盾构法隧道预应力衬砌设计理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法隧道已被广泛应用于城市地下铁路、越江通道和地下管线等隧道工程中。由于混凝土自身的特点,盾构法隧道常用的预制钢筋混凝土管片存在着自重大、裂缝不易控制、不宜承受拉力等缺点;同时,管片间的螺栓联接费用高、工序复杂,而且对管片接头部位的制作要求高。预应力混凝土技术既可以克服普通混凝土结构的缺陷,又可以作为一种装配手段,在工程结构中得到大量的应用。为了把预应力技术应用到盾构隧道衬砌结构,有必要对盾构法隧道预应力衬砌的设计理论和设计方法进行研究,从而科学地指导预应力管片的设计与施工,推动预应力管片的应用。
     在总结相关文献和研究的基础上,对预应力衬砌纵向接缝的力学性能进行研究。首先推导出接缝的张角计算公式,并将理论计算结果与模型试验结果和数值模拟结果进行对比,表明了该公式的可靠性;其次利用理论公式探讨不同预应力筋位置、不同偏心距对接缝性能的影响;随后基于构件内力比预应力度的概念提出预应力轴力比,并分析不同预应力轴力比下的接头性能。
     基于荷载一结构法,对预应力衬砌的结构模型和计算方法进行了研究。预应力衬砌结构中预应力的作用表现在两个方面:对接缝的作用和对衬砌结构的作用,预应力对衬砌结构的作用采用等效荷载考虑。提出了预应力衬砌的连续非均匀刚度模型,该模型既可以反映预应力管片接头刚度对结构受力的影响,又可以反映接头部位由于刚度偏小而出现结构弯矩的重分布现象。结合算例给出预应力衬砌理论计算的过程并与数值模拟结果进行比较;随后利用连续非均匀刚度模型分析了不同预应力轴力比对衬砌结构的影响。
     基于概率极限状态设计方法和预应力度的概念,研究了预应力衬砌的设计方法,给出了预应力衬砌的设计计算的具体步骤并对其构造设计进行探讨。
     以地铁隧道及有内压的输水隧道为例,进行了预应力衬砌工程应用和技术经济分析。
Shield tunnel has been widely used in the construction of subway, underwatertunnels and underground pipeline projects, etc. Because of the connaturalcharacteristics of the concrete, the normal reinforced concrete segments have manydisadvantages, such as heavy weight, difficulty of crack control and lower ofbearing tensile force, etc. To the bolt connection of segments, the cost is expensive,and the construction procedure is complex. Overcoming the disadvantages ofcommon concrete as well as being used as an assembling method, the prestressedconcrete is widely used in engineering structures. In order to introduce theprestressing method into the structure of shield tunnel lining, it is necessary to studythe desigri philosophy of prestressed concrete linings. The study can not only guidethe design and constructions of shield tunnel prestressed segments scientifically, butalso promote the applications of prestressed segment.
     Based on the literatures and the existent researches, the study on segments jointof prestressed lining has been carried out. Firstly, the theoretical equations forcalculating the opening angle of the joint are deduced. Compared With the results ofexperiments and numerical simulations, the calculated value suggests that thetheoretical equations are reliable. Secondly, the influences of different prestressingcable positions and varying eccentricities on the joint characteristics have beendiscussed. Finally, the ratio of prestressing to axial force is defined. And itsinfluence to the joint characteristics has been also discussed.
     With the load-structure method, the structure model of prestressed lining hasbeen studied. The effects of prestressing on the tunnel lining include the effects onthe segment joint and the effects on the lining ring. The equivalent load ofprestressing can be used to represent the effects on the lining ring. Compared withthe beam-spring model and the modified-routine-method model, thecontinuous-nonuniform-rigidity model—a new structure model of tunnel lining hasbeen brought up in this thesis. The new model can not only represent the effects ofprestressing on the segment joint, but also show the moment redistribution aroused by the rigidity's decrease of the joint. Combined with the case study, the calculationprocess for the prestressed lining structure is given. And the results of theoreticalcalculations and numerical simulations are compared. At the same time, the newmodel is used to analyze the effect of ratio of prestressing to axial force on thelining structure.
     According to the probability-based limit state design method and the concept ofprestressing degree, the design method of prestressed lining has been discussed. Thedesign process is given. The detail for calculation and constructional design are alsoanalyzed.
     Using the design philosophy of prestressed concrete linings discussed above, asubway tunnel lining and a water transport tunnel lining have been designed. Basedon these tunnel designs, the technical economy analysis of prestressed concretelinings has been mentioned.
引文
[1] 安世平.环向无粘结预应力筋在污水厂终沉池中的应用[J].浙江建筑.2005,22(1).-50~51
    [2] 陈惠玲,叶正宇.预应力混凝土有粘结及无粘结预应力技术问答.[M].北京:中国环境科学出版社.2001.2
    [3] 陈惠玲.预应力高新结构技术预应力度法[M].北京:中国环境科学出版社,2001
    [4] 陈火红等.Marc有限元实例分析教程[M],北京:机械工业出版社,2002,4
    [5] 陈火红等.Msc.Marc/Mentat 2003基础与应用实例[M],北京:科学出版社,2004,1
    [6] 陈三江.盾构法隧道衬砌接头受力机理分析[硕士学位论文].上海:同济大学,1985.
    [7] 丁文其,杨林德,朱合华.盾构隧道施工中材料性态的模拟.同济大学学报,1999,Vol.27.No.4:297~302
    [8] 杜拱辰,米祥友主编.面向21世纪的预应力混凝土,世纪之交的预应力新技术,北京:专利文献出版社,1998.11,1-11
    [9] 杜拱辰.预应力技术在我国土建工程中的应用与展望[J].建筑施工.1998,20(1):1~5
    [10] 过迟,吕国梁.穿黄工程盾构隧道衬砌结构计算模型研究.岩土力学(增刊),1997,18:203~207.
    [11] 何唯平,汤惠工,程晓芳.芳纶索在桥梁体外预应力加固工程中的应用技术.
    [12] 侯学渊,刘立礼.圆形隧道的土压力.第四届土力学及基础工程学术会议论文集:431~439.
    [13] 候学渊,钱达仁,杨林德.软土工程施工新技术.[M].合肥:安徽科学技术出版社.1999.7
    [14] 黄钟晖,廖少明等.软土盾构法隧道管片厚度的优化.岩土力学.2000,21(4).
    [15] 黄钟晖,廖少明等.软土盾构法隧道管片接头位置的优化研究.地下空间.20(4).2000.12
    [16] 黄壮飞.预应力混凝土的非自由收缩,徐变变形影响应力损失的计算方法[J].煤矿设计,2000,(5):36~42
    [17] 建筑结构可靠度统一标准(GB5001-2001).北京:中国建筑工业出版社,2001
    [18] 江见鲸.混凝土结构工程学.北京:中国建筑工业出版社,1998
    [19] 蒋洪胜.盾构法隧道管片接头的理论研究及应用[博士学位论文].上海:同济大学,2000.12
    [20] 蒋剑彪,吕志涛,吴刚.新世纪混凝土结构对新材料的挑战.http://civil.seu.edu.cn/keylab
    [21] 景诗庭,宋玉香,吴康保.地下结构的概率极限状态设计[J].石家庄铁道学院学报.2000,13(3):13~17
    [22] 鞠丽艳,王量,张雄.地铁隧道复合纤维混凝土管片新技术.混凝土,2004(8):69-71
    [23] 鞠杨,徐广泉,毛灵涛等.盾构隧道衬砌结构应力与变形的三维数值模拟与模型试验研究[J].工程力学,2005,22(3):157~165
    [24] 李晨光,刘航等.新IMS整体预应力装配式板柱体系试验和工程实践[J].建筑技术.2000.12
    [25] 李晨光.无粘结预应力技术体系的发展及高层应用实例分析.世纪之交的预应力新技术[M].北京:专利文献出版社,1998,11 143-151
    [26] 李国平.预应力混凝土结构设计原理[M].北京:人民交通出版社.2002.142~143
    [27] 李围,何川.地铁单线盾构隧道管片衬砌合理厚度的探讨.地下空间.2004,24(1).
    [28] 李左芬.施加预应力的盾构隧道用管片[J].市政工程国外动态,2001,(6):17~19
    [29] 林同炎,Ned H Bums.预应力混凝土结构设计(第三版)[M].路湛心译.北京:中国铁道出版社.1984
    [30] 刘丰军,朱合华.纤维混凝土在盾构隧道衬砌管片中的应用研究.地下空间与工程学报[J],2007,Vol.3(1):83~86
    [31] 刘建航,候学渊.盾构法隧道.[M].北京:中国铁道出版社.1991.11
    [32] 刘铁雄译.日本隧道标准规范(盾构篇)及解释.四川:西南交通大学出版社,1993.
    [33] 刘效尧,朱新实.预应力技术及材料设备.人民交通出版社2000.01
    [34] 陆宗林,裴星树.夹片式锚具在我国的发展与展望.第七届后张预应力学术交流会
    [35] 吕志涛,刘钊等.浅论我国预应力混凝土梁桥的技术与发展[J].桥梁建设,2001,(1):52-56
    [36] 罗衍俭.铁路隧道结构设计理论与方法存在的问题.世界隧道,1997(5):8~12.
    [37] 宁华,王风军,王德凯.顸应力混凝土连续梁荷载平衡法[J].交通科技与经济,2003(3):121~123
    [38] 潘昌实译.盾构隧道衬砌设计指南(草案).世界隧道,1997,(2):19~29.
    [39] 上海隧道股份.穿黄隧道衬砌接头试验(R).2000年7月
    [40] 邵厚坤.预应力混凝土设计理论的发展,世纪之交的预应力新技术,北京:专利文献出版社,1998,11,32~38
    [41] 申晋,张昌杰,张永秋.高性能钢纤维混凝土管片应用前景.混凝土与水泥制品,2000,10(1):189~192
    [42] 沈景山.发展多层次的城市轨道交通[J].城市轨道交通研究.2000.1:11~13
    [43] 沈聚敏,王传志,江见鲸钢筋混凝土有限元与板壳极限分析.[M].北京:清华大学出版社,1991
    [44] 苏海东.盾构法隧洞的平面非线性有限元分析[J].长江科学院院报,2000,(4):22~25
    [45] 孙宝俊.现代预应力混凝土结构的预应力长期损失和时效分析研究[D].南京:东南大学,1992.
    [46] 孙更生,郑大同.软土地基与地下工程.北京:中国建筑工业出版社,1987.
    [47] 孙钧,侯学渊.地下结构(上下册).北京:科学出版社,1991.
    [48] 谭顺辉,李勇军.武汉长江隧道工程综述[J].大直径隧道与城市轨道交通工程技术.2005上海国际隧道工程研讨会文集:49-57
    [49] 汤漩.盾构隧道衬砌设计计算模型研究与优化 同济大学硕士学位论文.2005.02
    [50] 唐益群,叶为民,张庆贺.上海地铁盾构法施工隧道中几个问题的研究.地下空间,1995.
    [51] 唐溢.盾构法隧道错缝拼装衬砌的受力机理研究[硕士学位论文].上海:同济大 学,1988.
    [52] 田奇,马志奇,童占荣等.钢筋及预应力机械应用技术.中国建材工业出版社.2004.05
    [53] 同济大学等.土层地下建筑结构[M].北京:中国建筑工业出版社.1982.
    [54] 王英,周丽,郑文忠.预应力混凝土结构总变形计算统一方法[J].哈尔滨建筑大学学报.2001,34(5):11~13
    [55] 王振信.盾构法隧道的耐久性.地下工程与隧道,2002年第2期:2~5
    [56] 王志新,李玉梅.用索—梁法对无粘结预应力混凝土梁进行全过程分析的程序设计[J].吉林建筑工程学院学报.2002,19(2).33~35,46
    [57] 王德中,傅德明.上海上中路隧道工程[J].大直径隧道与城市轨道交通工程技术.2005上海国际隧道工程研讨会文集:63~73
    [58] 危永煜.装配式后张无粘结预应力沉淀池的施工[J].山西建筑.2004,30(2).-30~30,122
    [59] 席志松.大直径无粘结预应力水池的设计与施工研究[D].东南大学申请硕士学位论文,2002
    [60] 夏明耀,叶新祥,张易谦,傅德明.大型网格式盾构隧道施工机理研究.同济大学学报,1992,20(增刊):39~49.
    [61] 肖明.盾构隧洞装配式衬砌三维非线性有限元分析[J].岩土工程学报,1997,19(2):107~111
    [62] 谢小玲,苏海东.穿黄隧道双衬结构平面非线性有限元分析[J].长江科学院院报,2002.09,增刊:61~63,67
    [63] 谢醒梅,韩选江,叶湘菡等.现代予力混凝土结构设计理论及应用[M].北京:机械工业设计出版社,2007.
    [64] 许成祥,何培玲,刘开敏等.荷载与结构设计方法[M].北京:北京工业大学出版社,2006
    [65] 薛伟辰.预制装配式钢筋混凝土框架结构体系研究与应用进展工业建筑.2002.11
    [66] 晏浩,朱合华,傅德明.钢纤维混凝土在盾构隧道衬砌管片中应用的可行性研究.地下工程与隧道,2001年第1期:13~17
    [67] 杨海旭,刘晚成,王海飙等.无粘结预应力筋等效荷载的特性与应用[J].哈尔滨工业大学学报.2005,37(8):1087~1089
    [68] 杨林德,朱合华.线性分布初始地应力和地层弹性参数的反演分析.水电地下建筑情报网会议论文集,1989.
    [69] 于德湖,郑文忠.预应力混凝土结构长期损失若干计算方法的分析比较[J].哈尔滨建筑大学学报,2000.
    [70] 于宁.盾构隧道预应力管片的模型试验与设计方法研究.同济大学申请博士学位论文.2004
    [71] 余暄平,沈永元.超大直径长距离盾构隧道施工技术初探—上海长江隧道工程盾构施工方案研究术[J].大直径隧道与城市轨道交通工程技术.2005上海国际隧道工程研讨会文集:12-24
    [72] 余占疏,杜拱辰.预制与预应力混凝土的结构和经济效益[J].建筑结构.2002(06)
    [73] 俞祥荣主编.双圈环绕无粘结预应力混凝土衬砌施工技术.[M].北京:中国水利水电出版社.2000.7.
    [74] 禹化才.隧道盾构法施工成本价格分析.铁路工程造价管理2003年第4期
    [75] 袁勇等.隧道防水技术综述.工程力学(增刊),1999:272~278.
    [76] 岳中明,程德虎.南水北调中线穿黄工程隧道结构设计.岩土力学(增刊),1997,18:209~215.
    [77] 曾东洋,何川.地铁盾构隧道管片接头抗弯刚度的数值计算[J].西南交通大学学报.2004,39(6):744~748
    [78] 曾东洋,何川地铁盾构隧道管片接头刚度影响因素研究[J].铁道学报.2005,27(4):90~95
    [79] 翟进营译.增加盾构隧道管片宽度,提高经济效益.地下空间.2003,22(1)
    [80] 张炳华等.土建结构优化设计 上海:同济大学出版社.1998.
    [81] 张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社.2004
    [82] 张厚美,过迟等.圆形隧道装配式衬砌接头刚度模型研究.岩土工程学报,2000,(3).
    [83] 张厚美,吕国梁.圆形盾构隧道衬砌结构计算模型综述.世界隧道,2000(2):1~6.
    [84] 张庆贺,柏炯.上海软土隧道的设计与施工.世界隧道,1998,(2):11~25.
    [85] 张新培.建筑建构可靠度分析与设计[M].北京:科学出版社,2001
    [86] 张振义,赵玉华,艾勇等.大容积装配式预应力钢筋砼清水池施工[J].沈阳建筑工程学院学报.2001,17(1).-44~46,49
    [87] 赵顺波,许成祥,周新刚等.混凝土结构设计原理.同济大学出版社.2004.08
    [88] 赵欣.盾构衬砌管片设计优化及其接头参数的确定:[硕士学位论文].上海:同济大学,2003,3
    [89] 赵旭升,王志锋.2Φ50m装配式预应力浓缩池设计[J].煤矿设计.2000(12):34~35
    [90] 中华人民共和国建设部.《盾构掘进隧道工程施工及验收规范(报批稿)》.2005.10.
    [91] 中华人民共和国建设部.《混凝土结构设计规范》(GB50010-2002).北京:建筑工业出版社,2002.02.
    [92] 中华人民共和国建设部.《无粘结预应力混凝土结构技术规程》(JGJ92-2004).北京:建筑工业出版社,2005.04.
    [93] 钟登华,梅传书,刘春冬.隧道TBM施工管片衬砌三维计算模型[J].天津大学学报,2001,34(4):472~476
    [94] 周燕勤预应力损失的计算及试验研究[D].南京:东南大学,1995.
    [95] 朱伯芳.有限单元法原理与应用.[M].北京:中国水利水电出版社,2000
    [96] 朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究[J].岩土工程学报.2000,22(2):190~194
    [97] 朱合华,丁文其,李晓军.盾构隧道施工力学性态模拟及工程应用[J].土木工程学报,2000,33(3):98~103
    [98] 朱合华,丁文其,杨林德.盾构衬砌受力设计的现状与再认识.,西安:铁道工程学报增刊,1998.10:355~360
    [99] 朱合华,丁文其.地下结构动态施工仿真模拟分析.岩石力学与工程学报,1999.8(增):886~864
    [100] 朱合华,陶履彬.盾构隧道衬砌结构受力分析的梁-弹簧模型.岩土力学.1998,19(2):26~32
    [101] 朱合华,杨林德,丁文其.盾构隧道衬砌的梁—接头模型与水土压力的反演推定.中国土木工程学会隧道与地下工程学会地铁专业委员会第十二届学术交流会论文集:40~50.
    [102] 朱合华,杨林德等.盾构隧道管片接头衬砌系统的两种受力设计模.工程力学增刊,1996,(3):395~399
    [103] 朱合华等.地下建筑结构[M].中国建筑工业出版社.北京:2005.12.
    [104] 朱沪生.上海轨道交通建设运营的现状和发展.都市快轨交通,2004,17(1):20~24
    [105] 朱伟,陈仁俊.盾构隧道施工技术现状及展望—盾构隧道基本原理及在我国的使用情况.岩土工程界.2001,4(11):19~21
    [106] 朱伟,陈仁俊.盾构隧道施工技术现状及展望—盾构隧道技术问题及施工管理.岩土工程界.2001,4(120:14~16
    [107] 朱伟,陈仁俊.盾构隧道施工技术现状及展望—盾构隧道应用前景及发展方向.岩土工程界.2002,5(1):18~20
    [108] 朱伟,黄正荣,梁精华.盾构衬砌管片的壳-弹簧设计模型研究[J].岩土工程学报.2006,28(8):940~947
    [109] 朱伟译.[日]土木学会编,.隧道标准规范(盾构篇)及解说.[M].北京:中国建筑工业出版社.2001.11
    [110] 竺维彬,鞠世键.盾构隧道管片开裂的原因技对策[J].现代隧道技术.2003,40(1):21~25
    [111] T.D.奥克罗主编.隧道衬砌设计指南.北京:中国铁道出版社,1987.
    [112] Bradford, M. A., Gilbert, R. I., and Sun, S. C.-H. Time-dependent analysis of reinforced concrete structures using the layered finite-lementmethod. Struct. Engrg. and Mech., Taejon, Korea, 1999, 8(6), 561-578.
    [113] Elwi A. E.,Hrudey T.m., Finite element model for curved embedded reinforcement, Journal of Engineering Mechanics, [J].ASCE, 1989.11 (5),.740-754.
    [114] F. Brink. Shield driven tunnels for infrastructure projects within the Netherlands De Ingenieur No.11.(in Dutch),1992:22~25
    [115] G.A. Plizzari, G. Tiberti. Steel fiber reinforced concrete for precast tunnel segments [C]. Serviceability of Underground Structures. Shanghai:Tongji University Press. 2006.10.
    [116] G. Fukuchi. The Present and Future of Mechanized Tunnel Works in Soft Ground[J].Tunnelling and Underground Space Technology, 1991, 6(2)
    [117] G.. Du, X. Tao, Ultimates stress in unbonded tendons of partially prestressed concrete beams. [J]. PCI Journal. 1985.30 (6):72~91
    [118] H. Duddeck. Application of numerical analyses for tunneling[J]. Int. J. Num. Analysis Meth. Geomech. 1991, 25(4):223~239.
    [119] H. Mashimo. State of the road tunnel safety in Japan[J]. Tunneling and Underground Space Technology. 200, 17:145~152
    [120] H. Takasaki, H. Chikahisa, Y. Yuasa Planning and Mapping of Subsurface Space in Japan Tunnelling and Underground Space Technology incorporating Trenchless Technology Research[J].2000 .15 (3): 287- 301
    [121] H.H. Zhu, W. Ding, T. Hashimoto, J. Nagaya & T. Tamura. Construction simulation for the interaction between shield segments and ground, Proceeds of the Int. Sym. On Geotech. Aspetcs of Underground Const. In Soft Ground-IS-Tokyo'99, Aspects of Underground Construction in Soft Ground,Rooterdam:A.A.Balkema,2000, Tokyo, Japan: 331-336
    [122] H.H. Zhu, Z.G. Yan, S.M. Liao et al. Numerical Analysis and Field Test on Performance of Steel Fibre Reinforced Concrete Segment in Subway Tunnel, Underground Construction and Ground Movement, ASCE, 2006:248-255
    [123] H.H.Zhu & W.Q.Ding. The analysis of the segment internal forces in the construction process of shield tunnel, Recent Development of Theory & Practice in Geotechnology, China-Japan Joint Symposium, Oct. 1997: 29-30,
    [124] Hartl H.,Sparowitz L.,Elgamal A., The 3D computational Modeling of reinforced and prestressed Concrete Structures,Bergmeister K.(ed.),Proceedings of the 3rd international PhD
    [125] Hehua Zhu, T. Hashimoto et al. Back-analysis for Shield Tunnel Using Beam-Joint Model, Geotechnical Aspects of Underground Construction in Soft Ground, 15-17 April, 1996, London
    [126] HehuaZhu, Linde Yang & T. Hashimoto. A New Model for Simu-lating the Behavior of Segments in Shield Tunnel, 日本土木学会第49回年次学术讲演集,平成6年(1994)9 月,日本札幌,pp: 1242-1243
    [127] Horichi. Noriyuki, Hirashima. Masaharu, Matsushita. Yoshiaki, Ishii. Tsuneo. Numerical method for an analysis of shield segment rings under consideration of longitudinal rigidity. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1989, n 406: 195-204
    [128] ITA Working Group No. 2 Guidelines for the Design of Shield Tunnel Lining., International Tunnelling Association Tunnelling and Underground Space Technology incorporating Trenchless Technology Research[J].2000 .15 (3): 303 - 331
    [129] ITA Working Group. Guidelines for the Design of Tunnels. ITA Working Group on General Approaches to the design of tunnels, Tunnelling and Underground space technology, Vol.3, No.3. pp.237-249,1998, Great Britain
    [130] J.A Figueiras and R.H.C.F. Povas. Modeling of prestress in nonlinear analysis of concrete structures. [J]. Computer and Structures,1994,53(1):173-187
    [131] Jian LI, Yong YANG, Xian Liu, et al. Study on the present state and repairing method of the existing river-crossing tunnel of Huangpu River in Shanghai [C]. Serviceability of Underground Structures. Shanghai: Tongji University Press. 2006.10.
    [132] Jingfu Kang, Yuming Hu. Techniques and Performance of Post-Prestressed Tunnel Liner. Practice Periodical on Structure Design and Construction. ASCE. 2005: 102-108
    [133] K. .Nishikawa, Yamaguchi T, Yasuda M. et al. Design method and basic performance of the prestressed concrete lining. Proceeding of Tunnel Engineering . 1997. (7). Tokyo :JSCE
    [134] K. M. Lee, X. Y. Hou, X. W. Ge, Y. Tang. An analytical solution for a jointed shield tunnel ling. International Journal for Numerical and Analytical Methods in Geomechanics [J], 2001, 25:365-390
    [135] K. Nishikawa. Development of a prestressed and precast concrete segment lining. Tunnelling and Underground Space Technology. 2003. (18):243-251.
    [136] K.Nishikawa et al. Development of a precast concrete lining technique using prestressed concrete structrures. Modern Tunnelling Science and Technology. 2001 TOKYO : A.A.BALLKEMA PUBLISHERS
    [137] Kess Blom. Design philosophy of concrete linings for tunnels in soft ground [D]. Delft University. 2002.
    [138] M.H. Harajli, Stress in unbonded prestressed members. [J]. ACI Journal. 1990.87 (3): 305-312
    [139] M.W. Halderen, Van. A.M. Second Heinenoord segment production. Cement No. 10, (in Dutch), 1997: 47-51
    [140] Moon, J.-H., and Burns, N.H.,Flexural behavior of members with unbonded tendons.I:Theory,II:Application. [J]. Journal of Structural Engineering ASCE,1997,123(8):1087-1094
    [141] Naaman, Antoine E. Stresses in Unbonded Prestressing Tendons at Ultimate: Recommendation;.[J].ACI Structural Journal,2002,99(4)
    [142] P. Roca and A.R. Mari. Numerical treatment of prestressing tendons in the nonlinear analysis of prestressed concrete structures. [J].Computer and Structures, ASCE,1993,46(5):905-916
    [143] P.P. Oreste .The importance of longitudinal stress effects on the static conditions of the final lining of a tunnel[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research 2002, 17 (1):21-32
    [144] S. Satio et al.l999.Actual work report of the prestressed concrete lining. Proceeding of Tunnel Engineering.(9). Tokyo:JSCE
    [145] S. Satio, M. Kaneto, T. Sagsra et al. Actual work report of the prestressed concrete lining. Proceeding of Tunnel Engineering. 1999. (9). JSCE, Tokyo.
    [146] T. Hasimoto, H.H. Zhu, J. Nagaya. A new model for simulating the behavior of segments in shield tunnel. Proc of the 49th Annual Conference of Japan Society for Civil Engineers. Sept. 1994
    [147] T.Y. Lin, Thornton K. Secondary Moments and Moment Redistributions in Continuous Prestressed Concrete Beams. PCI Journal. 1972,17(4)
    [148] Tae-Hoon Kim, Kwang-Myong Lee, Hyun Mock Shin. Nonlinear analysis of reinforced concrete shells using layered elements with drilling degree of freedom. ACI Structural Journal. 2002. 99(4):418-425
    [149] W. Q. Ding, Z. Q. Yue, L. G. Tham, H. H. Zhu, C. F. Lee, T. Hashimoto. Analysis of shield tunnel. Intemational Joumal for Numerical and Analytical Methods in Geomechanics [J], 2004, 28:57~91
    [150] Zhijing Jin. Shanghai Metro Line is Under Construction. Tunnels & Tunneling International Chinese Edition, 1998, 2(1):59~62
    [151] 久保.应力继手刚性影响[J].土木学会论文报告程文集:1967.No.150.
    [152] 西川和良,山口隆史,安田正樹,杉本雅人,进藤二郎;PC設計手法基本性能;工学研究論文、報告集第7卷1997年11月報告(34):285-290
    [153] 青藤進,金子正士,相良拓,杉本雅人,进藤二郎.PC施工報告.工学研究論文、報告集第9卷1999年11月報告(45):325-330
    [154] 村上博智,小泉.工事用继手拳动.土木学会论文报告集,1980.
    [155] 村上博智,小泉.耐荷械构[J].土木学会论文报告程文集:1978.No.150.
    [156] 鉄道省運輸局.設計標準·同解說.[日本]丸善株式会社,平成14年(2002年)12月
    [157] 入江健二.覆工技术(7).地下,1993,24(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700