大庆西部稠油潜力评价及开发方式优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆西部稠油油藏具有资源潜力大,分布面积广的特点,主要聚集在松辽盆地西部斜坡带边缘,已提交各类储量4372.3×104t,是大庆油田保持稳产高产的重要区块,勘探前景令人鼓舞。本文是基于稠油油藏在开发中所面临的实际问题,在总结前人已有成果的基础上,将油气田开发地质,油藏工程原理,物理模拟实验和油藏数值模拟有机结合,对大庆西部稠油进行潜力评价及开发方式优化,为大庆油田高效开发提供一些理论依据和可用技术,主要完成了以下研究工作:
     从区域地质概况和形成油气藏动静态因素评价入手,对油气水分布、稠油油源、运移通道和成藏模式进行分析。不整合面是油气横向运移的主要通道,虽然断层不是油气运移的主要通道,但其可起到连通砂体的作用,从而成为油气侧向运移的通道,油气在遇到有利聚集条件时聚留其中,从而形成了他拉红、平洋、阿拉新、二站、江桥和富拉尔基等有利含油气区块。深入分析了各油层油气水分布规律,为合理制定开发方案提供了科学依据。通过分析西部斜坡区稠油生烃条件和组分对比,指明西部斜坡区的大部分原油不是自生的,而是经过长途运移来的。构造的缓坡带对油气聚集具有控制作用,构造和岩性以及断层的匹配关系等共同控制油气成藏。因此大庆西部稠油成藏的主控因素为:不整合面运移,断层疏导,缓坡控油,复合控藏。
     西部斜坡区油藏评价难度大,主要表现在两个方面:在储层展布上,表现为储层横向变化大,砂体发育不连续,目的层单一;在油藏类型上,表现为构造岩性油藏和岩性油藏增多。通过解剖失利井,综合沉积、构造和成藏特征,提出了大庆西部斜坡区主要目的层萨尔图油层和高台子油层有利区目标建议。通过对失利井和高产井地质分析,认为只有构造、砂体、储层有机匹配才能形成有利的油气藏。形成了一套大庆西部空白区、扩边区及剩余油挖潜区(加密区)分析找油新方法。应用地震解释、储层预测、沉积相研究和精细砂体解剖等多种技术,在成藏主控因素的指导下,开展分区块、分油藏的逐级筛选,综合考虑构造、储层、流体分布等多种成藏控制因素,评价大庆西部稠油资源潜力,初步估算了阿拉新地区,二站地区,平洋地区以及江桥地区的地质储量。
     选取大庆西部稠油区块的天然岩心,进行室内实验,对不同的开发方式进行优化。分别开展了热水驱、蒸汽驱、化学驱、泡沫驱、烟道气驱、微生物驱替实验。对每种驱替方式的含水率,采收率,注入pv,注入时机,注入浓度等参数进行整体对比分析,优化不同的驱替方式。实验结果表明:蒸汽驱和热水驱的最终采收率最高,可达50-70%,其次为CO2泡沫驱和表面活性剂化学驱,可达40%以上,而烟道气/污水交替和微生物驱较低。
     大庆西部斜坡江55区块油藏埋藏深度浅,油藏温度低,油层厚度比较薄,直井冷采产量很低,因此开发该油藏的比较可能的开采方式有水平井冷采,水平井蒸汽吞吐及水平井蒸汽驱。针对上述三种开发方式,利用CMG数值模拟软件在三维地质建模的基础上,进行历史拟合,改变水平段长度、油层厚度、井距、初始含油饱和度、周期注汽量等参数,预测开发效果,对比生产效果确定合理的开发方式,确定了合理的生产参数。模拟结果表明:冷采的采油速度和采出程度很低,冷采水平段长度700m为宜;水平井水平段长度300m时蒸汽驱和蒸汽吞吐总体效果比较好;蒸汽干度要达到0.4之上;吞吐三周期之后转蒸汽驱效果最好;无论热采还是冷采,井距越大,采出程度越低;油层越厚,采出程度越高。并对大庆西部江55区块进行经济评价,评价结果表明:水平井热采明显比冷采经济效益好;在高油价情况下,蒸汽驱的净现值最大;蒸汽吞吐的内部收益率最高;油层越厚,经济效益越好。
Heavy oil reservoir have characteristics with big resource potential and wide distribution area in the west of Daqing, mainly gathered in the west slope belt edge of Songliao basin, various types of reserves that has been submitted is 4372.3×104t, it is a important block for maintaining high and stable productivity in Daqing oilfield, which keep encouraging prospects. This paper is based on the actual problems of heavy oil reservoir in the development, on the basis of summing up predecessors' achievements, potential evaluation and the optimization of development methods for heavy oil in the west of Daqing are presented to provide some theoretical basis and available technology for high efficient development of Daqing oilfield based on organical integration of oil and gas field development geology, reservoir engineering principles, physical simulation experiment and reservoir numerical simulation, mainly completed the following research work:
     We start from the regional geology and evaluation of static and dynamic factors of reservoir formation, the distribution of oil, gas and water, the sources of heavy oil, migration pathways and accumulation patterns are analyzed. Unconformity surface is the main pathway of oil and gas transverse migration, though faults are not the main pathways of oil and gas migration, they can connect sand body and become the pathways of oil and gas lateral migration. When oil and gas meet favorable accumulation conditions, they can be gathered in formation, thus favorable oil and gas blocks such as Talahong, Pingyang, Alaxin, Erzhan, Jiangqiao and Fula Erji etc are formed. Analyzing deeply the oil, gas and water distribution rules of every reservoir provides scientific basis for making development scheme. Through analyzing hydrocarbon-generating conditions and components contrast of heavy oil in the west slope area, it is indicated that the most crude oil of west slope area is not autogenous, but the product of distant migration. The gentle slope belt of structure has a control function on oil and gas accumulation. Structure, lithology and the matching relation of faults etc can joint control hydrocarbon accumulation. It's concluded that main controlling factors of accumulation for heavy oil in the west of Daqing are:unconformity surface migration, fault ease, oil control of gentle slope and composite control of reservoir.
     The reservoir evaluation of western slope area is difficult, mainly showed in two aspects: in reservoir distribution, it presents that transverse variety of reservoir is big, sand body development is discontinuous and objective stratum is onefold; in reservoir type, it presents the increase of structural lithologic and lithologic reservoirs. Through dissecting losing Wells and synthesizing deposition, structure and accumulation characteristics, target suggestions of advantageous area for the main Saertu and Gaotaizi reservoir in the west slope area of Daqing are put forward. Through analyzing the geology of losing Wells and high-yield wells, favorable reservoirs are formed only when structure, sand body, reservoir are matched organically. A set of new methods for analyzing and seeking oil in blank area, extension area, the redevelopment area of remaining oil (encryption area) in the west of Daqing are formed. Applying multiple technologies such as seismic interpretation, reservoir prediction, sedimentary facies and fine sand anatomy, the approach of sub-blocks and sub-reservoir selection is carried out step by step under the guidance of main controlling factors of accumulation. With the multiple controlling factors of accumulation such as the structure, reservoir, reservoir fluid distribution etc, the potential for heavy oil resource in the west of Daqing is evaluated, geological reserves of A Laxin area, Erzhan area, Pingyang area and Jiangqiao area is estimated.
     Indoor experiments are done with the natural core of heavy oil block in the west of Daqing oilfield for optimization of different development methods. Various displacement experiments such as hot water flooding, steam flooding, chemical flooding, foam flooding, flue gas drive, microbial flooding etc are launched in order to optimize different development methods by parameter comparison and analysis of each displacement methods such as moisture content, recovery,injection pv, injection time and injection concentration etc. Experimental results show that the ultimate recovery of steam flooding and hot water flooding is highest, can be up to 50~70%; followed by CO2 foam flooding and surfactant chemical flooding, can reach more than 40%; however, the ultimate recovery of alternate flue gas/sewage and microbial flooding is relatively low.
     In view of characteristics of shallow buried depth, low reservoir temperature, small reservoir thickness and low production level of vertical cold production in jiang 55 block in the western slope of Daqing, so the preferable methods of developing the reservoir are horizontal cold production, horizontal steam stimulation and horizontal steam flooding. For different development methods such as horizontal cold production, horizontal steam stimulation and horizontal steam flooding, CMG numerical simulation software based on three-dimensional geological modeling are utilized to carry out history matching and predict their respective development effects by changing parameters such as horizontal length, reservoir thickness, well spacing, initial oil saturation, the quantity of cycle steam injection etc, development methods and production parameters are determined by comparing production effects. Simulation results indicate that oil producing rate and recovery percent of cold production are very low, advisable horizontal length of cold production is 700m; horizontal length of horizontal wells is 300m when the overall effect of steam flooding and steam stimulation is better; steam quality is 0.4 at least; the effect is best when steam flooding is performed after three stimulation cycles; for both cold production and thermal production, the bigger the well spacing is, the lower the recovery percent is; the thicker the oil reservoir is, the higher the recovery percent is. Economic evaluation in jiang55 block in the west of Daqing show that economic benefits of thermal recovery for horizontal well are significantly more qualified than cold production; net present value of Steam flooding is the largest in the case of high oil prices; internal rate of return of steam stimulation is the highest; the thicker the oil reservoir is, the better the economic benefit is.
引文
[1]张义堂.热力采油提高采收率技术[M].北京:石油工业出版社,2006,1-33.
    [2]李鹏华.稠油开采技术现状及展望[J].油气田地面工程,2009,28(2):9-10.
    [3]石文平等.高粘度稠油开采方法的现状与研究进展[J].石油化工技术经济,2000,16(6):5-10.
    [4]穆龙新.国内外稠油冷采技术现状及发展趋势[J].钻采工艺,2002,25(6):18-21.
    [5][法]J.布尔热,P.苏赫尤,M.贡巴努尔.热力法提高石油采收率[M].北京:石油工业出版社,1991,3-6.
    [6]凌建军,黄鹂.国外水平井稠油热力开采技术[J].石油钻探技术,1996,24(4):44-47.
    [7]刘尚奇,包连纯,马德胜.辽河油田超稠油油藏开采方式研究[J].石油勘探与开发,1999,4(26):80-81.
    [8]韩显卿.提高石油采收率基础[M].北京:石油工业出版社,1993,57-160.
    [9][美]帕拉茨.热力采油[M].北京:石油工业出版社,1989,14.
    [10]崔波,石文平,戴树高,等.高粘度稠油开采方法的现状与研究进展[J].石油化工技术经济,2000,16(6):5-11.
    [11]刘文章.中国稠油热采现状及发展前景[J].世界石油工业,1998,14(5):15-18.
    [12]吴奇,张义堂,任芳祥,等.国际稠油开采论文集[C].北京:石油工业出版社,2002,36-44.
    [13]孙川生,彭顺龙.克拉玛依九区热采稠油油藏[M].北京:石油工业出版社,1998,3-6.
    [14]刘文章.热采稠油油藏开发模式[M].北京:石油工业出版社,1998,8-9.
    [15]黄鸥,黄忠廉译.油田稠油热采技术综述[J].国外油田工程,1997,1(6):9-10.
    [16]张喜良等译.利用水平井进行稠油冷采[J].国外石油地质,1999,21(3):53-59.
    [17]万仁溥,罗英俊,刘文章,等.稠油热采工程技术(第八分册)[M].北京:石油工业出版社,1996,204-214.
    [18]于连东.世界稠油资源的分布及其开采技术的现状和展望[J].特种油气藏,2001,8(2):98-104.
    [19]王卓飞,朗兆新,何军.稠油化学驱微观机理及数学描述研究[J].石油勘探与开发,2005,32(2):113-115.
    [20]Clark P D,Hyne J B.Steam-Oil Chemical Reactions:Mechanisms for the aquathermolysis of Heavy Oils[J].AOSTRA Journal of Research,1990,6(1):53-64.
    [21]LIU Yongjian, FAN Hongfu, ZHONG Liguo, et al. Fundamental research on aquathermolysis for heavy oils recovery technology[J]. Journal of Daqing Petroleum Institute,2001,25(3):56-59.
    [22]Clark P D,Hyne J B. Studies on the chemical reactions of heavy oils under steam stimulation condition[J].AOSTRA J Res,1990,29(6):29-39.
    [23]Wen-Shoubin, ZhaoYujian, Liu Yongjian, et al. A Study on Catalytic Aquathermolysis of Heavy Crude Oil During Steam Stimulation[Z]. SPE 106180-MS,2007.
    [24]Greaves M, Ren S R,Xia T X. New Air Injecting Technology for Operations in Light and Heavy Oil Reservoirs[Z]. SPE 57295-MS,1999.
    [25]Mitchell TI.Field application of a chemical heat and nitrogen generating system[C]. SPE 12776,1984:423-428.
    [26]巢华庆.大庆油田提高采收率研究与实践[M].北京:石油工业出版社,2006,227-451.
    [27]刘斌,折海成,朱秋秋.CO2泡沫提高原油采收率研究[J].石油化工应用,2010,29(1):20-27.
    [28]郭美云,架志安.油田开发[M].北京:石油工业出版社,1992,109-113.
    [29]雷光伦.微生物采油技术的研究与应用[J].石油学报,2001,22(2):56-61.
    [30]顿铁军.中国稠油能源的开发与展望[J].西北地质,1995,16(1):32-35.
    [31]王大为,周耐强,牟凯.稠油热采技术现状及发展趋势[J].西部探矿工程,2008,16(12):131.
    [32]阳鑫军.稠油开采技术[J].海洋石油,2003:23(2):55-60.
    [33]Boberg T C and Lantzs R B.Calcalation of the production rate of a thermally stimulated well [J].J.Pet.Tech,1966:1613-1623.
    [34]Kuo C H and Phocas D M.A gravity drainage model for the steam-soak process[C].SPE 2329,1969:119-126.
    [35]Jerry P Fontanilla and Khalid Azzlz. Prediction of botton-hole conditions for wet steam injection wells [J].The Journal of Canadan Petroleum Technology, Mar-Apr,1982:82-88.
    [36]Gros R P,et al.Steam soak predictive model [J].SPE 14240,1985, Jan:1-5.
    [37]刘惫卿.热力采油技术原理与方法[M].东营:石油大学出版社,2000,13-53.
    [38]Hong K C,Jensen R B. Optimization of multicycle steam stimulation [J].SPEJ,1969: 357-367.
    [39]Neuman C H.A gravity override model of steam drive [J]. J.Pet.Tech,1985:163-169.
    [40]陈月明.注蒸汽热力采油[M].东营:石油大学出版社,1996,38-43.
    [41]康玉柱.中国塔里木盆地塔河大油田[M].乌鲁木齐:新疆科学技术出版社,2004,55-90.
    [42]刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1997,128-176.
    [43]赵春梅,张鹰,王中元,等.齐40块中深层稠油油藏蒸汽驱开发驱替规律[A].陈勉等主编.石油工程与深层岩石力学进展——第五次全国深层岩石力学学术会议论文集[C].北京:石油工业出版社,2008,126-129.
    [44]张方礼.辽河油田勘探开发研究院优选论文集[M].北京:石油工业出版社,2005,93-98.
    [45]岳清山.稠油油藏注蒸汽开发技术[M].北京:石油工业出版社,1998,175-192.
    [46]顿铁军.中国稠油油藏[M].西安:西北大学出版,1996,99-103.
    [47]曲玉线.浅薄层稠油油藏开采技术[J].西北地质,2002,35(2):69-74.
    [48]CHEN Jie, QIAN Yu, LI Shiping. Field test research on steam flooding in block PuQ 12 in south Putaohua area[J].Petroleum Geology & Oilfield Development in Daqing, 2007,26(5):68-71.
    [49]王弥康,张毅,曹钧合,等.火烧油层热力采油[M].山东东营:石油大学出版社,1998,19-21.
    [50]胡士清,白国斌,赵春梅.火烧油层技术在庙5块低渗透稠油油藏中的应用[J].特种油气藏,1998,5(4):33-37.
    [51]吕广忠,陆先亮.热水驱驱油机理研究[J].新疆石油学院学报,2004,16(4):37.
    [52]Fournier, K.P., A Numerical Method for Computing Recovery of Oil By Hot Water Injection in a Radial System, SPE 1069,1996,131.
    [53]Alikhan, Abbas A., JUNIOR MEMBER RIME, Oil Recovery by Hydrocarbon Slugs Driven by a Hot Water Bank, SPE 3081,1971,342.
    [54]孙超.提高石油采收率方法研究现状[J].西北地质,2000,33(2):32-37.
    [55]黄丽.油田稠油热采技术综述[J].国外油藏工程,1997,6(1):9-10.
    [56]张锐.稠油热采技术[M].北京:石油工业出版社,1999,1-3.
    [57]颜五和,谢尚贤.泡沫与泡沫驱油[J].油田化学,1990,7(4):380-385.
    [58]廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].北京:石油工业出版社,1999,239-256.
    [59]吕广忠,刘显太,尤启东,等.氮气泡沫驱热水驱室内实验研究[J].石油大学学报,2003,27(5):50-53.
    [60]周玉衡,喻高明,周勇,等.氮气驱机理及应用[J].内蒙古石油化工,2007,30(6):101-102.
    [61]王大钧.氮气和烟道气在油气田开发中的应用[M].北京:石油工业出版社,1991.
    [62]沈光林.氮气在油田生产中的应用[J].特种油气藏,2005,12(4):38-43.
    [63]马涛,王海波,邵红云.烟道气驱提高采收率技术发展现状[J].石油钻采工艺,2007,29(5):80-81.
    [64]D. E. Towson著,王培良,王卫星编译.加拿大现场稠油热采技术综述[J].河南石油,1998,1(1):44-45.
    [65]齐海鹰译.利用水平井技术开采委内瑞拉Cerro Negro油田重油的效果评价[J].世界石油工业,1998,5(9):71-72.
    [66]Method improves heavy oil recovery//Amer Oil Gas rep.1994,37(9):123.
    [67]张建国编译Cactus Lake油田稠油油藏水平井冷采[J].石油勘探开发情报,1998,4(2):32-33.
    [68]W.S Huang著.国外水平井稠油热力开采技术[J].石油钻探技术,1996,24(4):113-119.
    [69]商明译.蛙湖油田水平井稠油冷采[J].新疆石油科技信息,2000,21(2):83-84.
    [70]Chang H L. et al:Performance of Horizontal-Vertical Combinations for Steamflooding Bottom Water Formations.JCPT,1992,31(5):41-51.
    [71]J.D.KUHACH中途日落油田利用水平井优化成熟蒸汽驱.JCPT,1995,9(2):22-28.
    [72]姚远勤.水平井在乐安油田薄油层热采中的应用[J].石油学报,1995,3(2):47-49.
    [73]左悦.难动用薄层稠油油藏水平井开发实践[J].特种油气藏,2005,12(6):1 8-23.
    [74]J.K.Dietrich克恩河水平井的蒸汽试验[J].石油勘探开发情报,1990,3(1):50-64.
    [75]P.J.Jesperson et al. Tangleflags North油田的水平井蒸汽驱先导试验[J].国外石油地质,1995,6(3):62-68.
    [76]张小波.辽河油区稠油采油工艺技术发展方向[J].特种油气藏,2005,12(5):9-13.
    [77]王旭.辽河油区稠油开采技术及下步技术攻关方向探讨[J].石油勘探与开发,2006,4(33):484-490.
    [78]窦宏恩.稠油热采应用SAGD技术的探讨[J].石油科技论坛,2003,5(4):50-53.
    [79]H. M. Chishti, P.T.Wiliams.Aromatic and heteroaromatic compositional changes during catalytic hydrotreatment of shale oil[J]. Fuel,1999,78(4):1085-1815.
    [80]J. G. Weissman.Down-hole catalvdc unsradins of heavy crude oil [J].Energy&Fuels, 1999,10 (2):883-889.
    [81]Siskin. Process for removal of heteroatoms under reducing conditions in supercritical water[P].US. Patent:5,611,915. Mar 18,1997.
    [82]Vallejos. Process for downhole upgrading of extra heavy crude oil [P].US.Patent: 5,891,829. April 6,1999.
    [83]David S. Ross. James E. Blessing.Conversion of bituminous coal in CO/920 system[J]. Fuel,1984,63 (4):1206-1213.
    [84]Gregoli.Method of in-situ hydrogenation of carbonaceous material[P].US.Patent: 4,501,445. February 26,1985.
    [85]凌建军,王远明,王书林,等.水平压裂辅助蒸汽驱开采稠油油藏的研究[J].河南石油,1996,10(3):30-34.
    [86]吴河勇,梁晓东,向才富,等.松辽盆地向斜油藏特征及成藏机理探讨[J].中国科学(D辑),2007,37(2):185-191.
    [87]杨万里,高瑞祺,郭庆福,等.松辽盆地陆相油气生成运移和聚集[J].哈尔滨:黑龙江科学技术出版社,1985:1-347.
    [88]刘德良,杨强,李振生,等.松辽盆地多元构造系统要览[J].天然气地球科学,2005,16(4):1-2.
    [89]张维琴,杨玉峰.松辽盆地西部斜坡油气来源与运移研究[J].大庆石油地质与开发, 2005,24(1):17-22.
    [90]汤 慧,李伟星.西斜坡天然气的成因及成藏主控因素[J].大庆石油学院学报,2005,29(6):4-6.
    [91]王广文,高宁.西斜坡区萨二、三油层油气成藏机制[J].大庆石油学院学报,2006,30(1):1-3.
    [92]付广.西斜坡区萨二、三油层油气运移优势路径及对成藏的作用[J].大庆石油学院学报,2005,29(6):1-3.
    [93]周庆华,吕延防,付广,等.松辽盆地北部西斜坡油气成藏模式和主控因素[J].天然气地球科学,2006,17(6):765-769.
    [94]查明,张一伟,邱楠生.油气成藏条件及主控因素[M].北京:石油工业出版社,2003,71-95.
    [95]高瑞琪,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997,231-245.
    [96]唐文旭,胡涛,曹卫生.沔阳凹陷油气成藏主控因素分析[J].石油地质与工程,2007,21(6):15-17.
    [97]马克西莫夫.深层油气藏的形成与分布[M].胡征钦,译.北京:石油工业出版社1988,69-73.
    [98]胡朝元,孔志平,廖曦.油气成藏原理[M].北京:石油工业出版社,2002,231-233.
    [99]金之钧,张一伟,王捷,等.油气成藏机理与分布规律[M].北京:石油工业出版社,2003,119-163.
    [100]薛慧智.西部斜坡成藏机理及主控因素分析[J].内蒙古石油化工,2010,29(8):75-76.
    [101]张敏,梅博文,向廷生.原油中的咔哇类化合物[J].科学通报,1997,42(22):2411-2413.
    [102]云海富.松辽盆地西部斜坡区稠油油藏快速评价研究[J].石油天然气学报,2008,30(3):205-206.
    [103]贾英,孙雷.油藏中沥青质沉积机理研究[J].西南石油学院学报,2006,28(6):60-64.
    [104]M.Tamim et al著,宋付权译.热采数值模拟技术的最新进展[J].国外油田工程,2002,18(2):1-3.
    [105]刘慧卿.油藏数值模拟方法专题[M].东营:石油大学出版社,2001,90-102.
    [106]侯健,陈月明.综合化的蒸汽吞吐注采参数优化设计[J].石油大学学报(自然科学版),1997,21(3):36-39.
    [107]侯健,陈月明.一种改进的蒸汽吞吐产能预测模型[J].石油勘探与开发,1997,2(3):53-56.
    [108]蒲海洋,杨双虎,张红梅.蒸汽吞吐效果预测及注汽参数优化方法研究[J].石油勘探 与开发,1998,25(3):52-55.
    [109]王中元.齐40块蒸汽驱波及规律研究[J].特种油气藏,2007,14(4):65-67.
    [110]向租平等.稠油油藏蒸汽驱方案优化研究[J].特种油气藏,2005,12(1):49-51.
    [111]HOU Jian, YU Bo, CHEN Yue-ming, et a.l An approach to the economical development model of thermal recovery of heavy oil reservoirs[J].Petroleum Exploration and Development,2002,29(3):88-90.
    [112]LIU Li-cheng, JIANG Han-qiao, CHEN Min-feng, et a.l Technical policy for horizontal well steam soak of viscous oil reservoirs in small fault blocks[J]. Journal of Oil and Gas Technology,2006,28(6):127-129.
    [113]SHI Qixin, FANG Kaipu.The calculating method and application of economic limiting steam/oil ratio for steam flood and steam soak[J].Petroleum Exploration and Development,2001,28(4):97-98.
    [114]SUN Jianfang, QIU Guoqing, WU Guanghuan. Economic limit evaluation of infill technology for cyclic steam stimulation in Shengli oil province[J].Special Oil and Gas Reservoirs,2002,9(2):47-49.
    [115]田锡君.辽河稠油水平井技术经济分析[J].石油钻探技术,1994,22(3):33-37.
    [116]蔡鹏展.油田开发经济评价[M].北京:石油工业出版社,1997:91-92.
    [117]侯健,高达,孙建芳,等.稠油油藏不同热采开发方式经济技术界限[J].中国石油大学学报,2009,33(6):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700