驱动滚筒仿生表面增摩技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用摩擦原理实现机械传动的装置普遍存在于工业生产中,带式输送机就是典型的应用范例。为了提高带式输送机的运输能力,防止因打滑引起的生产事故发生,适当增大驱动滚筒与输送带接触面上的摩擦力是很有意义的。
     本文在研究了带式输送机挠性摩擦传动理论的基础上,提出了增大驱动滚筒摩擦牵引力的三种途径和技术措施。经过分析比较各种措施的实用性和经济性,确定了通过设计滚筒包胶仿生结构来改善摩擦接触状态、增大摩擦因数的增摩技术方案。
     从生物的攀爬附着功能中获得启示,研究了以树蛙、螽斯为代表的表皮垫型附着器官的结构特点及粘附机理,提取具有共性的生物特征元素——非光滑微凸体作为滚筒包胶的仿生设计原型。基于结构和功能仿生原理,设计出四种新型滚筒包胶表面形貌,分别为:凸包均匀分布、正方形排列;凸包均匀分布、正三角形排列;菱形胶面分级结构等,并运用三维建模软件Pro/Engineer建立了仿生包胶的实体模型。在对仿生包胶的增摩防滑特性进行理论分析的基础上,应用ANSYS有限元分析软件模拟了滚筒包胶与输送带的接触行为,得到如下分析结果:滚筒包胶仿生结构与输送带之间会产生“嵌入互锁效应”,而且不同材质的凸包产生的“嵌入效应”程度不同,橡胶凸包的嵌入作用微弱,而陶瓷凸包与输送带的硬度差别较大,嵌入效应明显。
     接触分析结果表明:本文设计的具有六边形凸包的仿生滚筒包胶与输送带的接触过程中能够产生“嵌入互锁效应”,接触形式由原来的平面或弧面变为啮合接触,大大提高了接触稳定性,从而可以达到增大摩擦力、有效防止输送带打滑的目的。
Many mechanical transmission devices making use of friction principle are widely used in industrial production. Belt conveyor is a typical application example. In order to improve its transport capacity and prevent the production accidents caused by slipping, it is significant to increase the friction between the driving drum and the belt.
     Based on the study of flexible friction driving theory of belt conveyors, three methods to increase the friction of the driving drum were proposed. After comparing the cost and the practicability of these measures, the technical scheme which can improve the frictional contact status by designing bionic structure of the drum's lining was determined.
     Inspired from the biological function of speeling and adhesion, the structural features and adhesion mechanism of the attachment organ such as the foot pad of tree frog, katydid, were researched. The nonsmooth asperity that is a common biological feature was extracted to be the bionic design prototype of the drum's lining. According to the biomimetic principle of structure and function, four new kinds of the lining's surface shape were designed. The solid models of four different bionic linings were built with the software of Pro/Engineer. Based on the theoretical analysis of the non-skid property of the bionic linings, the contact process between the lining and the belt was simulated with ANSYS software. The results showed that the bionic linings could generate embedding and interlocking effect. And different materials of convex hulls generated different effects. The embedding effect of rubber convex hulls was weak, but the ceramics convex hulls'embedding and interlocking effect was obvious.
     The results of contact analysis indicated that the bionic drum's linings with hexagon convex hulls could generate embedding and interlocking effect. So the contact form changed from plane or cambered surface to meshing contact. The bionic structure achieved the goal of improving contact stability, increasing friction and preventing the belt from slipping.
引文
1.戴振东,佟金,任露泉.仿生摩擦学研究及发展[J],科学通报,2006,51(20):2353-2359.
    2. A.J.G. Nuttall, G. Lodewijks. Traction versus slip in a wheel-driven belt conveyor[J], Mechanism and Machine Theory,2006, (41):1336-1345.
    3. Ch. Affolter, G Piskoty, R. Koller, M. Zgraggen, T.F. Rutti. Fatigue in the shell of a conveyor drum[J], Engineering Failure Analysis,2007, (14):1038-1052.
    4. Jones DRH. Fatigue failures of welded conveyor drums[J], Failure Anal,1995,2(1): 59-69.
    5.黄盛初,窦庆峰,王捷帆.等.中国煤炭工业年鉴[M].北京:煤炭工业出版社,2004.
    6.陈维建,齐秀丽,肖林京.等.矿山运输与提升设备[M].徐州:中国矿业大学出版社,2007,77-80.
    7.杨彦臣,刘大卫.带式输送机传动滚筒的防滑处理[J],矿山机械,2003,(5):57-58.
    8.佟金.仿生与仿生摩擦学研究进展[R],青岛:摩擦学研讨会,2005,10.
    9. Ball Philip. Shark skin and other solutions[J], Nature,1999, (40):507-509.
    10.程红,孙久荣,李建桥.等.臭蜣螂体壁表面结构及其与减粘脱附功能的关系[J],昆虫学报,2002,45(2):175-181.
    11.任露泉,佟金.等.松软地面机械仿生理论与技术[J],农业机械学报,2000,(1):5-8.
    12.任露泉,佟金.等.生物脱附与机械仿生[J],中国机械工程,1999,(9):984-985.
    13.任露泉,王云鹏,李建桥.等.土壤动物柔性非光滑体表及其防黏降阻特性[J],科学通报,1998,42(17):1887-1889.
    14. Ren Lu-quan, Han Zhi-wu, Li Jian-qiao. Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction[J], Soil & Research, 2006,(85):1-12.
    15. Home Everard. Some Account of the Feet of Those Animals Whose Progressive Motion Can Be Carried on in Opposition to Gravity[J], Philosophical Transactions of the Royal Society of London,1816,106:149-155.
    16. Autumn Kellar, Peattie Anne M. Mechanisms of Adhesion in Geckos[J], INTEGR. COMP. BIOL,2002,42:1081-1090.
    17. Geim A.K, Dubonos S.V, Grigorieva I.V. Microfabricated adhesive mimicking gecko foot-hair[J], Nature Materials,2003,2:461-463.
    18. Federle W, Full R.J. Thin liquid films and ant adhesion[J], American Zoologist,2001, 41(6):1441.
    19. http://www.roboticfan.com/Article/html/627.html.
    20. http://www.tech.tom.com/1121/1122/200589-239277.html.
    21. http://www.cnetnews.com.cn/files/list-0-0-172252-0-1.html.
    22.赵维福.龙虱吸盘的仿生学特性及其真空吸盘组的仿真模拟研究[D],吉林:吉林大学,2006.
    23.刘莹,温诗铸.带传动中传动带弹性性质的非线性与分析[J],南昌大学学报(工科版),2002,24(1):8-11.
    24.夏荣海,朱家玮.欧拉公式的修正及其在摩擦提升摩擦系数测定上的应用[J],中国矿业大学学报,1983,(3):43-52.
    25.葛世荣.摩擦提升欧拉公式的修正[J],矿山机械,1989,(3):18-22.
    26.马志奇.钢丝绳摩擦传动防滑计算新方法[J],建筑机械化,1999,(4):33-34.
    27.葛世荣,夏荣海.摩擦提升机摩擦传动方程的研究[J],煤炭学报,1991,16(1):51-62.
    28.贾昌喜,周法孔.闭环控制增压式摩擦传动机构的理论研究[J],煤炭学报,1995,20(1):67-71.
    29.王子文,孟宪举.摩擦传动中钢丝绳的蠕动机理及其计算[J],矿山机械,1998,(2):31-32.
    30.黄平.弹性啮合与摩擦耦合传动理论及实验研究[J],机械传动,1999,23(2):7-10.
    31.史志远,朱真才,陈国安.提升机盘形制动器闸瓦材料摩擦性能实验研究[J],润滑与密封,2006,(12):99-101.
    32.郑志莲,李仪钰.多绳摩擦提升摩擦传动方程的理论探讨[J],矿业研究与开发,1998,18(6):17-19.
    33. http://www.image. baidu.com/baiduimagedetail&word.
    34.高学栋,王晓华.陶瓷衬套在带式输送机驱动滚筒上的应用[J],矿山机械,2007,35(2):88-90.
    35.美国《工程与采矿杂志》编辑部.利用陶瓷衬面滚筒提高输送机运输能力[J],国外金属矿山,1997,(2).
    36. Xiao Lin-jing, Sui Xiu-hua, Miao De-jun. Study on mechanics of driving drum with super-elastic convexity surface covering-layer structure [J], Journal of Bionic Engineering, 2008,5(1):60-65.
    37.程居山,肖林京,王昌田.等.矿山机械[M].徐州:中国矿业大学出版社,1997,189-191.
    38.洪晓华.矿井运输提升[M].徐州:中国矿业大学出版社,2005,73-78.
    39.龚景安,许立忠.机械设计[M].北京:机械工业出版社,1998,32-33.
    40.陈艳.带式输送机的摩擦理论分析[J],煤矿机械,2001,(6):21-22.
    41.《运输机械设计选用手册》编辑委员会.运输机械设计选用手册[M].北京:化学工业出版社,1999.
    42.张钺.新型带式输送机设计手册[M].北京:冶金工业出版,2001,15-79.
    43.崔志远.传动滚筒的力学分析及设计[D],太原:太原科技大学,2007.
    44.汪栋.奇妙的仿生学[J],生物学教学,1995,(10):44-45.
    45.杜家纬.二十一世纪仿生学研究对我国高新技术产业的影响[J],世界科学,2004,(2):12-16.
    46.宗光华,毕树生.关于21世纪初我国仿生机械与仿生制造的若干思考[J].中国机械工程,2003,10(12):1200-1204.
    47.路甬祥.仿生学的意义与发展[J],科学中国人,2004,(4):22-24.
    48.岑海堂,汪苏,陈五一.结构仿生新进展[J],机械设计,2003,20(11):1-3.
    49.陈东辉.典型生物摩擦学结构及仿生[D],吉林:吉林大学,2007.
    50. Gorb S.N, Beutel R.G.. Evolution of locomotory attachment pads of hexapods, Naturwissenschaften,2001,88:530-534.
    51. Arzt E, Gorb S.N, Spolenak R. From micro to nano contacts in biological attachment devices, Proc Natl Acad Sci USA,2003,100:10603-10606.
    52. Autumn K, Sitti M, Liang Y.A. Evidence for van der walls adhesion of nanoscale fibrillar structures, PANS,2002,99:12252-12256.
    53. Bharat Bhushan著,葛世荣译.摩擦学导论[M].北京:机械工业出版社,2006,56-111.
    54. Adamson A.W著,顾惕人译.表面的物理化学[M].北京:科学出版社,1984,1-40.
    55. Federle W, Barnes W.J.P, Baumgartner W. Wet but not slippery:boundary friction in tree frog adhesive toe pads[J], J.R.Soc. Interface,2006, (3):689-697.
    56. Johnson K.L著,徐秉业译.Contact Mechanics[M].北京:高等教育出版社,1992.
    57.彼得·艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003,92-134.
    58. Johnson K.L, Kendall K, Roberts A.D. Surface Energy and the Contact of Elastic Solids, Proc.R.Soc.Lond. A,1971,324:301-313.
    59. Tabor D. Surface forces and Surface interactions[J], Journal of Colloid and Interface Science,1976,58:1-13.
    60. Maugis D. Adhesion of Spheres:the JKR-DMT Transition Using a Dugdale Model[J], Journal of Colloid and Interface Science,1992,150:243-269.
    61.温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008,356-370.
    62.机械设计手册编委会.机械设计手册第2卷[M].北京:机械工业出版社,2004.
    63.王淑杰.典型生物非光滑表面形态特征及其脱附功能特性研究[D],吉林:吉林大学,2006.
    64.李景湧.有限元法[M].北京:北京邮电大学出版社,1999.
    65.尚晓江,邱峰,赵海峰.等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2005,169-181.
    66.张洪信,赵清海.ANSYS有限元分析完全自学手册[M].北京:机械工业出版社,2008.
    67.杨挺青,罗文波,徐平.等.黏弹性理论与应用[M].北京:科学出版社,2004,292-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700