基于虚拟仪器的生丝抱合自动检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在虚拟仪器平台上开发研制了生丝抱合性能检测评价系统。论文涉及测量方法设计,摩擦方式选择,解决摩擦刀磨损缺口问题的方法,丝条循环摩擦装置关键部件的设计,丝条循环摩擦装置结构设计合理性的论证,数据采集卡与计算机的接口设计,抱合性能检测评价系统的软件设计,生丝抱合性能客观评价量化方法,以及生丝抱合性能客观评价与抱合次数的关系等。现将论文各章内容简要介绍如下:
    引言部分简要介绍了论文的选题背景。
    第一章概述了国内外有关生丝抱合性能检测和评价及相关研究的现状,并介绍了国内外生丝检验仪器和短纤维纱线,化纤长丝及其织物的测试仪器的特点与发展,着重从抱合性能的检测装置和评价方法二方面介绍了目前广泛使用的生丝抱合性能评定系统的不足之处。
    第二章讨论了生丝抱合性能的测量方法。文中从生丝结构参数与抱合性能的相关性上,分析了影响抱合性能的主要结构参数,讨论了生丝抱合力的特点,生丝结构、加工工艺中影响生丝抱合性能的因素,生丝抱合性能在织造加工和丝织物质量中的作用,文中还从摩擦磨损机理方面分析了生丝摩擦的实质,为生丝抱合性能的测量方法的设计提供了依据。
    第三章讨论了织造中经丝所承受摩擦负荷的特征,论述了经丝的主要摩擦负荷是钢筘和综丝对经丝的摩擦和金属构件Duplan 摩擦刀板作为检测装置的摩擦部件的合理性。介绍了摩擦刀往复移动机构的设计,将摩擦刀与生丝的点接触改变成面接触,基本解决了摩擦刀因磨损形成的缺口问题,分析了摩擦刀往复移动造成的摩擦刀两端上下微幅振动,摩擦刀微幅振动的频率由摩擦刀往复移动的速度决定。
    第四章讨论了丝条循环摩擦装置关键部件的设计。文中详细论述了丝条循环运动机构中实现对丝条的有效传动的传动杆传动方式、结构尺寸设
The evaluating and testing system of raw silk cohesion based on virtual instrument and the objective evaluation of raw silk cohesion are studied in this thesis. The main contents covered by the thesis are the design of testing method for inspecting cohesion of raw silk, the suitable choice of the abrasion mechanism, the method to avoid wearing down the knife-edge unevenly and making the surface of the knife-edge serrated, the development of the main parts of the mechanism to deliver the raw silk at constant speed, the stability of the delivering mechanism is demonstrated properly based on the analyzing the structure of the delivering mechanism, the design of the interface, the design of the software of the evaluating and analyzing system, the method of the objective evaluation of raw silk cohesion according to the change of the structure of raw silk, the correlation between the results of objective evaluation and the results of subjective evaluation inspected by Duplan tester, and etc, The following is a brief introduction of the content for each chapter.
    In foreword the background of topic selection of this thesis is described briefly. In chapter 1 a brief account of the recent progress in the world of studies on the test and evaluation of raw silk cohesion is presented, and the characteristic and progress of the testing devices for raw silk、other fibers、filaments and fabrics are also introduced. The deficiencies of the cohesion tester and the subjective evaluation are given out emphatically.
    In chapter 2 the development of the measuring method for raw silk cohesion is discussed. The correlation between raw silk structure parameters and raw silk cohesion and key structure parameters affecting raw silk cohesion are analyzed. The characteristic of raw silk cohesion、how the raw silk structure and the processing affect raw silk cohesion、what the raw silk cohesion are working on the weaving and the quality of fabrics and the friction
    and wear mechanisms of raw silk are discussed in detail, which provides the foundation of the measuring method for cohesion. In chapter 3 the abrasion mechanism is selected and it is introduced how to maintain the knife-edge even and smooth. The main contents include as follows: the features of the friction loads of weaving and the key friction loads are elaborated, as the abrasion mechanism for cohesion testing the abrasion head of Duplan is reasonable and feasible, the reciprocating parts are designed to change the abrasion zones continuously and keep the surfaces of the knife-edges consistent, and the micro -breadth oscillation of the abrasion head is analyzed. In chapter 4 the development of the main parts of the mechanism to deliver the raw silk at constant speed is elaborated. And the mode to drive the raw silk to overcome friction forces and move at a constant speed, the figure and size of the transmission mechanism, the material of which the parts of the mechanism are made are also analyzed in detail. The silk tension, the feasibility of the transmission and the stability of the constant-speed traveling silk on the mechanism are discussed theoretically. The measured silk tensions are presented and compared with the results of the theoretic analysis. The transmission mechanism is considered properly according to the feasibility of the transmission and the stability of the constant-speed traveling silk on the mechanism. In chapter 5 the characteristics and realization of VI, data transmission between hardware and interface, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) are introduced particular. Virtual instrumentation technology integrates the computer, the sensor and the testing mechanism and completes the evaluating and analyzing system of raw silk cohesion. The whole system is friendly interface, convenient operation and comprehensive function. In the chapter 6 it is discussed that the structure of raw silk is changing under the abrading according to the friction and wear mechanisms of raw silk, the size of raw silk
    varies with the abrasion, the increment of raw silk diameter has relation to abrasion and depends on the thickness of sericin, the physical and mechanical capability of sericin such as the adhesive strength. And so the cohesion of raw silk can be evaluated in terms of the diameter increment. Different testing methods for raw silk size are introduced, which provides the foundation of and selecting sensor assessing cohesion objectively. The experiments show that the diameter of raw silk increases with abrasion and the diameter increment depends on abrasion speed and yarn tension. Under the test condition of constant abrasion speed, yarn tension, for raw silks of the same linear density, diameter increment can be exclusively determined by cohesion, that is to say, the cohesion of raw silk can be evaluated in terms of the diameter increment. The assessed results of raw silk cohesion by Duplan tester and by the evaluating and analyzing system of raw silk cohesion based on virtual instrument are presented. The correlation between cohesion assessed by skilled person and that by the evaluating system is -0.837. In chapter 7 a summary is made to describe the main contributions of the present work to the objective evaluation of raw silk cohesion and the problems need to be further studied. The future work is also prospected.
引文
[6] 董锁拽,关于生丝抱合检验方法的探讨,丝绸检验(J),1997,3,1-4
    [7] 李茂松,周华,生丝抱合与其结构关系的研究,纺织学报,1991,12,3,13-16
    [8] 柳伟平,董锁拽,摩擦刀片磨损与生丝抱合检验精度的关系研究,现代商检科技,1997,5,3,12-14
    [9] 王瑞琛,韩克亚,生丝抱合检验评分方法的探讨,山西纺织,1996,4,35-36
    [10] 陈涛,李奕仁,关于影响生丝抱合力因素的分析,中国蚕业,2003,24,4,95-97
    [11] 刘永德,马纪爱,对泰安生丝抱合次数的检验和分析,丝绸,2002,12,14-16
    [12] 姚桂芬,郭建生,浆纱耐磨性能测试方法研究,棉纺织技术,2003,31,8,33-361
    [13] 郭建生,上浆目的的再认识及相应的实现与检测方法, 全国浆料和浆纱技术2002 年会论文集,193-1981
    [14] 郭建生,浆纱效果快速检测与评定系统的研制,棉纺织技术,2002,30 ,12,22-251
    [15] 张恩杰,,郭建生,浆纱质量检测技术的新进展,棉纺织技术,2003,31,12,27-29
    [16] D.E.A. Plate,Abrasion-testing of Two-strand Yarn,J. Text. Inst.,1983,6,378-381
    [17] P.H. Brorens,J. Lappage,Studies on the Abrasion-resistance of Weaving Yarns,J. Text. Inst.,1990,2,126-134
    [18] A.A.A. Jeddi,M. Sheikhzadeh,Factors in yarn abrasion,TEXTILE ASIA,1994,55-56
    [19] Annis. Patricia A., Bresee, Randall R., Abrasion machine for evaluating single fiber transfer, Textile Research Journal, 1990,60,9,541-548
    [20] Barella. A., Bardi, X., Yarn attrition and Hairiness. A yarn self-rubbing test, Journal of the Textile Institute, 1991,82,1,78-85
    [21] Annis. Patricia A., Bresee, Randall R., Evaluation abrasion resistance using single-fiber transfer and other abrasion testers, Textile Chemist and Colorist, 1991,23,2,11-15
    [22] Rehbein. Peter, Wallaschek. Joerq, Test method to investigate the tribological behaviour of friction materials under ultrasonic fretting conditions, Tribo Test, 1999,6,1,3-16
    [23] Campos. Rui, Bechtold. Thomas, Fiber friction in yarn –A fundamental property of fibers, Textile Research Journal, 2003,73,8,721-726
    [24] Kiselev. Victor Lvanovich, Automated diagnostic testing systems for the textile factories, World Conference of the Textile Institute,1997,2,306-307
    [25] Kalyanaraman. A.R., Ramakrishnan. N., Measurement of blend proportion in jute-cotton yarn with the assistance of a high volume tester, Journal of the Textile Institute, 1995,86,4,704-705
    [26] Ng. K.W.Y., Milman. M.P., Mechatronic on-line stability tester for air-jet textured yarns, IEE Colloquiun, 1995,214,6
    [27] Mehat. A.K., Suresh Babu. A.V., New test rig for oil evaluation in textile spindles,Lubrication Engineering, 1997,53,7,19-25
    [28] Hebert. Jacques J., Thibodeaux. Devron P., New single fiber tensile tester, Textile Research Journal, 1995,65,8,440-444
    [29] Mirjalili. S.A., Evaluating the performance of a thickness tester to measure sliver/roving irregularity, Textile Research Journal, 2003,73,7,620-624
    [30] Brooks. K.A., Novel fabric-thickness tester, Journal of the Textile Institute, 1990,81,1,89-91
    [31] Guo. Yongping, Li. Ruqin, Evaluation of image-analysis-based drape tester, Journal of Dong Hua University, 2001,18,2,97-100
    [32] Buckley. R.W., Abrasion tester and test method for transmission fabrics, Polymer Testing, 1994,13,4,367-375
    [33] Ukponmwan. J.O., Examination of the lateral airflow on the Shirley Air Permeability tester as an objective determination of smoothness, Journal of the textile Institute, 1994,85,3,435-438
    [34] Vas. L.M., Csaszi. F., Application of image processing system to testing textile materials, Proceedings of the Conference on Mechanical Engineering, 1998,1,281-285
    [35] Quickwash shrinkage tester, Textile World, 1998,148,4,76
    [36] Ya-Chou Fang, Chih Yueh Kan, A sewability tester, Textile Asia, 1996,27,4,74
    [37] Machinery: Pilling and fuzz tester, Textile Month, 1998,7,50
    [38] CTT weaving yarn tester, Textile World, 1998,148,4,75
    [39] Patents for yarn appearance tester, Indian Textile Journal, 1997,107,7,116
    [40] Machinery: Uster unveils new evenness tester, Textile Month, 1998,5,51
    [41] Fan. J., Gardiner. I.V., A portable tester for nondestructively measuring fabric properties, Textile Research Journal, 2002,72,1,21-26
    [42] Goktepe. Ozer, Fabric pilling performance and sensitivity of several pilling testers, Textile Research Journal, 2002,72,7,625-630
    [43] 赵亦岩第六届大阪国际纺织机械展览会检测仪器概览, 纺织导报, 1998,2,51
    [44] 宋湛华, CITME 96 展出的测试仪器, 纺织导报, 1997,1 , 24-25
    [45] 吕善模, 第八届中国国际纺织机械展览会侧记, 2003,6,28-34,7,18-20,8,22-24
    [46] 宋湛华, CITME 98 展出的纺织仪器, 纺织导报, 1999,1,36-37
    [47] 严寒冰, 生丝匀度清洁洁净检验仪的研制, 浙江丝绸工学院学报, 1997,3,
    [48] Chen. Qingguan, Higashino. Fumio, Development of an electric device to measure the evenness variation of silk, Nippon Kikai Gakkai Ronbunshu, 1995,61,590,4117-4122
    [49] 陈庆官, 用弦振法自动检测生丝的线密度, 苏州丝绸工学院学报, 1984,4,3,41-44
    [50] 徐回祥, 王建民, 邵光照, Y1051型静电激振式纤维细度仪的研制, 苏州丝绸工学院学报, 1996,16,3,55-62
    [51] 陈庆官, 生丝匀度自动检验研究,苏州丝绸工学院学报,1987,7,3,12-19
    [52] 陈庆官, 五根丝条的电子生丝检验装置, 国外丝绸, 1991,1,10-11
    [53] 徐回祥, 生丝匀度检验的图象处理, 苏州丝绸工学院学报, 1993,4
    [54] 许仲欣, 生丝纤度及匀度、节同时检测系统简介, 现代纺织技术, 2000,8,1,59
    [55] Chattopadhyay. T., Das. S., Comparison between the quality attributes of silk yarn using the Uster and Seriplane test systems, Journal of the Textile Institute, 1997,88,2,92-98
    [56] 许仲欣, 生丝纤度及匀度、颣节同时检测系统简介, 现代纺织技术, 2000,8,1,59
    [57] 陈庆官, 冯国平, 用SD-1型细度仪测量缫制中的生丝纤度, 苏州丝绸工学院学报, 1995,15,2,87-92
    [58] 励道铭, 应当抓紧对丝类产品电子检验的研究, 丝绸, 2000,1,36-38
    [59] 蔡彩凤, 缫丝生产中纤度的动态管理和测定, 丝绸, 1998,10,44-46
    [60] 朱美男, 费万春, CCD生丝细度动态测量系统的设计, 丝绸, 2002,1,44-46
    [61] г.н. 库金, А.н. 索洛维耶夫编著, 黄淑珍胡文侠译, 纺织纤维和纱线, 1990, 纺织工业出版社, 北京, 220-239
    [62] 姚穆, 周锦芳编著, 纺织材料学, 1988, 纺织工业出版社, 北京, 422-432
    [63] 李栋高, 蒋蕙钧编著, 丝绸材料学, 1994, 中国纺织出版社, 北京, 375-376, 213-214,84-86
    [64] 苏州丝绸工学院, 浙江丝绸工学院编, 制丝学(下), 1993, 中国纺织出版社, 北京, 381-388
    [65] 王惠文, 偏最小二乘回归方法及其应用, 国防出版社, 北京, 1999,53-56
    [66] S. S. Manna, 生丝中茧丝抱合力的测量和比较, Indian Journal of Textile Research, 1989,14,191-192
    [67] 周文龙, 织造断头经丝拉伸机械性能的研究, 浙江丝绸工学院学报,1996,13,1,1-5
    [68] 程洪典, 吕琳, 织造过程中经丝断头原因初探, 丝绸,2002,12,28-29
    [69] 李茂松, 周文龙, 织造经丝及断头的形貌观察和分析, 浙江丝绸工学院学报, 1991, 9,18-23.
    [70] 霍斯特·契可斯编著, 刘钟华译, 摩擦理论, 机械工业出版社, 北京,21-72
    [71] 薛景文编著, 摩擦学及润滑技术, 兵器工业出版社, 北京, 1992
    [72] 冯锡麟编著, 丝织学, 纺织工业出版社, 北京,1986
    [73] 王鸿博, 织造工艺参数对浆纱耐磨性能的影响, 北京纺织, 2000,21,6,23-27
    [74] 周永元, 浆纱合理质量指标的探索, 纺织学报,1990,11,4,14-17
    [75] Vinogradov G V, Mustrafaev V A, A study of heavy metal-to-friction duties and of the wear of hardened steel in the presence of polymers, Wear, 1965,8,358-373
    [76] King R B, Lancaster J K, Wear of metals by elasters in an abrasive environment, Wear, 1980,61,341-352
    [77] 刘海春, 张嗣伟, 清水介质条件下天然橡胶磨损45#钢的机理研究, 摩擦学学报, 1996,16,4,303-311
    [78] 刘海春, 张嗣伟, 几种橡胶磨损45# 钢的影响因素分析, 摩擦学学报, 1997,17,4,321-326
    [79] 柳琼俊, 张嗣伟, 干摩擦条件下丁晴橡胶磨损金属的机理, 机械科学技术, 1997,16,264-266
    [80] 严灏景编著, 纤维材料学导论, 纺织工业出版社, 北京, 1990, 313-324
    [81] 葛秀贞, 纱线摩擦系数及其影响因素的探讨, 浙江丝绸工学院学报, 1994,11,2,13-17
    [82] 吴宗泽, 编著, 高等机械设计, 清华大学出版社, 1991, 北京
    [83] 冯锡麟编著, 丝织学, 纺织工业出版社, 北京,1986
    [84] 马志奇, 钢丝绳摩擦传动防滑计算新方法, 建筑机械化, 1999,4,33-34
    [85] 黎佩琨编著, 矿山运输及提升, 冶金工业出版社, 北京, 1984
    [86] Swope. R. D., Vibration of a Moving Threadline, J. of Frhnklin Institute, 1963,275,1,36-55
    [87] Wickert J. A., Mote C. D. Jr., classical Vibration Analysis of Axially Moving Continua, ASME Journal of Applied Mechanics, 1990,57,3,738,744
    [88] 顾永佼, 等速输送运动纱线的横向振动分析, 中国纺织大学学报, 1989,15,5,67-72
    [89] 黄明俊, 赵伟,虚拟仪器技术—现代电工电子测量仪器的发展方向, 电工电能新技术, 1998,3,26-29
    [90] Graff, 20 Years in the Past, 20 Years in the Future, Instrumentation Evolves Rapidly
    With Technology, 1998 [91] 王鸿任, 董奇, 自动测量仪器和测试系统的发展综述, 计算机自动测量与控制, 2000,8,4,7-9 [92] 艾欣, 杨以涵,虚拟仪器技术及其在电力系统中的应用, 电力系统自动化, 2001,15,54-57 [93] 林正盛, 浅谈虚拟仪器技术的演化与发展, 微计算机信息, 1997,13,3;13,4; 13,5 [94] 周群, 刘连宇, 虚拟仪器设计思想及应用,四川联合大学学报(工程科学版), 1998,2,2,73-81 [95] 牛仁朝, 赵乃煌, 虚拟仪器技术的研究及应用, 电子仪器仪表用户,1998, 5, 4, 11-12 [96] 潘莹玉, 虚拟仪器及其应用, 电力自动化设备, 1999,19,l,44-46 [97] Test Electric Components with LabVIEW Controlled Virtual Instruments, Computer Based Measurement and Automation National Instrument, 1999 [98] Using LabVIEW PID Controller to Assure Electronic Reliability Tests, Compute Based Measurement and Automation National Instruments, 1999 [99] 郭会军, 赵向阳等, 基于LabVIEW 的虚拟仪器设计, 电子工业出版社, 北京, 2003,77 [100] National Instruments, DAQ 6023/6024/6025 User Manual, National Instruments Corporation, USA, 2000,1-2 [101] 杨乐平, 李海涛编著, LabVIEW 程序设计与应用, 电子工业出版社, 2001 [102] 石博强, 赵德永编著, LabVIEW6.1 编程技术实用教程,中国铁道出版社,北京, 2002 [103] MJ 马克主编, 杨建生译, 纤维和纺织品的表面性能(上), 纺织工业出版社, 北京, 1982,1-59,191-205 [104] Wada N, Uchivama Y., Friction and Wear of Short-Fiber-Reinforced Rubber Composites Under Various Sliding Speeds and Loads, Wear, 1993,162-64pt B:930-938 [105] De Lacerda LA, Wrobel LC, Henshall JL, et al., Parametric Study of the contact Stresses Around Spherical and Cylindrical Inclusions , Computational Materials Science,
    2002,25,2,115-121
    [106] 秦家浩, 钱樨成, 纺织材料静电测试, 纺织工业出版社, 北京, 1987
    [107] 瞿文杰, 无机性油润滑下摩擦面边界膜的电特性, 润滑与密封, 2002,2,50-51,53
    [108] Antipov YA, Movchan AB, Movchan NV, Frictional Contact of a Fiber and an Elastic Solid, Journal of the Mechanics and Physics of Solids, 2000,48,6,1413-1439
    [109] 朱良均, 丝胶的分子结构与胶粘强度的相关研究, 蚕业科学, 1999,25,4,237-241
    [110] 陈继红, 孔丽平, 新型乌斯特条干均匀度仪简介, 毛纺科技, 1989,3,41-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700