.
    [47]朱韬析,候元文,王超,等.直流输电系统单极金属回线运行方式下线路接地故障及保护研究[J].电力系统保护与控制,2009,37(20):133-138.
    [48]高锡明,张鹏,贺智.直流输电线路保护行为分析[J].电力系统自动化,2005,29(14):96-99.
    [49]周红阳,余江,黄佳胤,等.直流线路纵联差动保护的相关问题[J].南方电网技术,2008,2(3):17-21.
    [50]艾琳,陈为化.高压直流输电线路行波保护判据的研究[J].继电器,2003,31(10):41-44.
    [51]宋国兵,高淑萍,蔡新雷,等.高压直流输电线路继电保护技术综述[J].电力系统自动化,2012,36(22):123-129.
    [52] Li Zhen-qiang, Lv Yan-ping. A Novel Scheme of HVDC Transmission Line VoltageTraveling Wave Protection Based On Wavelet Transform[C]. International Conferenceon High Voltage Engineering and Application,2008:163-167.
    [53] Liu Xiaolei, Osman A H, Malik O P. Hybrid Traveling Wave/Boundary Protection forMonopolar HVDC Line[J]. IEEE Transactions on Power Delivery,2009,24(2):569-578.
    [54]全玉生,王欢,李学鹏,等.新型直流输电行波电流极性比较式方向保护[J].高电压技术,2006,32(9):106-110.
    [55]高淑萍,索南加乐,宋国兵,等.利用单端电流的高压直流输电线路全线速动保护[J].中国电机工程学报,2012,32(7):107-113.
    [56]束洪春,田鑫萃,张广斌,等.±800kV直流输电线路的极波暂态量保护[J].中国电机工程学报,2011,31(22):96-104.
    [57] Bo Z Q. A New Non-Communication Protection Technique for Transmission Lines[J].IEEE Transactions on Power Delivery,1998,13(4):1073~1078.
    [58] Zheng XiaoDong, Tai Nengling, Yang GuangLiang, et al. A Novel Protection Schemefor Hvdc Transmission Line[C].2011International Conference on Advanced PowerSystemAutomation and Protection (APAP),2011,341~345.
    [59]束洪春,刘可真,朱盛强,等.±800kV特高压直流输电线路单端电气量暂态保护[J].中国电机工程学报,2010,30(31):108-117.
    [60]王钢,李志铿,李海锋.±800kV特高压直流线路暂态保护[J].电力系统自动化,2007,31(21):40-43.
    [61]高淑萍,索南加乐,宋国兵,等.高压直流输电线路电流差动保护新原理[J].电力系统自动化,2010,34(17):45-49.
    [62]倪佳伟,邰能灵,郑晓冬,等.高压直流输电线路暂态电流比较式纵联保护研究[J].水电能源科学,2013,31(06):202-204.
    [63]张保会,张嵩,尤敏,等.高压直流线路单端暂态量保护研究[J].电力系统保护与控制,2010,38(15):18-23.
    [64] Crossley P A, McLaren P G. Distance Protection Based on Travelling Waves[J]. IEEETransactions on Power Apparatus and Systems,1983, PAS-102(9):2971-2983.
    [65] Liu Xiaolei, Osman A H, Malik O P. Hybrid Traveling Wave/Boundary Protection forMonopolar HVDC Line[J]. IEEE Transactions on Power Delivery,2009,24(2):569-578.
    [66] Bo Z Q, Redfern M A, Weller G C. Positional protection of transmission line using faultgenerated high frequency transient signals[J]. IEEE Transactions on Power Delivery,2000,15(3):888-894.
    [67]张颖,邰能灵,徐斌.高压直流线路纵联行波方向保护[J].电力系统自动化,2012,36(21):77-80.
    [68]宋国兵,饶菁,高淑萍,等.基于补偿电压的高压直流输电线路单端电气量保护[J].电力系统自动化,2012,37(6):102-106.
    [69]邢鲁华,陈青,付兆远,等.基于电压和电流突变量的高压直流输电线路保护原理[J].电力系统自动化,2012,36(9):61-66.
    [70]邢鲁华,陈青,高湛军.基于电压和电流突变量方向的高压直流输电线路保护原理[J].电力系统自动化,2012,37(6):107-113.
    [71] Zhang Jiankang, Suonan Jiale, Jiao Zaibin, et al. A Fast Full-Line Tripping DistanceProtection Method for HVDC Transmission Line[C]. Power and Energy EngineeringConference (APPEEC),2012:1-5.
    [72] Zheng Xiao-Dong, Tai Neng-Ling, Thorp J S, et al. A Transient Harmonic CurrentProtection Scheme for HVDC Transmission Line[J]. IEEE Transactions on PowerDelivery,2012,27(4):2278-2285.
    [73]武骁,何正友,彭少博,等.基于行波固有频率的特高压直流输电线路纵联保护方法[J].电力系统保护与控制,2013,41(11):67-73.
    [74]余平.基于数学形态学的高压直流输电线路无通道保护研究[J].浙江电力,2007,(6):9-13.
    [75]常勇,张平,王聿升.基于希尔伯特-黄变换的高压直流线路行波保护[J].中国电力,2011,44(11):14-18.
    [76] Zhang Ying, Tai Nengling, Xu Bin. A Travelling Wave Protection Scheme for BipolarHVDC Line[C].2011International Conference on Advanced Power System Automationand Protection (APAP),2011:1728-1731.
    [77] Liang Jie, Elangovan S, Devotta J B X. Adaptive travelling wave protection algorithmusing two correlation functions[J]. IEEE Transactions on Power Delivery,1999,14(1):126-131.
    [78]全玉生,李学鹏,徐铁鹰,等.基于小波变换的HVDC线路行波电流极性比较式方向保护[J].现代电力,2005,22(6):22-26.
    [79]全玉生,李学鹏,马彦伟,等.基于小波变换的HVDC线路行波距离保护[J].电力系统自动化,2005,29(18):52-56.
    [80]李振强,鲁改凤,吕艳萍.基于小波变换的高压直流输电线路暂态电压行波保护[J].电力系统保护与控制,2010,38(13):40-45.
    [81]陈仕龙,张杰,毕贵红,等.基于小波分析的特高压直流输电线路双端电压暂态保护[J].电网技术.2013,37(00):1-6.
    [82]高淑萍,索南加乐,宋国兵,等.利用电流突变特性的高压直流输电线路纵联保护新原理[J].电力系统自动化,2011,35(5):52-56.
    [83]王钢,罗健斌,李海锋,等.特高压直流输电线路暂态能量保护[J].电力系统自动化,2010,34(1):28-31.
    [84] Naidoo D, Ijumba N M. A Protection System for Long HVDC Transmission Lines[C].Power Engineering Society Inaugural Conference and Exposition in Africa,2005IEEE,2005:150-155.
    [85] Chen Shi Long, Shu Hong Chun, Wang Yong Zhi, et al. Distance Protection Schemewith Travelling Wave for UHVDC Transmission Line Based On Wavelet Transform[C].Third International Conference on Electric Utility Deregulation and Restructuring andPower Technologies,2008:2162-2165.
    [86]陈仕龙,束洪春,万春红,等.一种特高压直流输电线路单端电压暂态保护原理[J].电力系统保护与控制,2013,41(03):26-31.
    [87]索南加乐,侯卓,宋国兵,等.基于分布参数模型的高压直流输电线路距离保护[J].电力系统自动化,2011,35(8):53-57.
    [88]陈仕龙,束洪春,谢佳伟,等.利用保护元件区分对侧区内外故障的特高压直流输电线路双端电压暂态保护原理[J].电力系统保护与控制,2013,41(15):14-20.
    [89] Zheng Xiaodong, Tai Nengling, Yang Guangliang, et al. ATransient Protection Schemefor HVDC Transmission Line[J]. IEEE Transactions on Power Delivery,2012,27(2):718-724.
    [90] Naidoo D, Ijumba N M. A Protection System for Long HVDC Transmission Lines[C].Power Engineering Society Inaugural Conference and Exposition in Africa,2005IEEE,2005:150-155.
    [91] Shehab-Eldin E H, McLaren P G. Travelling wave distance protection-problem areasand solutions[J]., IEEE Transactions on Power Delivery,1988,3(3):894-902.
    [92] Zhang Jiankang, Suonan. Jiale, Jiao Zaibin, et al. A Fast Full-Line Tripping DistanceProtection Method for HVDC Transmission Line[C]. Power and Energy EngineeringConference (APPEEC),2012Asia-Pacific,2012:1-5.
    [93] Ha HengXu, Yu Yang, Yi RuiPeng, et al. Novel Scheme of Travelling Wave BasedDifferential Protection for Bipolar HVDC Transmission Lines[C].2010InternationalConference on Power System Technology (POWERCON),2010:1-6.
    [94] Liu Xiaolei, Osman A H, Malik O P. Real-Time Implementation of a Hybrid ProtectionScheme for Bipolar HVDC Line Using FPGA[J]. IEEE Transactions on Power Delivery,2011,26(1):101-108.
    [95] Zhang Shuo, Li Yongli. Simulation and Analysis of HVDC Line Protection Under theSingle Pole to Ground Fault with High Transition Resistance[C].20114th InternationalConference on Electric Utility Deregulation and Restructuring and Power Technologies(DRPT),2011:926-929.
    [96]陶华. BPA向EMTDC/PSCAD模型转换方法的研究[D].北京:华北电力大学(北京),2010.
    [97]马龙义. BPA与PSS/E仿真模型分析与转换研究[D].广州:华南理工大学,2010.
    [98]肖异,尹项根,张哲,等. PSCAD/EMTDC程序与继电保护仿真模型接口技术及应用[J].电力自动化设备,2006,26(11):67-70.
    [99]刘永浩,蔡泽祥,李爱民. PSCAD/EMTDC自定义建模及在直流线路保护仿真中的应用[J].电力系统保护与控制,2011,39(9):119-124.
    [100]孙峰.电力系统仿真软件的比较研究[D].北京:华北电力大学(北京),2006.
    [101]高晓旺,周勇,康鲁豫.基于PSCAD/EMTDC的背靠背高压直流输电系统仿真[J].电力自动化设备,2007,27(2):69-70.
    [102]赵军,贺智,徐敏.基于PSCAD/EMTDC的高压直流输电继电保护建模与仿真[J].机电工程技术,2011,40(12):42-45.
    [103]Szechtman M, Wess T, Thio C V. A Benchmark Model for HVDC System Studies[C].International Conference on AC and DC Power Transmission,1991:374-378.
    [104]任震,欧开健,荆勇,等.基于PSCAD/EMTDC软件的直流输电系统数字仿真[J].电力自动化设备,2002,22(9):11-12.
    [105]廖梦君.基于RTDS的交直互联大电网仿真研究[D].广州:华南理工大学,2012.
    [106]黄志岭,田杰.基于详细直流控制系统模型的EMTDC仿真[J].电力系统自动化,2008,32(2):45-48.
    [107]Jape V S, Lokhande N M, Khatri P R. Simulation of HVDC System Connected to ACBuses in Close Proximity[C]. IEEE International Conference on Industrial Technology,2006:2137-2141.
    [108]姚诸香,高晓宇,方琳.交直流系统潮流模型的不同仿真软件比较研究[J].江西电力,2009,33(6):21-24.
    [109]余江,周红阳,黄佳胤,等.南方电网高压直流保护的PSCAD/EMTDC仿真模型研究[J].南方电网技术,2007,1(2):31-35.
    [110]贾卓.提高RTDS平台上交直流系统仿真精度的研究[D].北京:华北电力大学(北京),2011.
    [111]张民,贺仁睦,孙哲,等.基于PSCAD/EMTDC的直流控制保护系统仿真平台及其在直流工程中的应用[J].电力系统保护与控制,2013,41(3):112-117.
    [112]Jovcic D, Pahalawaththa N, Zavahir M. Analytical modelling of HVDC-HVACsystems[J]. IEEE Transactions on Power Delivery,1999,14(2):506-511.
    [113]Jing Yong, Wu Xiaochen, Du Zhongming, et al. Digital Simulation of AC/DC HybridTransmission System. Power System Technology[C], Power System Technology,2002:1405-1410.
    [114]Hay J L, Hingorani N G. Dynamic Simulation of Multiconverter HVDC Systems byDigital Computer Part I: Mathematical Model[J]. IEEE Transactions on PowerApparatus and Systems,1970, PAS-89(2):218-222.
    [115]Sood V K, Khatri V, Jin K. EMTP Modelling of Cigre Benchmark Based HVDCTransmission System Operating with Weak AC Systems[C]. Proceedings of the1996International Conference on Power Electronics, Drives and Energy Systems forIndustrial Growth,1996:426-432.
    [116]刘文焯,汤涌,万磊,等.大电网特高压直流系统建模与仿真技术[J].电网技术,2008,32(22):1-3.
    [117]滕洪燕.大型交直流系统的PSCAD建模与仿真[D].北京:华北电力大学(北京),2010.
    [118]戚庆茹,焦连伟,严正,等.高压直流输电动态相量建模与仿真[J].中国电机工程学报,2003,23(12):31-35.
    [119]韩民晓,丁辉,陈修宇,等.高压直流输电系统电磁暂态建模[J].电力系统及其自动化学报,2008,20(4):7-11.
    [120]龙霏,蔡泽祥,李晓华,等.含多馈入直流的广东电网EMTDC仿真建模[J].电力系统自动化,2010,34(3):53-57.
    [121]毛晓明,管霖,张尧,等.含有多馈入直流的交直流混合电网高压直流建模研究[J].中国电机工程学报,2004,24(9):72-77.
    [122]潘丽珠,韩民晓,文俊,等.基于EMTDC的HVDC极控制的建模与仿真[J].高电压技术,2006,32(9):22-24.
    [123]穆清.基于EMTDC的高压直流控制保护模型的研究和开发[D].北京:中国电力科学研究院,2010.
    [124]郝婧.基于EMTDC仿真平台的特高压直流输电控制系统建模的研究[D].北京:华北电力大学(北京),2012.
    [125]杨玲.基于RTDS的大规模交直流电力系统仿真建模研究[D].保定:华北电力大学(河北),2010.
    [126]万磊,丁辉,刘文焯.基于实际工程的直流输电控制系统仿真模型[J].电网技术,2013,37(3):629-634.
    [127]黄志岭,田杰.基于详细直流控制系统模型的EMTDC仿真[J].电力系统自动化,2008,32(2):45-48.
    [128]郑晓冬,邰能灵,杨光亮,等.特高压直流输电系统的建模与仿真[J].电力自动化设备,2012,32(7):10-14.
    [129]贺智,等.高压直流输电系统继电保护原理与技术[M].北京:机械工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700